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Abstract
This paper presents a formulation of the notion of monotonicity on homogeneous
spaces. We review the general theory of invariant cone fields on homogeneous spaces
and provide a list of examples involving spaces that arise in applications in infor-
mation engineering and applied mathematics. Invariant cone fields associate a cone
with the tangent space at each point in a way that is invariant with respect to the
group actions that define the homogeneous space. We argue that invariance of conal
structures induces orders that are tractable for use in analysis and propose invariant
differential positivity as a natural generalization of monotonicity on such spaces.
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1 Introduction

Monotonicity is the property of dynamical systemsormaps that preserve apartial order,
which is defined as a binary relation that is reflexive, antisymmetric, and transitive.
That is, a monotone dynamical system is characterized by the property that any two
points that are ordered at one instant in time will remain ordered at all subsequent
times as the system evolves with the flow. Monotone flows and their discrete-time
analogues, order-preserving maps, play an important role in the theory of dynamical
systems and find applications to many biological, physical, chemical, and economic
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models [14,33]. These systems are closely related to linear dynamical systems with
input and output channels, where the monotonicity of a nonnegative input is preserved
by the output [2,3,21,23,43]. Recently, this type of input-output preserving system has
been further extended to the notion of unimodality [22].

One area of application of monotonicity is the theory of consensus algorithms
[27,35,44,45,48,49], where one is interested in designing and analyzing consensus
protocols that define the interactions between a collection of agents exchanging infor-
mation about their relative states via a communication network with the aim of
achieving collective behavior. Monotone systems also arise naturally in many areas of
biology [5,6,13]. A classical example of a monotone system arising from biology is
described by aKolmogorovmodel of interacting species where an increase in any pop-
ulation causes an increase in the growth rate of all other populations. Such systems are
said to be cooperative [51]. Monotone systems also arise in areas of biology other than
population dynamics. For instance, see [52] for an example concerning the dynamics of
viral infections. Furthermore, monotone subsystems are often found as components of
larger networks due to their robust dynamical stability and predictability of responses
to perturbations. The decomposition of networks into monotone subsystems and the
study of their interconnections using tools from control theory have also proven to be
insightful [4,7,11].

This paper addresses the question of how to definemonotonicity on a homogeneous
manifold. The notion of order plays a defining role in monotonicity theory. In linear
spaces, it is well known that orders are intimately connected with the theory of pointed
solid convex cones. In this paper, a solid convex cone K is said to be pointed if
K ∩ −K = {0}. Every such cone K induces a partial order ≤ in a vector space,
whereby a ≤ b if b − a lies in K. The simplest example is provided by the positive
orthant Rn+ in R

n consisting of vectors with nonnegative entries, which induces the
standard vector order based on pairwise comparisons of vector entries. It is natural to
generalize this approach by defining a field of cones on a manifold, whereby a cone
is associated with the tangent space at each point on the manifold. A conal curve of
a cone field is defined as a piecewise smooth curve whose tangent vector lies in the
cone at every point along the curve wherever it exists. Cone fields induce the notion
of conal orders, whereby a pair of points are said to be ordered if the first point can be
joined to the second point by a conal curve. Conal orders locally define partial orders
on a manifold. Whether the local partial order can be extended globally depends on
the structure of the cone field and the underlying space.

In most applications in applied mathematics and engineering, we are interested in
problems that are formulated on spaces with special geometries such as homogeneous
spaces. These are manifolds that admit a transitive Lie group action and thus provide
a way of systematically generating mathematical structures over the tangent bundle
using constructs defined at a single point. This provides a methodology to incorporate
the symmetries of the space in any additional structures that are endowed to the space
for analysis and design purposes. The classical example of such a construction is that
of a homogeneous Riemannian metric, which is entirely determined by the metric
at a point. In a similar spirit, we define and characterize invariant cone fields on
homogeneous spaces. In doing so, we closely review elements of the general theory
of homogeneous cone fields as outlined in the important work by Hilgert et al. [24,25]
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and Neeb [41]. We then present a number of examples of homogeneous spaces that
arise in a variety of applications in information geometry, computational science and
engineering, includingGrassmannmanifolds and spaces of symmetric positive definite
matrices, and consider the existence of invariant cone fields on these spaces. A key
theme of the paper is that geometric invariance yields ‘tractability’ in the analysis
of orders and related concepts, which otherwise may appear daunting. In particular,
we show that conality of geodesics on globally orderable Riemannian homogeneous
spaces can be used to determine order relations between points on such spaces.

Cone fields and conal curves provide a local or differential way of thinking about
order relations, which can be viewed as corresponding global concepts. Monotonicity
itself is a global concept in the sense that it is classically defined in relation to some par-
tial order. In extending any concept defined on vector spaces to manifolds, it is natural
to seek the differential characterization of the property, which in turnwill often provide
a route for generalization to the nonlinear manifold setting. The local property that is
equivalent to monotonicity in Rn with respect to a partial order defined by a constant
cone field is differential positivity [17]. We propose invariant differential positivity
(i.e., differential positivity with respect to an invariant cone field) as a generalization
of monotonicity to homogeneous spaces. We will show that invariant differential posi-
tivity is indeed equivalent to monotonicity when the cone field induces a global partial
order. Furthermore, we discuss how the property remains useful in cases where the
order is not a global partial order. Invariant differential positivity can be a powerful
analytic tool for the study ofmonotonicity in a variety of contexts, including the theory
of consensus of oscillators [36,40], nonlinear dynamical systems [15–17], and matrix
monotone functions [10,32,37]. In this paper, we specify what we mean by invariant
differential positivity on homogeneous spaces, including with respect to cones of rank
k [19,38,46,47], which are generalizations of cones to structures that are closed and
invariant under scaling by all real numbers. We also consider the strong implications
that invariant differential positivity can have for the asymptotic behavior of dynamical
systems.

2 Homogeneous spaces

A left action of a Lie group G on a manifoldM is a smooth map Φ : G ×M → M
satisfyingΦ(e, x) = x andΦ(g1g2, x) = Φ(g1, Φ(g2, x)) for all g1, g2 ∈ G, x ∈ M,
where e is the identity element inG. Note that for a given g ∈ G, themap x �→ Φ(g, x)
is a diffeomorphism of M. The group G is referred to as a transformation group
of the manifold M. We will use Φ(g, x) and g · x interchangeably in this paper.
A homogeneous space is defined as a manifold M on which a Lie group G acts
transitively.

Definition 1 A smooth manifoldM is said to be a homogeneous space if there exists
a Lie group G acting onM such that for all x1, x2 ∈ M, there exists g ∈ G such that
g · x1 = x2.

Homogeneous spaces are closely connected to coset manifolds. For a given Lie
group G and a closed subgroup H , consider the set G/H := {gH : g ∈ G} of left
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cosets of H in G. The set G/H is the set of equivalence classes for the equivalence
relation ∼ on G defined by

g1 ∼ g2 ⇐⇒ ∃ h ∈ H : g1 = g2h. (1)

The set G/H can be made into a manifold in a unique way if we require that the
projection map π : G → G/H , π(g) := gH be a submersion; i.e., if we require that
the differential map dπ |g is surjective for each g ∈ G. For each a ∈ G, define the
left translation τa : G/H → G/H by τa(gH) := agH . Note that the left translations
τg are related to the left translations Lg on the Lie group G by π ◦ Lg = τg ◦ π ,
for each g ∈ G. The left translations τa define a transitive action on G/H given
by Φ(a, gH) := τa(gH) = agH . Thus, all coset manifolds of the form G/H are
homogeneous spaces. Indeed, the converse is also true. That is, any homogeneous
manifold M with a transitive group action G × M → M can be expressed as a
suitable coset manifold G/H . To see this, we first define the isotropy group Gx at a
point x ∈ M to be the set Gx := {g ∈ G : g · x = x}. That is, the isotropy group
Gx consists of all elements in the transformation group G that keep x fixed. Fix a
point o ∈ M and note that H := Go forms a closed subgroup of G. The natural map
ι : G/H → M defined by ι(gH) = g · o is a diffeomorphism, so thatM ∼= G/H as
smooth manifolds. Furthermore, it can be shown that dimM = dimG − dim H [8].

