# Comments on 'On Hadamard powers of polynomials' 

Stanisław Białas ${ }^{1} \cdot$ Leokadia Białas-Ciez ${ }^{2}$ (D)

Received: 10 February 2017 / Accepted: 21 August 2017 / Published online: 10 September 2017 © The Author(s) 2017. This article is an open access publication


#### Abstract

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial with real positive coefficients and $p \in \mathbb{R}$. The $p$ th Hadamard power of $f$ is the polynomial $f^{[p]}(x):=a_{n}^{p} x^{n}+a_{n-1}^{p} x^{n-1}+\cdots+a_{1}^{p} x+a_{0}^{p}$. We give sufficient conditions for $f^{[p]}$ to be a Hurwitz polynomial (i.e., to be a stable polynomial) for all $p>p_{0}$ or $p<p_{1}$ with some positive $p_{0}$ and negative $p_{1}$ (without any assumption about stability of $f$ ). Theorem 5 by Gregor and Tišer (Math Control Signals Syst 11:372-378, 1998) asserts that if $f$ is a stable polynomial with positive coefficients then $f^{[p]}$ is stable for every $p \geq 1$. We construct a counterexample to this statement.


Keywords Hadamard powers of polynomials • Hurwitz matrix • Stability of polynomials

Mathematics Subject Classification Primary 11C08 • Secondary 26C10

## 1 Introduction

For a positive integer number $n$ we consider

$$
\begin{equation*}
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \quad \text { with } \quad a_{0}, \ldots, a_{n}>0 . \tag{1}
\end{equation*}
$$

[^0]Let $\mathbb{R}^{+}[n]$ be the family of all polynomials of the form (1). The polynomial

$$
\begin{equation*}
f^{[p]}(x):=a_{n}^{p} x^{n}+a_{n-1}^{p} x^{n-1}+\cdots+a_{1}^{p} x+a_{0}^{p} \tag{2}
\end{equation*}
$$

where $p \in \mathbb{R}$ is called the $p$ th Hadamard power of $f \in \mathbb{R}^{+}[n]$. We say that the polynomial $f$ with real coefficients is stable ( $f$ is a Hurwitz polynomial) if every zero of $f$ has strictly negative real part. A necessary condition for a polynomial $f$ with real coefficients to be stable is that $f$ has all coefficients of the same sign. Let $H_{n}$ be the family of all stable polynomials of degree $n$ with positive coefficients.

In 1996 J.Garloff and D.G.Wagner proved in [1] that $f \in H_{n}$ implies $f^{[p]} \in H_{n}$ for all $p \in\{1,2,3, \ldots\}$. The natural question arises of a set of real numbers $p$ for which $f^{[p]}$ is stable where $f \in \mathbb{R}^{+}[n]$. We give some conditions on $p$ and on $f$ for $f^{[p]}$ to belong to $H_{n}$. Moreover, we show that $f^{[p]}$ does not need to be stable for a stable polynomial $f$ and an exponent $p>1$, contrary to Theorem 5 in [2].

Observe that if $n=1$ or $n=2$ then $f^{[p]}$ is stable for every $p \in \mathbb{R}$ and for all polynomials $f \in \mathbb{R}^{+}[n]$. The case of $n \geq 3$ is much more complicated, e.g., for $f(x)=x^{3}+x^{2}+x+1$ we have $f^{[p]} \notin H_{n}$ for any $p \in \mathbb{R}$. Therefore, we will consider only the case $n \geq 3$.

### 1.1 Basic information

For relevant background material concerning Hurwitz polynomials and related topics see [5, Sec.11]. We list below selected theorems that will be useful in the paper.