2.1 Reductive homogeneous spaces

LetM = G/H be a homogeneous space and consider the natural projection π : G →
G/H , π(g) = gH . The differential dπ |e : g → To(G/H), where o = π(e) = eH ,
is given by

dπ |eX = d

dt
(π ◦ exp t X)

∣
∣
∣
t=0

= d

dt
((exp t X)H)

∣
∣
∣
t=0

, (2)

for X ∈ g. As the map dπ |e : TeG → ToM is a vector space homomorphism, we
have TeG/(ker dπ |e) ∼= im dπ |e. It follows from (2) that ker dπ |e = h, where h is
the Lie algebra of H . Thus, we have the canonical isomorphism

g/h ∼= To(G/H) = ToM, (3)

where g/h is the set of cosets X + h = {X + Y |Y ∈ h} for X ∈ g.

Definition 2 A homogeneous space M = G/H is said to be reductive if there exists
a subspace m of g such that g = h ⊕ m and Ad(h)m ⊆ m, for all h ∈ H .

The Ad(H)-invariance condition Ad(h)m ⊆ m implies [h,m] ⊆ m. For a reductive
homogeneous space G/H , the canonical isomorphism (3) reduces to m ∼= To(G/H).
Note that if the Lie group G is compact, then the homogeneous space M = G/H
is reductive since g = h ⊕ m, where m := h⊥ with respect to an Ad-invariant inner
product on g. Moreover, we note that the Killing form B : g × g → R, B(X ,Y ) =
tr(adX ◦ adY ) of a Lie group G is always an Ad-invariant symmetric bilinear form
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on g. Thus, if G is compact and semisimple so that −B is positive definite, then the
Killing form defines a bi-invariant metric on G given by 〈·, ·〉 = −B(·, ·) [8].

2.2 Symmetric spaces

Symmetric spaces constitute an important class of homogeneous spaces that includes
many of the spaces that are of interest in applications and discussed in this paper. A
connected RiemannianmanifoldM is said to be a symmetric space if for each p ∈ M,
there exists an isometry jp : M → M, such that

jp(p) = p and d jp|p = −Idp, (4)

where Idp is the identity map on TpM. The map jp has the property that it “reverses”
the geodesics that pass through p ∈ M, in the sense that if γv : (−ε, ε) → M is the
unique geodesic through p with γv(0) = p and γ ′

v(0) = v, then jp(γv(t)) = γv(−t).
The Euclidean space Rn is clearly symmetric. A less trivial example is the n-sphere
S
n embedded in R

n+1, where the symmetry at the north pole p = (1, 0, . . . , 0) is
given by jp(x1, x2, . . . , xn+1) = (x1,−x2, . . . ,−xn+1). A symmetric Riemannian
manifoldM is a homogeneous space G/H , where G = I (M) is the isometry group
of M acting transitively onM and H is the isotropy subgroup of a point o ∈ M.

Denote the symmetry of the symmetric space M = G/H at o = eH by j . Now
for each g ∈ G, define the map σ(g) : M → M by σ(g) = j ◦ g ◦ j . Since σ(g) is
an isometry of M, it lies in G and thus we can define an automorphism σ : G → G
by g �→ σ(g) = j ◦ g ◦ j−1 as j2 = Id. Setting Gσ = {g ∈ G : σ(g) = g} to be the
fixed points of σ and Go

σ its connected component, one can show that σ 2 = IdG and
Gσ is a closed subgroup of G that satisfies Go

σ ⊆ H ⊆ Gσ . The map σ is sometimes
referred to as the involution map associated with the symmetric space G/H . Every
symmetric space G/H with involution σ is a reductive homogeneous space with
reductive decomposition g = h ⊕ m, where

h = {X ∈ g : dσ |eX = X} and m = {X ∈ g : dσ |eX = −X}, (5)

and Ad(H)m ⊆ m [8].

3 Invariant cone fields on homogeneous spaces

3.1 Homogeneous cone fields

A wedge is a closed and convex subset of a vector space that is closed under multi-
plication by nonnegative scalars [25]. A wedge fieldWM on a manifoldM smoothly
assigns to each point x ∈ M a wedge WM(x) in the tangent space TxM.

Definition 3 Let Φ : G ×M → M be any left group action onM such that each of
the maps τg : M → M defined by τg(x) := Φ(g, x) = g · x forms a diffeomorphism
of M. Then a wedge field WM is said to be G-invariant if
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dτg
∣
∣
x (WM(x)) = WM (g · x) , (6)

for all g ∈ G and x ∈ M.

We now specialize to the case where the group action is transitive so that M is a
homogeneous space. A homogeneous cone field on a homogeneous spaceM = G/H
of a connected Lie group G assigns to each point x ∈ M a coneKM(x) in the tangent
space TxM, such that the cone field is invariant under the action of G on M. Recall
that elements ofM can be identified with cosets gH := {gh : h ∈ H} in G/H and let
o := eH denote the base point inM. The left translations τg : M → M are defined
by τg(x) = g · x for all g ∈ G and x ∈ M. Let g = TeG and h = TeH denote the Lie
algebras of G and H , respectively. The canonical projection π : G → M defined by
π(g) = gH induces a linear surjection dπ |e : g → ToM with ker dπ |e = h, so that
we obtain the isomorphism g/h ∼= ToM given by

X + h �→ dπ |eX . (7)

Thus, the surjection dπ |e is identified with the quotient map p : g → g/h, where
p(X) = X + h.

Recall that H is the isotropy subgroup of G acting onM at o. That is, for each h ∈
H , we have τh(o) = o. Thus, we obtain a vector space isomorphism dτh |o : ToM →
ToM and a representation η : H → Aut (ToM) of H given by η(h) = dτh

∣
∣
o. Under

the identification of ToM with g/h, we have:

η(h) (X + h) = Ad(h) (X) + h, (8)

for all h ∈ H and X ∈ g.
If we seek to describe invariant cone fields on M = G/H in terms of wedges

defined in the Lie algebra g of the total space G, then there are some consistency
requirements that must be satisfied. In particular, any cone K in ToM = g/h arising
as the projection of a wedge W in g must be invariant under the group η(H), since
otherwisewewould have different cones at o depending on the choice of representative
h ∈ H in o = eH = π(h).

Lemma 1 Let H beaclosed subgroupofG andW awedge ingwith edgeW∩−W = h.
If

Ad(h) (W ) = W , ∀h ∈ H , (9)

then the associated pointed cone K = p(W ) in ToM = g/h is invariant under the
group η(H).

Note that for a cone K in ToM that is invariant under η(H), the G-invariant cone
field KM given by

KM (gH) := dτg
∣
∣
oK, (10)
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Fig. 1 A homogeneous cone
field KM onM = G/H
arising as the projection of an
invariant wedge field WG on G
generated by an AdH -invariant
wedge W ⊂ g that satisfies
W ∩ −W = h

is well defined. That is, for all g, g′ ∈ G corresponding to the same point x ∈ M (i.e.,
for all g, g′ ∈ G satisfying π(g) = π(g′)), we have

dτg
∣
∣
oK = dτg′

∣
∣
oK. (11)

To see this, note that π(g) = π(g′) precisely if there exists h ∈ H such that g′ = gh.
Thus, we have dτg′ |o = dτg|o ◦ dτh |o = dτg|o ◦η(h), whence the result follows from
the η(H)-invariance of K. The following theorem from [25] describes the geometry
of homogeneous cone fields on M = G/H . See Fig. 1.

Theorem 1 Let H be a closed subgroup of a Lie group G and W a wedge in g such
that (i) W ∩ −W = h, and (ii) Ad(H)(W ) = W. Define WG and KM by

WG(g) := dLg
∣
∣
e W , KM(x) := dτg

∣
∣
o K, (12)

whereM := G/H, e is the identity element in G, o = eH is the base point inM, and
K is the pointed cone in ToM obtained as the projection of W onto g/h. Then, KG is
an invariant wedge field on G andKM is a well-defined homogeneous or G-invariant
cone field on M. Moreover, for each g ∈ G,

dπ
∣
∣
g (WG) = KM (π(g)) , (13)

where π : G → M is the canonical projection π(g) = gH.

3.2 Examples

3.2.1 Lie groups

Any Lie group G is itself a homogeneous space in at least two ways. First, it can be
expressed asG ∼= G/{e}.Alternatively, one canwriteG ∼= G×G/G,whereG×G acts
onG by left and right translations and the isotropy subgroup isG diagonally embedded
in G×G. Invariant cone fields can be defined on a Lie group as a homogeneous space
using left translation. Given a cone K in g, the corresponding left-invariant cone field
KG is given by

123



22 Page 8 of 25 Mathematics of Control, Signals, and Systems (2018) 30 :22

KG(g) = dLg
∣
∣
eK, (14)

for all g ∈ G.

3.2.2 The quotient of the Heisenberg group by its center, G/Z(G)

The Heisenberg groupG is a Lie group that arises in various fields including represen-
tation theory, sub-Riemannian geometry, and quantum mechanics. It can be defined
as the group of 3× 3 upper triangular matrices with diagonal elements equal to 1 and
group operation given by matrix multiplication. The Lie algebra g can be represented
as the set of strictly upper triangular 3 × 3 matrices. That is,

G =
⎧

⎨

⎩

⎛

⎝

1 a c
0 1 b
0 0 1

⎞

⎠ : a, b, c ∈ R

⎫

⎬

⎭
, g =

⎧

⎨

⎩

⎛

⎝

0 α γ

0 0 β

0 0 0

⎞

⎠ : α, β, γ ∈ R

⎫

⎬

⎭
. (15)

The center Z(G) of G is defined as the set Z(G) = {z ∈ G : zg = gz, ∀g ∈ G} and
forms a subgroup H of G with Lie algebra h given by

H := Z(G) =
⎧

⎨

⎩

⎛

⎝

1 0 c
0 1 0
0 0 1

⎞

⎠ : c ∈ R

⎫

⎬

⎭
, h =

⎧

⎨

⎩

⎛

⎝

0 0 γ

0 0 0
0 0 0

⎞

⎠ : γ ∈ R

⎫

⎬

⎭
. (16)

ThequotientmanifoldG/H defines a homogeneous space of dimension2.To construct
an invariant cone field onG/H , we first look for awedgeW in g that satisfies condition
(i) of Theorem 1; i.e., W ∩ −W = h. This is achieved precisely if W is of the form

W = {(α, β, γ ) : (α, β) ∈ K ⊂ R
2, γ ∈ R}, (17)

where K is any pointed convex solid cone in R2. For condition (i i) of Theorem 1, we
consider Ad(H)W . Now since

⎛

⎝

1 0 c
0 1 0
0 0 1

⎞

⎠

⎛

⎝

0 α γ

0 0 β

0 0 0

⎞

⎠

⎛

⎝

1 0 c
0 1 0
0 0 1

⎞

⎠

−1

=
⎛

⎝

0 α γ

0 0 β

0 0 0

⎞

⎠ , (18)

for all c ∈ R and (α, β, γ ) ∈ R
3, Ad(H)(W ) = W trivially holds for any wedgeW in

g. Therefore, any wedge W of the form (17) uniquely defines an invariant cone field
KM on M = G/H .

3.2.3 The n-spheres and Grassmannians

The n-sphere Sn can be viewed as a homogeneous space with a transitive SO(n + 1)
action, since any two points on S

n embedded in R
n+1 are related by a rotation. We
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fix the point o = (1, 0, . . . , 0) ∈ S
n and note that the isotropy subgroup of o can be

identified with SO(n) since it consists of matrices in SO(n + 1) of the form

(

1 0
0 R

)

(19)

were R ∈ SO(n). Therefore, we can write Sn = SO(n+ 1)/SO(n). It is not possible
to define homogeneous cone fields on every n-sphere. A direct way of proving this is
to note that for all even-dimensional spheres S2m , m ∈ N no global cone fields exist.
This is a clear consequence of the Poincare–Brouwer theorem of algebraic topology,
also known as the so-called hairy ball theorem, that the even-dimensional spheres
do not admit any globally defined continuous and non-vanishing vector fields. Since
a globally defined cone field on a manifold can be used to construct a continuous
non-vanishing vector field by a continuous deformation of the cone field to a field of
rays, the Poincare–Brouwer theorem implies the non-existence of global cone fields
on S2m .

The set of all p-dimensional subspaces ofRn is called theGrassmannian of dimen-
sion p inRn and is denoted by Gr(p, n) [1,31]. Grassmannians naturally arise in many
applications including as parameter spaces in model estimation problems [53] and in
computer vision applications including affine-invariant shape analysis, image match-
ing, and learning theory [20,54]. The set Gr(p, n) can be endowed with a natural
differentiable structure that turns it into a compact manifold of dimension p(n − p).
The Grassmann manifold Gr(p, n) is a homogeneous space with a natural transitive
O(n) action [9,12]:

Gr(p, n) = O(n)/ (O(p) × O(n − p)) . (20)

The Killing form B : g × g → R is non-degenerate for g = so(n). Thus, Gr(p, n) =
G/H = O(n)/ (O(p) × O(n − p)) is a reductive homogeneous space with reductive
decomposition g = h ⊕ m, where

g = so(n), h =
{ (

X1 0
0 X2

)

: X1 ∈ so(p), X2 ∈ so(n − p)

}

, (21)

and m = h⊥ with respect to the Killing form B of so(n). That is,

m =
{ (

0 −ZT

Z 0

)

: Z ∈ R
(n−p)×p

}

. (22)

As in the case of the n-spheres, the Poincare–Hopf theorem can be used to rule
out the existence of homogeneous cone fields for most Grassmannians. Indeed, it can
be shown using Schubert calculus [28] that unless p is odd and n is even, the real
Grassmannian Gr(p, n) has a nonzero Euler characteristic and hence does not admit
a continuous globally defined cone field as a corollary of the Poincare–Hopf theorem.
In particular, Gr(p, n) does not in general admit a homogeneous cone field.
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3.2.4 The space of positive definite matrices S+n

The space of positive definite matrices S+
n of dimension n arises in many applications

in information geometry and computational science. It is well known that S+
n is a

homogeneous space with a transitive GL(n)-action given by congruence transforma-
tions of the form

τA : Σ �→ AΣ AT ∀A ∈ GL(n), ∀Σ ∈ S+
n . (23)

The isotropy group of this action at Σ = I is precisely O(n), since τQ : I �→
QI QT = I if and only if Q ∈ O(n). Thus, we can identify any Σ ∈ S+

n with an
element of the quotient space GL(n)/O(n). That is

S+
n

∼= GL(n)/O(n). (24)

The Lie algebra gl(n) of GL(n) consists of the set Rn×n of all real n × n matrices
equipped with the Lie bracket [X ,Y ] = XY − Y X , while the Lie algebra of O(n)

is o(n) = {X ∈ R
n×n : XT = −X}. Since any matrix X ∈ R

n×n has a unique
decomposition X = 1

2 (X − XT)+ 1
2 (X + XT), as a sum of an antisymmetric part and

a symmetric part, we have gl(n) = o(n) ⊕ m, where m = {X ∈ R
n×n : XT = X}.