The Hurwitz matrix $H(f)$ associated to the polynomial $f \in \mathbb{R}^{+}[n]$ is given as follows

$$
H(f):=\left[\begin{array}{cccccc}
a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \ldots & 0 \\
a_{n} & a_{n-2} & a_{n-4} & a_{n-6} & \ldots & 0 \\
0 & a_{n-1} & a_{n-3} & a_{n-5} & \ldots & 0 \\
0 & a_{n} & a_{n-2} & a_{n-4} & \ldots & 0 \\
0 & 0 & a_{n-1} & a_{n-3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & a_{0}
\end{array}\right] \in \mathbb{R}^{n \times n} .
$$

Denote by $D_{i}(p)$ for $i=1, \ldots, n$ the $i$ th leading principal minor of the Hurwitz matrix $H\left(f^{[p]}\right)$, i.e.,

$$
D_{1}(p)=a_{n-1}^{p}, \quad D_{2}(p)=\operatorname{det}\left[\begin{array}{cc}
a_{n-1}^{p} & a_{n-3}^{p} \\
a_{n}^{p} & a_{n-2}^{p}
\end{array}\right], \ldots, D_{n}(p)=\operatorname{det} H\left(f^{[p]}\right) .
$$

To simplify the writing, we put $D_{i}:=D_{i}(1)$.
Theorem 1 Routh-Hurwitz criterion
If $f \in \mathbb{R}^{+}[n]$ then $f \in H_{n}$ if and only if $D_{i}>0$ for all $i=1, \ldots, n$.

Theorem 2 (see [3, Th. 2 and (1.10)])
If $f \in H_{n}$ with $n \geq 3$ then

$$
\operatorname{det}\left[\begin{array}{cc}
a_{n-i} & a_{n-i-2} \\
a_{n-i+1} & a_{n-i-1}
\end{array}\right]>0 \quad \text { for all } i=1, \ldots, n-2 .
$$

Theorem 3 (see [4])
Let $f \in \mathbb{R}^{+}[n]$ with $n \geq 5$ and $\gamma$ be the unique real root of the equation

$$
\gamma(\gamma+1)^{2}=1 .
$$

If $\gamma a_{n-i} a_{n-i-1}>a_{n-i+1} a_{n-i-2}$ for every $i=1, \ldots, n-2$ then $f \in H_{n}$.

### 1.2 Counterexample

Theorem 5 in [2] asserts that if $f \in H_{n}$ then $f^{[p]} \in H_{n}$ for all $p \geq 1$. We construct below a counterexample to this statement.

For a fixed polynomial $f \in \mathbb{R}^{+}[n]$ with $n \geq 3$ consider the following decomposition

$$
f(x)=g\left(x^{2}\right)+x h\left(x^{2}\right), \text { where } g \text { and } h \text { are polynomials of positive coefficients (3) }
$$

It may be worth reminding the reader that $g$ and $h$ are called interlacing if

- all zeros of $g$ and $h$ are real, negative and distinct,
- between every two zeros of $g$ there exists a zero of $h$ and vice versa.

Among variants of Hermite-Biehler theorem we will apply the following one to construct a counterexample.

Theorem 4 (see [5, Chapter 6.3]) Every polynomial $f \in \mathbb{R}^{+}[n]$ decomposed as in (3) is stable if and only if $g$ and $h$ are interlacing.

Counterexample 1 Let
$g(t)=t^{4}+46 t^{3}+791 t^{2}+6026 t+17160=(t+10)(t+11)(t+12)(t+13)$.
Y. Wang and B. Zhang considered $g$ in [6] and observed that for $p=1.139$ the polynomial $g^{[p]}$ has two nonreal zeros: $-16.0617 \pm 0.178468 i$ (approximated value). Take now

$$
h(t)=t^{3}+34.5 t^{2}+395.75 t+1509.375=(t+10.5)(t+11.5)(t+12.5)
$$

and put

$$
\begin{aligned}
f(x)= & g\left(x^{2}\right)+x h\left(x^{2}\right) \\
= & x^{8}+x^{7}+46 x^{6}+34.5 x^{5}+791 x^{4}+395.75 x^{3} \\
& +6026 x^{2}+1509.375 x+17160 .
\end{aligned}
$$

It is easy to verify that $f$ is stable (e.g., by the Routh-Hurwitz criterion). We have $f^{[p]}(x)=g^{[p]}\left(x^{2}\right)+x h^{[p]}\left(x^{2}\right)$ and thus, by Theorem 4 the polynomial $f^{[p]}$ is not stable for $p=1.139$. By means of Wolfram Mathematica 10.4 we found two zeros of $f^{[1.139]}$ that have positive real part: $0.00179025 \pm 4.01279 i$ (approximated value).