Furthermore, since AdQ(S) = QSQ−1 = QSQT is a symmetric matrix for each
S ∈ m, we have AdO(n)(m) = {QSQ−1 : Q ∈ O(n), S ∈ m} ⊆ m. Hence, S+

n =
GL(n)/O(n) is in fact a reductive homogeneous space with reductive decomposition
gl(n) = o(n)⊕m. The tangent space ToS+

n of S+
n at the base point o = [I ] = I ·O(n)

is identified withm. For eachΣ ∈ S+
n , the action τΣ1/2 : S+

n → S+
n induces the vector

space isomorphism dτΣ1/2 |I : TI S+
n → TΣ S+

n given by dτΣ1/2 |I X = Σ1/2XΣ1/2

for each X ∈ m, where Σ1/2 is the unique positive definite square root of Σ .
A cone fieldK on S+

n is affine-invariant or homogeneouswith respect to the quotient
geometry S+

n
∼= GL(n)/O(n) if

(

dτ
Σ

1/2
2 Σ

−1/2
1

∣
∣
Σ1

)

K(Σ1) = K(Σ2), (25)

for all Σ1,Σ2 ∈ S+
n . To generate such a cone field, we require a cone K(I ) ⊂ m at

identity that is AdO(n)-invariant:

X ∈ K(I ) ⇐⇒ AdQ X = dτQ
∣
∣
I X = QXQT ∈ K(I ), ∀Q ∈ O(n). (26)

Using such a cone, we uniquely generate a homogeneous cone field via

K(Σ) = dτΣ1/2

∣
∣
IK(I ) = {X ∈ TΣ S+

n : Σ−1/2XΣ−1/2 ∈ K(I )}. (27)

The AdO(n)-invariance condition (26) is satisfied if K(I ) has a spectral characteriza-
tion. That is, the characterization of X ∈ K(I ) must only depend on the spectrum of
X . For instance, tr(X) and tr(X2) are spectral quantities because tr(X) is the sum of
the eigenvalues of X and tr(X2) is the sum of the squares of the eigenvalues of X .
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Therefore, these quantities are AdO(n)-invariant. The following result gives a family
of quadratic AdO(n)-invariant cones inm, each of which generates a distinct homoge-
neous cone field on S+

n [37].

Proposition 1 For any choice of parameter μ ∈ (0, n), the set

K(I ) = {X ∈ TI S
+
n : (tr(X))2 − μ tr(X2) ≥ 0, tr(X) ≥ 0}, (28)

defines an AdO(n)-invariant cone in TI S+
n = {X ∈ R

n×n : XT = X}.
The parameter μ controls the opening angle of the cone. If μ = 0, then (28) defines
the half-space tr(X) ≥ 0. As μ increases, the opening angle of the cone becomes
smaller and for μ = n (28) collapses to a ray. Now for any fixed μ ∈ (0, n), we obtain
a unique well-defined affine-invariant cone field given by

K(Σ) = {X ∈ TΣ S+
n : (tr(Σ−1X))2 − μ tr(Σ−1XΣ−1X) ≥ 0, tr(Σ−1X) ≥ 0}.

(29)

Of course, not all AdO(n)-invariant cones at I are quadratic. In particular, the cone of
positive semidefinite matrices in TI S+

n with spectral characterization K(I ) = {X ∈
TI S+

n : λi (X) ≥ 0, i = 1, . . . , n} is also AdO(n)-invariant. The homogeneous cone
field generated by this cone at I induces the well-known Löwner order on S+

n [10,32].

4 Geodesics as conal curves

A cone fieldKM on a manifoldM gives rise to a conal order ≺ onM. A continuous
piecewise smooth curve γ : [t0, t1] → M is called a conal curve if

γ ′(t) ∈ KM (γ (t)) , (30)

whenever the derivative exists. For points a, b ∈ M, we write a ≺ b if there exists
a conal curve γ : [0, 1] → M with γ (0) = a and γ (1) = b. If the conal order is
also antisymmetric, then it is a partial order. For x ∈ M, we define the forward set
↑ x = {z ∈ M : x ≺ z} and the backward set ↓ x = {z ∈ M : z ≺ x}. In the
language of geometric control theory, the forward set of x is called the reachable set
from x and the backward set of x is the set controllable to x . The closure ≤K of this
order is again an order and satisfies x ≤K y if and only if y ∈ {z : x ≺K z}. We say
that M is globally orderable if ≤K is a partial order.

The conal order induced by a generic cone field on a path connected manifold is
generally highly nontrivial. For instance, given a pair of points a, b ∈ M, the question
of whether a and b are ordered or not is not at all straightforward to answer, since
to rule out the existence of an order relation one has to demonstrate that none of an
infinite collection of continuous piecewise smooth curves connecting the pair a, b is
a conal curve. In this section, we discuss the significant role that geodesics play as
conal curves on globally orderable Riemannian homogeneous spaces with respect to
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homogeneous cone fields, thereby reducing the search for an order relation between
any two points a, b to a single statement on the pair of points. Thus, the use of invariant
metric and conal structures on a globally orderable homogeneous space induces an
order that is ‘tractable’ in the sense that we can check to see whether two points are
ordered by checking a single condition.

First note that if G is a Lie group with a bi-invariant Riemannian metric, then
the geodesics in G through the identity element e are precisely the one-parameter
subgroups of G; i.e., curves γ of the form γ (t) = exp t X , where X ∈ g. That is, the
Lie group exponential map coincides with the Riemannian exponential map in such
cases. Geodesics through a point a ∈ G have the form γ (t) = a ·exp(t a−1 ·X), where
X ∈ TaG. Now if G is equipped with a left-invariant cone field K(g) = dLg|eK(e),
then the geodesic γ (t) = a · exp(t a−1 · X) through a in the direction of X is a conal
curve if and only if X ∈ K(a), since

γ ′(t) = a · exp(t a−1 · X) · a−1 · X ∈ K(γ (t)) ⇐⇒ a−1 · X ∈ K(e) ⇐⇒ X ∈ K(a).

(31)

A similar result can be established onhomogeneous spaces that are geodesic orbit (g.o.)
spaces. A Riemannian manifoldM = G/H is said to be a g.o. space if every geodesic
inM is the orbit of a one-parameter subgroup ofG. To show thatM = G/H equipped
with a homogeneous Riemannian metric is a g.o. space, it is sufficient to show that all
geodesics through a single point are orbits of one-parameter subgroups by homogene-
ity. A Riemannian reductive homogeneous space G/H with reductive decomposition
g = h ⊕ m is said to be naturally reductive if 〈[X ,Y ]m, Z〉 + 〈[X , Z ]m,Y 〉 = 0 for
all X ,Y , Z ∈ m. IfM = G/H is a naturally reductive homogeneous space, then the
geodesics of M through the point o = eH are precisely of the form

γ (t) = exp(t X) · o, X ∈ m. (32)

Furthermore, all symmetric spaces are naturally reductive and thus g.o spaces [8].

Proposition 2 Let M = G/H be a naturally reductive homogeneous space with
reductive decomposition g = h⊕m that is endowed with a homogeneous Riemannian
metric. If K is a homogeneous cone field on M, then a geodesic γ = γ (t) through a
point p ∈ M is a conal curve if and only if γ ′(0) ∈ K(p).

Proof By homogeneity, it is sufficient to consider geodesics through the base point
o ∈ M, which are of the form γ (t) = exp(t X) · o, X ∈ m. Let τg : M → M be the
map τg(x) = g · x for g ∈ G. We have

γ ′(t) = dτexp(t X)

∣
∣
oX ∈ K(exp(t X) · o) ⇐⇒ X ∈ K(o), (33)

asK is homogeneous. That is, γ is a conal curve if and only if its initial tangent vector
lies in the cone at o. See Fig. 2. ��

We now consider the question of whether two given points a, b on a homogeneous
space M = G/H equipped with a homogeneous cone field K are ordered. We first
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(a) (b)

Fig. 2 Conal curves arising as orbits of one-parameter subgroups on a a Lie group equippedwith an invariant
cone field, and b a naturally reductive homogeneous space with a homogeneous cone field. If the tangent
vector lies within the cone at one point, then the whole curve is conal

Fig. 3 There exists a conal curve
joining point a to b in a vector
space endowed with a
translation-invariant cone field if
and only if the straight line
joining a to b is conal

treat the example of Rn endowed with the Euclidean metric and a constant cone field,
i.e., invariant with respect to translations. Given a, b ∈ R

n , we write a ≺ b if there
exists a curve γ : [0, 1] → R

n such that γ (0) = a, γ (1) = b, and γ ′(t) ∈ K, for all
t ∈ [0, 1]. Since K is closed and convex, we have

∫ 1

0
γ ′(t)dt ∈ K, (34)

as the integral can be thought of as the limit of a Riemann sum. But, of course, the
integral is simply γ (1) − γ (0) = b − a. Thus, to check whether a and b are ordered
with respect to a constant cone field, it is sufficient to check b − a ∈ K; i.e., a ≺ b if
and only if the straight line from a to b is a conal curve. See Fig. 3.

Now suppose thatM = G/H is a reductive homogeneous spacewith a global order
induced by a homogeneous cone fieldK. The following theorem is derived from [41].

Theorem 2 LetK be a homogeneous cone field on G/H arising as the projection of the
left-invariant wedge field on G generated by a wedge W as described in Theorem 1.
If S = 〈expW 〉H ⊆ G, then S = π−1 ({x ∈ M : o ≤K x}) and G/H is globally
orderable with respect to K if and only if W = L(S), where

L(S) = {Z ∈ g : exp(R+Z) ⊆ S}. (35)

It follows from the above result that any element of the set π−1(↑ o) in G can
be reached as the image of a vector Z in the wedge W under the exponential map.
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This observation can in turn be used to prove the following result. For simplicity,
the theorem is formulated with respect to symmetric spaces, which include all of the
examples considered in this paper.

Theorem 3 LetM = G/H be a globally orderable symmetric space with a homoge-
neous Riemannian metric and homogeneous cone field K. We have x1 ≤K x2 if and
only if the geodesic from x1 to x2 is a conal curve.

Proof By homogeneity, it is sufficient to consider the case where x1 = o and x2 = x .
We define a wedgeW in g byW := {Y + X : X ∈ K(o),Y ∈ h} ⊂ g = h⊕m,where
K(o) ⊂ m. Note thatW satisfies the relevant properties in Theorem 1 by construction.
If o ≤K x , it follows from Theorem 2 that there exists Z ∈ W such that

x = π(exp Z) = (exp Z) · o (36)

By Lawson’s polar decomposition theorem [30], any element g = exp Z of the semi-
group S admits a unique decomposition as g = (exp X)h with X ∈ W ∩ m = K(o)
and h ∈ H . Thus, we have

x = (exp Z) · o = (exp X)h · o = (exp X) · o, (37)

since h ·o = o for any h ∈ H . Thus, it follows that γ (t) = exp(t X) ·o is a conal curve.
Since all symmetric spaces are g.o. spaces, γ is precisely the Riemannian geodesic
from o to x . ��
Corollary 1 Let M be a globally orderable symmetric space with metric and conal
structures as in Theorem 3. A map F : M → M is monotone if and only if the
geodesic from F(x1) to F(x2) is conal whenever the geodesic from x1 to x2 is conal.

4.1 Example: affine-invariant orders on S+n

Recall from Sect. 3.2 that S+
n is a homogeneous space with quotient manifold struc-

ture GL(n)/O(n). The exponential map exp : m → S+
n given by the usual matrix

power series is a surjective map from the space of n × n symmetric matrices m onto
S+
n . Here m is identified with the tangent space of S+

n at the identity I . Thus, the
logarithm map log : S+

n → m is well defined on all of S+
n . It is well known that

S+
n can be equipped with a standard affine-invariant Riemannian metric 〈·, ·〉Σ given

by 〈X ,Y 〉Σ = tr
(

Σ−1XΣ−1Y
)

for Σ ∈ S+
n , X ,Y ∈ TΣ S+

n , which turns S+
n =

GL(n)/O(n) into a non-compact Riemannian homogeneous space with negative cur-
vature [29]. TheRiemannian distance between any twopointsΣ1,Σ2 ∈ S+

n is givenby

d(Σ1,Σ2) = ‖ log
(

Σ
− 1

2
1 Σ2Σ

− 1
2

1

)

‖m =
(

n
∑

i=1

log2 λi

(

Σ−1
1 Σ2

)
)1/2

, (38)

where λi (Σ
−1
1 Σ2), (i = 1, . . . , n) denote the n real and positive eigenvalues of

Σ−1
1 Σ2. It follows from (38) that d(Σ−1

1 ,Σ−1
2 ) = d(Σ1,Σ2). Thus, the inversion
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Σ �→ Σ−1 provides an involutive isometry on S+
n , which shows that S

+
n is a Rieman-

nian symmetric space and hence a g.o. space. Therefore, given Σ ∈ S+
n , there exists

a unique X = logΣ ∈ m, and the geodesic from I to Σ is given by γ (t) = exp(t X).
Note that the domain of the injective curve γ can be extended to all of R.

In addition to the affine-invariant geometry of S+
n , there is a natural ‘flat’ or transla-

tional geometry of S+
n viewed as a cone embedded in the flat space of n×n symmetric

matrices Symn . The Löwner order ≥L can be defined on Symn by

A ≥L B ⇐⇒ A − B ≥L O, (39)

where A − B ≥L O means that A − B is positive semidefinite. The restriction of
(39) to S+

n defines a partial order on S+
n that coincides with the order induced on

S+
n

∼= GL(n)/O(n) by the homogeneous cone field generated by the cone of positive
semidefinite matrices in m ∼= TI S+

n . That is, in the special case where the cone K(I )
at identity is itself the cone of positive semidefinite matrices, the translation-invariant
and affine-invariant cone fields generated by K(I ) agree on S+

n . This is generally not
the case for other choices of K(I ), as shown in [37].