## 2 Main results

Now we will state and prove some sufficient conditions for $f^{[p]}$ to be a Hurwitz polynomial for all $p>p_{0}$ or $p<p_{1}$ with some positive $p_{0}$ and negative $p_{1}$ depending only on coefficients of $f$. The polynomial $f$ is assumed to be of the form (1) but need not to be stable. We will discuss separately three cases: $n=3, n=4$ and $n \geq 5$. We start with a lemma and some necessary conditions for the Hurwitz stability.

### 2.1 Notations and preliminary results

For a fixed polynomial $f \in \mathbb{R}^{+}[n]$ with $n \geq 3$ and $p \in \mathbb{R}$ we put

$$
\begin{equation*}
w_{i}(p):=a_{n-i-1}^{p} a_{n-i}^{p}-a_{n-i-2}^{p} a_{n-i+1}^{p}, \quad i=1, \ldots, n-2 . \tag{4}
\end{equation*}
$$

Moreover, for ease of notation, throughout the paper we write $w_{i}$ for $w_{i}(1)$. Let

$$
\begin{aligned}
& \bar{d}:=\max _{1 \leq i \leq n-2} \frac{a_{n-i-2} a_{n-i+1}}{a_{n-i-1} a_{n-i}} \\
& \underline{d}:=\min _{1 \leq i \leq n-2} \frac{a_{n-i-2} a_{n-i+1}}{a_{n-i-1} a_{n-i}} .
\end{aligned}
$$

It is worth noticing that

- if $w_{i}>0$ for all $i$ then $\bar{d}<1$,
- if $w_{i}<0$ for all $i$ then $\underline{d}>1$.

Lemma 1 Let $\lambda \in(0,1)$ and $f \in \mathbb{R}^{+}[n]$ with $n \geq 3$. Put

$$
p_{0}:=\frac{\log \lambda}{\log \bar{d}}, \quad p_{1}:=\frac{\log \lambda}{\log \underline{d}} .
$$

1. If $w_{i}>0$ for all $i=1, \ldots, n-2$

$$
\begin{aligned}
& \text { then } \lambda a_{n-i-1}^{p} a_{n-i}^{p}-a_{n-i-2}^{p} a_{n-i+1}^{p}>0 \quad \text { for all } \\
& i=1, \ldots, n-2 \text { and } p>p_{0}>0 .
\end{aligned}
$$

2. If $w_{i}<0$ for all $i=1, \ldots, n-2$

$$
\begin{aligned}
& \text { then } \lambda a_{n-i-1}^{p} a_{n-i}^{p}-a_{n-i-2}^{p} a_{n-i+1}^{p}>0 \quad \text { for all } \\
& i=1, \ldots, n-2 \text { and } p<p_{1}<0 .
\end{aligned}
$$

Proof Firstly we show statement 1 . Since $w_{i}>0$ for all $i$, it follows that $\bar{d}<1$ and hence for a fixed $p>p_{0}$ we have $\bar{d}^{p}<\lambda$. From the definition of $\bar{d}$ we can easily conclude that $\bar{d} a_{n-i-1} a_{n-i} \geq a_{n-i-2} a_{n-i+1}$ for all $i$ and so

$$
0 \leq \bar{d}^{p} a_{n-i-1}^{p} a_{n-i}^{p}-a_{n-i-2}^{p} a_{n-i+1}^{p}<\lambda a_{n-i-1}^{p} a_{n-i}^{p}-a_{n-i-2}^{p} a_{n-i+1}^{p}
$$

In an analogous manner we can prove statement 2. Indeed, in this case we have $\underline{d}>1$ and $\underline{d}^{p}<\lambda$ for $p<p_{1}$. From the definition of $\underline{d}$ we get $\underline{d} a_{n-i-1} a_{n-i} \leq$ $a_{n-i-2} a_{n-i+1}$ for all $i$. Hence

$$
0 \leq \underline{d}^{p} a_{n-i-1}^{p} a_{n-i}^{p}-a_{n-i-2}^{p} a_{n-i+1}^{p}<\lambda a_{n-i-1}^{p} a_{n-i}^{p}-a_{n-i-2}^{p} a_{n-i+1}^{p}
$$

and the proof is completed.
We give below some sufficient conditions for $f^{[p]}$ not to be stable. This is a direct consequence of Theorem 2.