Now let K be an affine-invariant cone field on S+
n . Such a cone field induces a

global partial order on S+
n [39]. Given Σ ∈ S+

n , Theorem 3 implies that I ≤K Σ

if and only if the geodesic γ (t) = exp(t logΣ) from I to Σ is a conal curve; i.e.,
precisely if logΣ ∈ K(I ). By homogeneity, it follows that Σ1 ≤K Σ2 if and only
if log(Σ−1/2

1 Σ2Σ
−1/2
1 ) ∈ K(I ). If K is the cone field corresponding to the Löwner

order, then Σ1 ≤K Σ2 if and only if log(Σ−1/2
1 Σ2Σ

−1/2
1 ) ≥L O . If K is any of the

quadratic affine-invariant cone fields in (29), then Σ1 ≤K Σ2 if and only if
⎧

⎨

⎩

tr
(

log(Σ−1/2
1 Σ2Σ

−1/2
2 )

)

≥ 0,
(

tr(log(Σ−1/2
1 Σ2Σ

−1/2
1 ))

)2 − μ tr
[

(log(Σ−1/2
1 Σ2Σ

−1/2
1 ))2

]

≥ 0,
(40)

which is equivalent to

{∑

i log λi ≥ 0,
(∑

i log λi
)2 − μ

∑

i (log λi )
2 ≥ 0,

(41)

where λi = λ(Σ
−1/2
1 Σ2Σ

−1/2
1 ) = λi (Σ2Σ

−1
1 ) (i = 1, ..., n) denote the n real and

positive eigenvalues ofΣ2Σ
−1
1 . Thus, the use of invariant causal structures has enabled

us to answer the question of whether a pair of positive definite matrices Σ1 and Σ2
are ordered by checking a pair of inequalities involving the spectrum of Σ2Σ

−1
1 .

5 Invariant differential positivity

5.1 Cone fields of rank k

A closed set C in a vector space V is said to be a cone of rank k if (i) for any λ ∈ R,
λ · C = C, and (ii) the maximum dimension of any subspace of V contained in C is k.
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(a) (b)

Fig. 4 a A polyhedral cone of rank 2 in three dimensions. b The double cone is a quadratic cone of rank 1.
The closure of its complement is a cone of rank 2. Note how a plane can be fitted within this set

Note that ifK is a pointed convex cone, C = K∪−K is a cone of rank 1 according to the
stated definition. A polyhedral cone of rank k is of the form C = K̃∪ −K̃, where K̃ is
given as the intersection of a collection of half-spaces. A second class of cones of rank
k can be defined using quadratic forms. If P is a symmetric n×nmatrix with k positive
eigenvalues and n − k negative eigenvalues, then the set C = {x ∈ V : 〈x, Px〉 ≥ 0}
defines a cone of rank k. Note that the closure of the complement of a quadratic cone
of rank k in R

n is a quadratic cone of rank n − k. See Fig. 4 for an illustration of
polyhedral and quadratic cones of rank 2 in three dimensions.

We can define homogeneous cone fields of rank k on a homogeneous space M =
G/H in an analogous way to pointed and convex homogeneous cone fields. That is,
a cone field C of rank k is homogeneous if it satisfies

C(y) = dτg
∣
∣
xC(x), (42)

for all x, y ∈ M and g ∈ G such that y = g · x . Given a cone C(o) ⊂ ToM at the
base point o = eH , we can extend C(o) to a unique homogeneous cone field onM if
and only if C(o) is AdH -invariant: Ad(H)C(o) = C(o). Given a homogeneous cone
field C of rank k on M, we say that x1 and x2 are related via the cone field and write
x1 ∼ x2 if there exists a curve γ : [0, 1] → M such that γ (0) = x1, γ (1) = x2 and
γ ′(t) ∈ C(γ (t)).

5.2 Monotonicity

A linear map T : V → V on a vector space V is positive with respect to a cone C of
any rank k if T (C) ⊆ C. Strict positivity is characterized by T (C) ⊂ int C. A smooth
map F : M → M is said to be differentially positive with respect to a cone field
C = C(x) onM if dF |xC(x) ⊆ C(F(x)) for every x ∈ M [17]. Invariant differential
positivity refers to differential positivity with respect to a homogeneous or invariant
cone field on a homogeneous space M = G/H . Since a homogeneous cone field C
satisfies C(g · x) = dτg|xC(x), where τg(x) = g · x is the left action of g ∈ G on
x ∈ M, invariant differential positivity of F reduces to

(

dF
∣
∣
x ◦ dτg1

∣
∣
o

) C(o) ⊆ dτg2

∣
∣
oC(o), (43)
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for any g1 ∈ π−1(x) and g2 ∈ π−1(F(x)), where π : G → M denotes the natural
projection map. Note that (43) is a condition that is formulated in reference to a
single cone C(o) ⊂ ToM. A continuous-time dynamical system with semiflow ψ =
ψ(t, x) is differentially positive if the flow map ψt : M → M, ψt (x) = ψ(t, x) is
differentially positive for any choice of t > 0. Notions of strict differential positivity
and uniform strict differential positivity are defined in a natural way. In particular,
uniform strict differential positivity is characterized by a cone contraction measure
that is bounded below by some nonzero factor over a uniform time horizon [40].

Invariant differential positivity with respect to a pointed convex cone field can be
thought of as a generalization of monotonicity. Recall that a system is monotone if it
preserves a partial order.Monotonicity in a vector spacewith respect to a constant cone
field is equivalent to differential positivitywith respect to the sameconefield. Similarly,
if a homogeneous conefield on ahomogeneous spacedefines a global partial order, then
amap on this space is monotone if and only if it is differentially positive with respect to
the sameconal structure. To see this, note that a smoothmap F : M → M ismonotone
with respect to a partial order ≥ on M if F(x1) ≥ F(x2) whenever x1 ≥ x2. Let ≥K
denote the partial order induced by a homogeneous cone field K onM. If x1 ≥K x2,
then there exists a conal curve γ : [0, 1] → M such that γ (0) = x1, γ (1) = x2 and
γ ′(t) ∈ K(γ (t)) for all t ∈ (0, 1). Now F ◦ γ : [0, 1] → M is a curve in M with
(F ◦γ )(0) = F(x1), (F ◦γ )(1) = F(x2), and (F ◦γ )′(t) = dF |γ (t)γ

′(t). Thus, F ◦γ

is a conal curve joining F(x1) to F(x2) if and only if dF |γ (t)K(γ (t)) ⊆ K(F(γ (t));
i.e., F is differentially positive with respect to K as expected. If an invariant cone
field on a homogeneous space does not induce a partial order due to a failure of the
antisymmetry condition arising from topological constraints, then monotonicity is not
defined as it relies on the existence of a partial order. Nonetheless, invariant differential
positivity provides the natural extension of the concept of monotonicity in this setting.

5.2.1 Example: Order-preserving maps on S+n

Invariant differential positivity can be a powerful tool for establishing monotonicity
when the cone field characterization of a partial order is available. It can also be a
particularly effective tool in proving monotonicity with respect to a family of partial
orders corresponding to a collection of causal structures. A fundamental result in
operator theory is the Löwner–Heinz theorem [10,32], which states that the mapΣ �→
Σr on S+

n (n ≥ 2) is monotone with respect to the Löwner order if and only if
r ∈ [0, 1]. The following theorem provides an extension of this important result to an
infinite collection of affine-invariant causal structures on S+

n , thereby highlighting the
intimate connection of the Löwner–Heinz theorem to the affine-invariant geometry of
S+
n . The proof is based on differential positivity and can be found in [39].

Theorem 4 Let≥K denote the partial order induced by any quadratic affine-invariant
cone field K on S+

n . If Σ1 ≥K Σ2 in S+
n and r ∈ [0, 1], then

Σr
1 ≥K Σr

2 . (44)

Furthermore, if n ≥ 2 and r > 1, then the mapΣ �→ Σr is not monotone with respect
to ≥K.
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5.3 Strict positivity

In linear positivity theory, strict positivity of a system with respect to a cone of rank k
implies the existence of a dominant eigenspace of dimension k, which is an attractor
for the system [19]. In the differential theory, the notion of a dominant eigenspace is
replaced with that of a forward-invariant distributionD of rank k corresponding to the
dominant modes of the linearized system [18,38]. It is this distribution that shapes the
asymptotic behavior of the dynamics. In particular, if D is involutive in the sense that
for any pair of smooth vector fields X ,Y defined near x ∈ M, X(x),Y (x) ∈ Dx ⊂
TxM ⇒ [X ,Y ](x) ∈ Dx , then an integral manifold ofD is an attractor of the system
under suitable technical conditions.

Theorem 5 Let Σ be a uniformly strictly differentially positive system with respect to
an invariant cone field C of rank k on a homogeneous Riemannian manifold M in a
bounded, connected and forward-invariant region S ⊆ M. If the forward-invariant
distribution of rank k corresponding to the k dominant modes of linearizations of Σ

is involutive and satisfies

lim sup
t→∞

‖dψt |xw‖ψt (x) < ∞, (45)

for all w ∈ Dx , then there exists a unique integral manifold of D that is an attractor
for all the trajectories from S.

Proof The strict differential positivity of Σ with respect to C on a bounded forward-
invariant region determines a splitting TxM = Dx ⊕ D′

x , where Dx and D′
x are

distributions of rank k and n − k, respectively, and Dx is forward-invariant:

dψt
∣
∣
xDx ⊆ Dψt (x), ∀x ∈ M, ∀t > 0, (46)

and corresponds to the k dominant modes of the linearized system by arguments that
can be found in the proofs of Theorem 1.2 of [42] and Theorem 1 of [18]. For each
x ∈ M, define the map Φx : C(x)\{0x } → R

≥0 by

Φx (δx) = ‖ΠD′
x
δx‖x

‖ΠDx δx‖x
, (47)

where ΠDx , ΠD′
x
denote the linear projections onto the subspaces Dx and D′

x . The
map Φ(x) is clearly well defined since ΠDx δx �= 0x for any δx ∈ C(x)\{0x }. Strict
differential positivity ensures that limt→∞ Φψt (x)

(

dψt
∣
∣
xδx

) = 0 for all x ∈ M and
δx ∈ C(x) \ {0x }.

Now if w ∈ Dx , (45) guarantees that limt→∞ Φψt (x)
(

dψt
∣
∣
xδx

) = 0 implies that
limt→∞ ΠD′

ψt (x)
(dψt |xδx) = 0. If δx /∈ C(x), then for some α > 0 and w ∈ Dx , we

have δx + αw ∈ C(x)\{0x } and limt→∞ Φψt (x) (δx + αw) = 0, which implies that
limt→∞ ΠD′

ψt (x)
(dψt |xδx) = 0 once again. Thus, in the limit of t → ∞, δx(t) =

dψt |xδx becomes parallel to Dψt (x). It follows that any curve Γ = Γ (s) in S evolves
so thatψt (Γ (s)) asymptotically lies on an integral manifold ofD. To prove uniqueness
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of the attractor, assume for contradiction that N1 and N2 are two distinct attractive
integral manifolds ofD and let x1 ∈ N1, x2 ∈ N2. By connectedness of S, there exists
a smooth curve Γ in S connecting x1 and x2. Since the curve ψt (Γ (s)) converges to
an integral manifold of D, N1 and N2 must be subsets of the same integral manifold
of D, which provides the contradiction that completes the proof. ��

Note that condition (45) is necessary to ensure that vectors along the distributionD
do not grow unbounded as they evolve by the variational flow, thereby ensuring that
strict differential positivity results in contraction toward an integral manifold of D.

As noted earlier, invariant differential positivity is a generalization of monotonicity
to homogeneous spaces. This generalization is made possible by the nonlinearity of
the homogeneous space and allows formore complex asymptotic behavior to arise. For
instance, as shown in the work of M. Hirsch [26,50], almost all bounded trajectories
of a strongly monotone (strictly differentially positive) system converge to the set of
equilibria. Moreover, under mild smoothness and boundedness assumptions, almost
every trajectory converges to one equilibrium. On the other hand, for systems that are
strictly differentially positive with respect to pointed convex invariant cone fields on
homogeneous spaces, almost all bounded trajectories may converge to a limit cycle
under similarly mild technical assumptions [17]. For example, invariant differential
positivity on the cylinder has been used to establish convergence to a unique limit cycle
in a nonlinear pendulum model [16]. Such a one-dimensional asymptotic behavior is
possible for an invariantly differentially positive system due to the topology of the
cylinder, which allows for the existence of closed conal curves.

5.4 Coset stabilization on Lie groups

Inmany problems in dynamical systems and control theory,we are interested in asymp-
totic convergence of trajectories to a submanifold of the state space. Such problems
arise in numerous applications including consensus, synchronization, pattern genera-
tion, and path following. Here we consider a special class of such systems which are
defined on a Lie group G and converge to submanifolds which arise as integrals of
left-invariant distributions on G. A left-invariant distribution D on G is a distribution
that satisfies Dg1g2 = dLg1 |g2Dg2 for all g1, g2 ∈ G. Any such distribution uniquely
determines a subspace De of TeG ∼= g and conversely every subspace of TeG defines
a unique left-invariant distribution. Furthermore, the left-invariant distribution defined
by a subspaceU of the Lie algebra g is integrable if and only ifU is a subalgebra h of
g. Given such a left-invariant distribution D, its integral through the identity element
e ∈ G is a subgroup H of G with Lie algebra h. The integral of D through any other
point g ∈ G corresponds to a translation of the subgroup H onG and can be identified
with the left coset gH .

In many applications, we are interested in stabilizing a submanifold corresponding
to a coset gH in G. For instance, in satellite surveillance the attitude of the satellite
is an element of the special orthogonal group SO(3) and we often seek to control
the orientation of the satellite by ensuring that the telescope axis points to a fixed
point on the Earth’s surface. Since the set of attitudes which solve this problem can
be identified with an SO(2) subgroup corresponding to rotations about the telescope

123



22 Page 20 of 25 Mathematics of Control, Signals, and Systems (2018) 30 :22

axis, the problem is essentially a simple coset stabilization problem [34]. Another large
class of coset stabilization problems involves consensus models involving N agents gk
whose states evolve on a Lie group G and exchange information about their relative
positions via a communication graph. The consensus manifolds in such problems
take the form of a single copy of G repeated N times and diagonally embedded in
the Cartesian product of GN , which is the (N dimG)-dimensional state space of the
system. Such consensus manifolds correspond to fixed formations of the N agents
evolving uniformly on G and correspond to (dimG)-dimensional cosets in GN . The
synchronization manifold on which all N agents have the same state is a special case
of such a coset in GN . A simple example of such a model is a network of N oscillators
evolving on the N -torus, where the cosets are one-dimensional and correspond to
frequency synchronization and phase-locking behaviors.

Now consider a homogeneous space M = G/H , where G is a semisimple and
compact Lie group so that the negative of the Killing form−B of g is positive definite.
Then M is reductive with reductive decomposition g = h ⊕ m, where m = h⊥. The
negative of theKilling form−B induces a bi-invariantmetric onG and a homogeneous
metric on M. The tangent space at each point g ∈ G admits the decomposition
TgG = Hg ⊕ H⊥

g , where H = dLg|eh and H⊥ = dLg|em. We choose a basis for g
of the form {e1, ..., edim h, edim h+1, ..., edim g}, where {ei : i = 1, ..., dim h} is a basis
of h. Define a cone C(e) of rank k = dim h in g by

C(e) =
{

v =
dim g
∑

i=1

vi ei ∈ g : Q(v) :=
dim h
∑

i=1

v2i − μ

dim g
∑

i=dim h+1

v2i ≥ 0

}

, (48)

where μ > 0 is a sufficiently small parameter to ensure that (48) is non-empty. C(e)
can be uniquely extended to a left-invariant cone field C(g) = dLg|eC(e) of rank
dim h on G.

Note that a dynamical system ġ = f̄ (g) on G induces a well-defined projected
flow on M generated by ẋ = f (x) if

f̄H⊥(g1) = f̄H⊥(g2) (49)

for all g1 ∼ g2,where∼denotes the equivalence relation inducedby the cosetmanifold
structure G/H ; i.e., g1 ∼ g2 if and only if there exists h ∈ H such that g1 = g2h.
f̄H⊥(g) in (49) refers to the component of f̄ in H⊥

g ⊂ TgG. The following theorem
shows how strict differential positivity with respect to the left-invariant cone field
C in G can induce a contractive dynamical system on M under suitable technical
conditions. See Figs. 5 and 6 for illustrations of the relevant concepts.

Theorem 6 Let Σ : ġ = f̄ (g) be a system on G that induces a well-defined projective
dynamics ẋ = f (x) onM = G/H. Suppose thatΣ is uniformly strictly differentially
positive with respect to the left-invariant cone field C determined by (48) on a bounded,
connected and forward-invariant region S ⊂ G, with a distribution of dominant
eigenspaces of the form Dg = dLg|eh. If lim supt→∞ ‖dψt |gw‖ψt (g) < ∞, for all
w ∈ Dg, then there exists a unique coset gH in S that is an attractor for all trajectories
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Fig. 5 An invariantly strictly differentially positive system on a Lie group G inducing a contractive system
on M = G/H . Under suitable technical conditions, trajectories in G converge to a coset gH in G
corresponding to a point x ∈ M. In this figure the cosets are depicted as circles S1

Fig. 6 Trajectories of an invariantly strictly differentially positive system asymptotically aligning with a
distributionD of dominant eigenspaces of the linearized system. In this figure the distribution corresponds
to the left-invariant distribution generated by a subalgebra h of g

from S. Furthermore, the induced system on M is contractive with respect to any
homogeneous metric and all trajectories from π(S) ⊂ M converge to the fixed point
x = π(gH) ∈ π(S).

5.4.1 Example: consensus on S1

Let G be a compact Lie group with a bi-invariant Riemannian metric giving rise to a
distance function d : G×G → [0,∞). Given a network of N agents gk represented by
an undirected connected graphG = (V, E) consisting of a set of verticesV and edges E
evolving on G, we can define a class of consensus protocols on G as follows. For each
gk ∈ G denote theRiemannian exponential and logarithmmaps by expgk : TgkG → G
and loggk : Ugk → TgkG, respectively, where Ugk ⊂ G is the maximal set containing
gk for which expgk is a diffeomorphism. The system given by

ġk = gk · Ωk +
∑

i :(k,i)∈E
μki (d(gk, gi ))

loggk gi
‖ loggk gi‖

, (50)
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defines a consensus protocol on G for constant vectors Ωk ∈ g and any collection of
real-valued reshaping functionsμki of the distance d that satisfyμki (0) = 0. Equation
(50) defines a dynamical system on G × · · · × G = GN that yields a well-defined
projected system on GN/G in the sense of Eq. (49) and Theorem 6, since

logg·gk (g · gi ) = g · (loggk gi ) and d(g · gk, g · gi ) = d(gk, gi ), (51)

for all g, gk, gi ∈ G leave Eq. (50) invariant.
For the sake of simplicity, we will consider the example of a network of N agents

evolving on the circle S1. Equation (50) reduces to a system of the form

θ̇k = ωk +
∑

i :(k,i)∈E
μki (θk − θi ), (52)

where θk ∈ S
1 represents the phase of agent k, ωk ∈ R are prescribed ‘intrinsic’

frequencies, and μki now denotes an odd coupling function on the domain (−π, π)

extended to R in such a way so as to make it 2π -periodic. Note that μki and μik need
not be the same function. Let θ = (θ1, . . . , θN ) denote an element of the N -torus

T
N and consider the N -tuple of vector fields

(
∂

∂θ1
, . . . , ∂

∂θN

)

, which defines a basis

of left-invariant vector fields on T
N . Assuming that the coupling functions μki are

differentiable and strictly monotonically increasing on (−π, π), then it can be shown
that the linearization δ̇θ = A(θ)δθ of the system given by (52) is uniformly strictly
differentially positive on the set TN

π = {ϑ ∈ T
N : |ϑk − ϑi | < π, (i, k) ∈ E} with

respect to the invariant cone field

KTN (θ) :=
{

δθ ∈ TθT
N : δθ i ≥ 0, δθ =

∑

i

δθ i
∂

∂θ i

}

, (53)

for any strongly connected communication graph. Furthermore, the Perron–Frobenius
vector field of the system on T

N
π is the left-invariant vector field 1(θ) = (1, . . . , 1) ∈

TθT
N , where the vector representation is given with respect to the invariant basis

defined by
(

∂
∂θ1

, . . . , ∂
∂θN

)

. Moreover, if we denote the flow of (52) by ψt , then

the condition A(θ)1(θ) = 0 implies that dψt |θ1θ = 1ψt (θ), which ensures that
lim supt→∞ ‖dψt |θ1(θ)‖ψt (θ) < ∞ for any flow confined to TN

π , where ‖ ·‖θ denotes
the norm corresponding to the standard Riemannian metric on T

N . If we add the
requirement that the coupling functions μki be barrier functions on (−π, π) so that
μki (α) → ∞ as α → π , then the flow ψt will be forward-invariant on T

N
π , resulting

in the following theorem.

Theorem 7 Consider a network of agents on S
1 communicating via a strongly con-

nected communication graph according to (52). If the coupling functions μki satisfy
μki (0) = 0, μki (α) → ∞ as α → π , and μ′

ki (α) > 0 on (−π, π), then every
trajectory from T

N
π converges to an integral curve of the vector field 1 = 1(θ).

Note that convergence to an integral curveof1onTN corresponds to aphase-locking
behavior, whereby the collective motion asymptotically converges to movement in a
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fixed formationwith frequency synchronization among the agents. Further details may
be found in [40].

6 Conclusion

We have reviewed the notion of invariant cone fields on homogeneous spaces and
presented examples of cone fields on a list of homogeneous spaces that are of special
interest in applications in information science. Invariant differential positivity natu-
rally arises as a generalization of monotonicity on homogeneous spaces within this
context. Finally, we have illustrated the potential applications of monotone flows on
homogeneous spaces in systems and control theory by reviewing the consensus prob-
lem on S

1 and discussing possible extensions of the approach to higher-dimensional
spaces.
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