Theorem 5 Let $f \in \mathbb{R}^{+}[n]$ with $n \geq 3$.

1. If $w_{i} \geq 0$ for some $i \in\{1, \ldots, n-2\}$ then $f^{[p]} \notin H_{n}$ for all $p \leq 0$.
2. If $w_{i} \leq 0$ for some $i \in\{1, \ldots, n-2\}$ then $f^{[p]} \notin H_{n}$ for all $p \geq 0$.

### 2.2 Case $n=3$

In this subsection we consider $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ with positive coefficients $a_{3}, a_{2}, a_{1}, a_{0}$. For $n=3$ the family of $w_{i}$ 's [see (4)] is reduced to the unique element $w_{1}=a_{1} a_{2}-a_{0} a_{3}$.

Theorem 6 For any polynomial $f \in \mathbb{R}^{+}[n]$ with $n=3$ we have

1. If $w_{1}>0$ then $f^{[p]} \in H_{3}$ for all $p>0$.
2. If $w_{1}<0$ then $f^{[p]} \in H_{3}$ for all $p<0$.

Proof In order to prove statement 1, we observe that $w_{1}>0$ implies $w_{1}(p)=$ $a_{1}^{p} a_{2}^{p}-a_{0}^{p} a_{3}^{p}>0$ for every $p>0$. By the Routh-Hurwitz criterion we get the stability of $f^{[p]}$ for $p>0$, because

$$
D_{1}(p)=a_{2}^{p}>0, \quad D_{2}(p)=w_{1}(p) \quad \text { and } \quad D_{3}(p)=a_{0}^{p} w_{1}(p)
$$

In an analogous manner we can prove statement 2.

### 2.3 Case $n=4$

We start this subsection with a simple characterization of stable polynomials of degree 4 with positive coefficients.

Proposition 7 Let $f \in \mathbb{R}^{+}[n]$ with $n=4$. The polynomial $f$ is stable if and only if

$$
\begin{equation*}
\frac{a_{1} a_{4}}{a_{2} a_{3}}+\frac{a_{0} a_{3}}{a_{1} a_{2}}<1 . \tag{5}
\end{equation*}
$$

Proof It is easily computed that
$D_{1}=a_{3}, \quad D_{2}=a_{2} a_{3}-a_{1} a_{4}, \quad D_{3}=a_{1} a_{2} a_{3}-a_{0} a_{3}^{2}-a_{1}^{2} a_{4}, \quad D_{4}=a_{0} D_{3}$.
By the Routh-Hurwitz criterion, $f \in H_{4}$ implies $D_{3}>0$, i.e.,

$$
a_{1} a_{2} a_{3}>a_{0} a_{3}^{2}+a_{1}^{2} a_{4} .
$$

Dividing by $a_{1} a_{2} a_{3}$ we obtain inequality (5).
For the reverse implication, we can conclude from (5) that

$$
\frac{a_{1} a_{4}}{a_{2} a_{3}}<1
$$

and hence $D_{2}>0$. Moreover, an immediate consequence of (5) is $D_{3}>0$, and so $D_{4}>0$. Once again we use the Routh-Hurwitz criterion and get the stability of $f$.

Note that for $n=4$ and any function $f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ we have only two $w_{i}$ 's defined by (4):

$$
w_{1}=a_{2} a_{3}-a_{1} a_{4}, \quad w_{2}=a_{1} a_{2}-a_{0} a_{3}
$$

and

$$
\bar{d}:=\max \left\{\frac{a_{1} a_{4}}{a_{2} a_{3}}, \frac{a_{0} a_{3}}{a_{1} a_{2}}\right\} \quad \underline{d}:=\min \left\{\frac{a_{1} a_{4}}{a_{2} a_{3}}, \frac{a_{0} a_{3}}{a_{1} a_{2}}\right\} .
$$

It is worth recalling from the beginning of Sect. 2.1 that for $f$ with positive coefficients we have $\bar{d}<1$ if all $w_{i}$ 's are positive and $\underline{d}>1$ whenever all $w_{i}$ 's are negative.

Theorem 8 Let $f \in \mathbb{R}^{+}[n]$ with $n=4$ and

$$
p_{0}:=\frac{\log 0.5}{\log \bar{d}} \quad p_{1}:=\frac{\log 0.5}{\log \underline{d}} .
$$

1. If $w_{1}, w_{2}>0$ then $f^{[p]} \in H_{4}$ for all $p>p_{0}>0$.
2. If $w_{1}, w_{2}<0$ then $f^{[p]} \in H_{4}$ for all $p<p_{1}<0$.

Moreover, the constants $p_{0}$ and $p_{1}$ are the best possible, i.e., for $p_{0}$ it means that there exists a polynomial $f$ of degree 4 with positive coefficients and $w_{1}, w_{2}>0$ such that $f^{[p]}$ is not stable for every $p \leq p_{0}$.

Proof For the proof of statement 1, we use Lemma 1. For $\lambda=1 / 2$ and $p>p_{0}$ we have

$$
\frac{1}{2} a_{2}^{p} a_{3}^{p}-a_{1}^{p} a_{4}^{p}>0, \quad \frac{1}{2} a_{1}^{p} a_{2}^{p}-a_{0}^{p} a_{3}^{p}>0
$$

Consequently,

$$
\frac{a_{1}^{p} a_{4}^{p}}{a_{2}^{p} a_{3}^{p}}<\frac{1}{2} \quad \text { and } \quad \frac{a_{0}^{p} a_{3}^{p}}{a_{1}^{p} a_{2}^{p}}<\frac{1}{2}
$$

and therefore,

$$
\begin{equation*}
\frac{a_{1}^{p} a_{4}^{p}}{a_{2}^{p} a_{3}^{p}}+\frac{a_{0}^{p} a_{3}^{p}}{a_{1}^{p} a_{2}^{p}}<1 \tag{6}
\end{equation*}
$$

By Proposition 7 we get the stability of $f^{[p]}$ for $p>p_{0}$. Statement 2 can be proved in an analogous fashion.

By Example 2 given below we show that the constants $p_{0}$ and $p_{1}$ cannot be improved.

Example 2 Consider the polynomial

$$
f(x)=2 x^{4}+x^{3}+5 x^{2}+x+2
$$

In this case we have

$$
w_{1}=5 \cdot 1-1 \cdot 2=3>0, \quad w_{2}=1 \cdot 5-2 \cdot 1=3>0
$$

and

$$
\bar{d}=\max \left\{\frac{2}{5}, \frac{2}{5}\right\}=0.4, \quad p_{0}=\frac{\log 0.5}{\log 0.4}
$$

Fix $p \leq p_{0}$. By Proposition 7, $f^{[p]} \in H_{4}$ if and only if inequality (6) holds. We calculate

$$
\begin{aligned}
\frac{a_{1}^{p} a_{4}^{p}}{a_{2}^{p} a_{3}^{p}}+\frac{a_{0}^{p} a_{3}^{p}}{a_{1}^{p} a_{2}^{p}} & =\left(\frac{a_{1} a_{4}}{a_{2} a_{3}}\right)^{p}+\left(\frac{a_{0} a_{3}}{a_{1} a_{2}}\right)^{p}=(0.4)^{p}+(0.4)^{p} \\
& =2 \cdot(0.4)^{p} \geq 2 \cdot(0.4)^{p_{0}}=2 \cdot 0.5=1
\end{aligned}
$$

We see that inequality (6) does not hold and consequently $f^{[p]}$ is not stable. Additionally, we can easily verify by Proposition 7 that polynomial $f$ is stable.

Corollary 9 If $f \in H_{4}$ then $f^{[p]} \in H_{4}$ for all $p \geq 1$.
Proof Since $\left(t^{p}+s^{p}\right)^{1 / p} \leq t+s$ for all $s, t \geq 0$ and $p \geq 1$, we have

$$
\frac{a_{1}^{p} a_{4}^{p}}{a_{2}^{p} a_{3}^{p}}+\frac{a_{0}^{p} a_{3}^{p}}{a_{1}^{p} a_{2}^{p}} \leq\left(\frac{a_{1} a_{4}}{a_{2} a_{3}}+\frac{a_{0} a_{3}}{a_{1} a_{2}}\right)^{p}<1
$$

the last estimate being a consequence of the stability of $f$ and Proposition 7. Once again we use Proposition 7 and we get the stability of $f^{[p]}$.

### 2.4 Case $n \geq 5$

The main result of this subsection will be based on Theorem 3 that deals with $n \geq 5$. We remind the reader that $\gamma$ denotes the unique real root of the equation $\gamma(\gamma+1)^{2}=1$. One can verify that $\gamma \in(0.4655,0.466)$. Quantities $w_{1}, \ldots, w_{n-2}$ and $\bar{d}, \underline{d}$ have been defined in the beginning of Sect. 2.1.

Theorem 10 Let $f \in \mathbb{R}^{+}[n]$ with $n \geq 5$ and

$$
p_{0}:=\frac{\log \gamma}{\log \bar{d}} \quad p_{1}:=\frac{\log \gamma}{\log \underline{d}} .
$$

1. If $w_{1}, \ldots, w_{n-2}>0$ then $f^{[p]} \in H_{n}$ for all $p>p_{0}>0$.
2. If $w_{1}, \ldots, w_{n-2}<0$ then $f^{[p]} \in H_{n}$ for all $p<p_{1}<0$.

Proof Take $p>p_{0}$ in the case of $w_{1}, \ldots, w_{n-2}>0$ or $p<p_{1}$ in the case $w_{1}, \ldots, w_{n-2}<0$. In both cases, by Lemma 1 used for $\lambda=\gamma$, we have $\gamma a_{n-i-1}^{p} a_{n-i}^{p}-a_{n-i-2}^{p} a_{n-i+1}^{p}>0$ for all $i=1, \ldots, n-2$. Thanks to Theorem 3 we obtain the stability of $f^{[p]}$ and the proof is completed.

Let us observe that $p_{0}$ and $p_{1}$ in Theorem 10 are not far from being optimal as evidenced in the next example.

Example 3 Consider the polynomial

$$
f(x)=x^{5}+5 x^{4}+2 x^{3}+5 x^{2}+x+1 .
$$

We have

$$
\begin{aligned}
& w_{1}=a_{3} a_{4}-a_{2} a_{5}=5>0, \quad w_{2}=a_{2} a_{3}-a_{1} a_{4}=5>0, \\
& w_{3}=a_{1} a_{2}-a_{0} a_{3}=3>0
\end{aligned}
$$

and

$$
\bar{d}=\max \left\{\frac{a_{2} a_{5}}{a_{3} a_{4}}, \frac{a_{1} a_{4}}{a_{2} a_{3}}, \frac{a_{0} a_{3}}{a_{1} a_{2}}\right\}=\max \left\{\frac{1}{2}, \frac{1}{2}, \frac{2}{5}\right\}=\frac{1}{2} .
$$

The Hurwitz matrix $H(f)$ associated to $f$ is

$$
H(f)=\left[\begin{array}{lllll}
5 & 5 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
0 & 5 & 5 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 5 & 5 & 1
\end{array}\right]
$$

The leading principal minors are

$$
D_{1}=5, \quad D_{2}=5, \quad D_{3}=5, \quad D_{4}=-1<0, \quad D_{5}=-1<0
$$

and therefore, by the Routh-Hurwitz criterion, $f$ is not stable.
Now take $p \in \mathbb{R}$ and compute the 4th leading principal minors of $H\left(f^{[p]}\right)$ :

$$
D_{4}(p)=50^{p}+5^{p}-25^{p}-25^{p}-20^{p}-1+5^{p}+10^{p} .
$$

If we take $p$ close to 1 then $f^{[p]}$ is not stable because of the continuity of exponential functions and since $D_{4}(1)<0$.

On the other hand, by Theorem 10, $f^{[p]}$ is stable for all $p \geq 1.1032$ as

$$
p_{0}=\frac{\log \gamma}{\log \bar{d}}=\frac{\log \gamma}{\log 0.5}<\frac{-\log 0.4655}{\log 2} \approx 1.10315<1.1032 .
$$

We conclude that the quantity $p_{0}$ given in Theorem 10 is close to the value, where the stability of $f^{[p]}$ changes.

The above example shows also that Theorem 8 proved for $n=4$ cannot be applied for polynomials of degree 5 , because by Theorem 8 we get $f^{[p]} \in H_{n}$ for all $p>\frac{\log 0.5}{\log \bar{d}}$. However, for the polynomial $f$ considered in Example 3 we have $\frac{\log 0.5}{\log \bar{d}}=1$ and we see that $f^{[p]}$ is not stable for $p$ close to 1 .

We can show by the next example that the constant $\gamma$ in Theorem 3 is close to the optimal one.

## Example 4 Let

$$
f(x)=x^{5}+5 x^{4}+\left(3-\frac{2}{\sqrt{5}}\right) x^{3}+5 x^{2}+x+1 .
$$

Observe that $f$ has all positive coefficients and for

$$
\lambda=0.475>\frac{1}{3-\frac{2}{\sqrt{5}}} \approx 0.47493
$$

that is close to $\gamma \in(0.4655,0.466)$, we have

$$
\lambda a_{3} a_{4}-a_{2} a_{5}=\lambda\left(3-\frac{2}{\sqrt{5}}\right) \cdot 5-5>0,
$$

$$
\begin{aligned}
& \lambda a_{2} a_{3}-a_{1} a_{4}=\lambda \cdot 5\left(3-\frac{2}{\sqrt{5}}\right)-5>0, \\
& \lambda a_{1} a_{2}-a_{0} a_{3}=\lambda \cdot 5-\left(3-\frac{2}{\sqrt{5}}\right)>\frac{5}{\left(3-\frac{2}{\sqrt{5}}\right)} \\
& -\left(3-\frac{2}{\sqrt{5}}\right)=\frac{12}{5\left(3-\frac{2}{\sqrt{5}}\right)}(\sqrt{5}-2)>0 .
\end{aligned}
$$

By Theorem 3 analogous inequalities satisfied for $\gamma$ (instead of $\lambda$ ) imply the Hurwitz stability of $f$. However, in the considered case we get

$$
D_{4}=\operatorname{det}\left[\begin{array}{cccc}
5 & 5 & 1 & 0 \\
1 & 3-\frac{2}{\sqrt{5}} & 1 & 0 \\
0 & 5 & 5 & 1 \\
0 & 1 & 3-\frac{2}{\sqrt{5}} & 1
\end{array}\right]=0
$$

and therefore, by the Routh-Hurwitz criterion $f$ is not stable.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

## References

1. Garloff J, Wagner DG (1996) Hadamard products of stable polynomials are stable. J Math Anal Appl 202:797-809
2. Gregor J, Tišer J (1998) On Hadamard powers of polynomials. Math Control Signals Syst 11:372-378
3. Kemperman JHB (1982) A Hurwitz matrix is totally positive. SIAM J Math Anal 13:331-341
4. Lipatov AV,Sokolov NI (1978) On some sufficient conditions for stability and instability of linear continuous stationary systems. Avtomatika i Telemekhanika 9:30-37 (translated in: Automat Remote Control (1979) 39:1285-1291)
5. Rahman QI, Schmeisser G (2002) Analytic theory of polynomials, london mathematical society monographs, vol 26. Oxford University Press, Oxford
6. Wang Y, Zhang B (2013) Hadamard powers of polynomials with only real zeros. Linear Algebra Appl 439:3173-3176

[^0]:    The work of Leokadia Białas-Cież was partially supported by the NCN Grant No. 2013/11/B/ST1/03693.
    Leokadia Białas-Cież
    leokadia.bialas-ciez@uj.edu.pl
    1 The School of Banking and Management, Armii Krajowej 4, 30-150 Kraków, Poland
    2 Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland

