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Abstract Let f (x) = anxn + an−1xn−1 + · · · + a1x + a0 be a polynomial with real
positive coefficients and p ∈ R. The pth Hadamard power of f is the polynomial
f [p](x) := a p

n xn +a p
n−1x

n−1 +· · ·+a p
1 x+a p

0 . We give sufficient conditions for f [p]
to be a Hurwitz polynomial (i.e., to be a stable polynomial) for all p > p0 or p < p1
with some positive p0 and negative p1 (without any assumption about stability of f ).
Theorem 5 by Gregor and Tišer (Math Control Signals Syst 11:372–378, 1998) asserts
that if f is a stable polynomial with positive coefficients then f [p] is stable for every
p ≥ 1. We construct a counterexample to this statement.

Keywords Hadamard powers of polynomials · Hurwitz matrix · Stability of
polynomials

Mathematics Subject Classification Primary 11C08 · Secondary 26C10

1 Introduction

For a positive integer number n we consider

f (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 with a0, . . . , an > 0. (1)
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Let R+[n] be the family of all polynomials of the form (1). The polynomial

f [p](x) := a p
n x

n + a p
n−1x

n−1 + · · · + a p
1 x + a p

0 (2)

where p ∈ R is called the pth Hadamard power of f ∈ R
+[n]. We say that the

polynomial f with real coefficients is stable ( f is a Hurwitz polynomial) if every zero
of f has strictly negative real part. A necessary condition for a polynomial f with real
coefficients to be stable is that f has all coefficients of the same sign. Let Hn be the
family of all stable polynomials of degree n with positive coefficients.

In 1996 J.Garloff and D.G.Wagner proved in [1] that f ∈ Hn implies f [p] ∈ Hn

for all p ∈ {1, 2, 3, . . .}. The natural question arises of a set of real numbers p for
which f [p] is stable where f ∈ R

+[n]. We give some conditions on p and on f for
f [p] to belong to Hn . Moreover, we show that f [p] does not need to be stable for a
stable polynomial f and an exponent p > 1, contrary to Theorem 5 in [2].

Observe that if n = 1 or n = 2 then f [p] is stable for every p ∈ R and for all
polynomials f ∈ R

+[n]. The case of n ≥ 3 is much more complicated, e.g., for
f (x) = x3 + x2 + x + 1 we have f [p] /∈ Hn for any p ∈ R. Therefore, we will
consider only the case n ≥ 3.

1.1 Basic information

For relevant background material concerning Hurwitz polynomials and related topics
see [5, Sec.11]. We list below selected theorems that will be useful in the paper.

The Hurwitz matrix H( f ) associated to the polynomial f ∈ R
+[n] is given as

follows

H( f ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an−1 an−3 an−5 an−7 . . . 0
an an−2 an−4 an−6 . . . 0
0 an−1 an−3 an−5 . . . 0
0 an an−2 an−4 . . . 0
0 0 an−1 an−3 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n .

Denote by Di (p) for i = 1, . . . , n the i th leading principal minor of the Hurwitz
matrix H( f [p]), i.e.,

D1(p) = a p
n−1, D2(p) = det

[
a p
n−1 a p

n−3
a p
n a p

n−2

]
, . . . , Dn(p) = det H( f [p]).

To simplify the writing, we put Di := Di (1).

Theorem 1 Routh–Hurwitz criterion
If f ∈ R

+[n] then f ∈ Hn if and only if Di > 0 for all i = 1, . . . , n.
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Theorem 2 (see [3, Th.2 and (1.10)])
If f ∈ Hn with n ≥ 3 then

det

[
an−i an−i−2
an−i+1 an−i−1

]
> 0 for all i = 1, . . . , n − 2.

Theorem 3 (see [4])
Let f ∈ R

+[n] with n ≥ 5 and γ be the unique real root of the equation

γ (γ + 1)2 = 1.

If γ an−i an−i−1 > an−i+1 an−i−2 for every i = 1, . . . , n − 2 then f ∈ Hn.

1.2 Counterexample

Theorem 5 in [2] asserts that if f ∈ Hn then f [p] ∈ Hn for all p ≥ 1. We construct
below a counterexample to this statement.

For a fixed polynomial f ∈ R
+[n] with n ≥ 3 consider the following decomposi-

tion

f (x) = g(x2) + x h(x2), where g and h are polynomials of positive coefficients (3)

It may be worth reminding the reader that g and h are called interlacing if

• all zeros of g and h are real, negative and distinct,
• between every two zeros of g there exists a zero of h and vice versa.

Among variants of Hermite–Biehler theorem we will apply the following one to con-
struct a counterexample.

Theorem 4 (see [5, Chapter 6.3]) Every polynomial f ∈ R
+[n] decomposed as in

(3) is stable if and only if g and h are interlacing.

Counterexample 1 Let

g(t) = t4 + 46 t3 + 791 t2 + 6026 t + 17160 = (t + 10)(t + 11)(t + 12)(t + 13).

Y. Wang and B. Zhang considered g in [6] and observed that for p = 1.139 the
polynomial g[p] has two nonreal zeros: −16.0617±0.178468 i (approximated value).
Take now

h(t) = t3 + 34.5 t2 + 395.75 t + 1509.375 = (t + 10.5)(t + 11.5)(t + 12.5)

and put
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f (x) = g(x2) + xh(x2)

= x8 + x7 + 46 x6 + 34.5 x5 + 791 x4 + 395.75 x3

+6026 x2 + 1509.375 x + 17160.

It is easy to verify that f is stable (e.g., by the Routh–Hurwitz criterion). We have
f [p](x) = g[p](x2) + x h[p](x2) and thus, by Theorem 4 the polynomial f [p] is not
stable for p = 1.139. By means of Wolfram Mathematica 10.4 we found two zeros of
f [1.139] that have positive real part: 0.00179025 ± 4.01279 i (approximated value).

2 Main results

Now we will state and prove some sufficient conditions for f [p] to be a Hurwitz
polynomial for all p > p0 or p < p1 with some positive p0 and negative p1 depending
only on coefficients of f . The polynomial f is assumed to be of the form (1) but need
not to be stable. We will discuss separately three cases: n = 3, n = 4 and n ≥ 5. We
start with a lemma and some necessary conditions for the Hurwitz stability.

2.1 Notations and preliminary results

For a fixed polynomial f ∈ R
+[n] with n ≥ 3 and p ∈ R we put

wi (p) := a p
n−i−1 a

p
n−i − a p

n−i−2 a
p
n−i+1, i = 1, . . . , n − 2. (4)

Moreover, for ease of notation, throughout the paper we write wi for wi (1). Let

d : = max
1≤i≤n−2

an−i−2an−i+1

an−i−1an−i
,

d : = min
1≤i≤n−2

an−i−2an−i+1

an−i−1an−i
.

It is worth noticing that

• if wi > 0 for all i then d < 1,
• if wi < 0 for all i then d > 1.

Lemma 1 Let λ ∈ (0, 1) and f ∈ R
+[n] with n ≥ 3. Put

p0 := log λ

log d
, p1 := log λ

log d
.

1. If wi > 0 for all i = 1, . . . , n − 2

then λa p
n−i−1 a

p
n−i − a p

n−i−2 a
p
n−i+1 > 0 f or all

i = 1, . . . , n − 2 and p > p0 > 0.
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2. If wi < 0 for all i = 1, . . . , n − 2

then λa p
n−i−1 a

p
n−i − a p

n−i−2 a
p
n−i+1 > 0 f or all

i = 1, . . . , n − 2 and p < p1 < 0.

Proof Firstly we show statement 1. Since wi > 0 for all i , it follows that d < 1 and
hence for a fixed p > p0 we have d

p
< λ. From the definition of d we can easily

conclude that dan−i−1an−i ≥ an−i−2an−i+1 for all i and so

0 ≤ d
p
a p
n−i−1a

p
n−i − a p

n−i−2a
p
n−i+1 < λa p

n−i−1a
p
n−i − a p

n−i−2a
p
n−i+1.

In an analogous manner we can prove statement 2. Indeed, in this case we have d > 1
and d p < λ for p < p1. From the definition of d we get d an−i−1 an−i ≤
an−i−2 an−i+1 for all i . Hence

0 ≤ d p a p
n−i−1 a

p
n−i − a p

n−i−2 a
p
n−i+1 < λ a p

n−i−1 a
p
n−i − a p

n−i−2 a
p
n−i+1

and the proof is completed. ��
We give below some sufficient conditions for f [p] not to be stable. This is a direct
consequence of Theorem 2.

Theorem 5 Let f ∈ R
+[n] with n ≥ 3.

1. If wi ≥ 0 for some i ∈ {1, . . . , n − 2} then f [p] /∈ Hn for all p ≤ 0.
2. If wi ≤ 0 for some i ∈ {1, . . . , n − 2} then f [p] /∈ Hn for all p ≥ 0.

2.2 Case n = 3

In this subsection we consider f (x) = a3 x3 + a2 x2 + a1 x + a0 with positive
coefficients a3, a2, a1, a0. For n = 3 the family of wi ’s [see (4)] is reduced to the
unique element w1 = a1 a2 − a0 a3.

Theorem 6 For any polynomial f ∈ R
+[n] with n = 3 we have

1. If w1 > 0 then f [p] ∈ H3 for all p > 0.
2. If w1 < 0 then f [p] ∈ H3 for all p < 0.

Proof In order to prove statement 1, we observe that w1 > 0 implies w1(p) =
a p

1 a p
2 − a p

0 a p
3 > 0 for every p > 0. By the Routh–Hurwitz criterion we get the

stability of f [p] for p > 0, because

D1(p) = a p
2 > 0, D2(p) = w1(p) and D3(p) = a p

0 w1(p).

In an analogous manner we can prove statement 2. ��
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2.3 Case n = 4

We start this subsection with a simple characterization of stable polynomials of degree
4 with positive coefficients.

Proposition 7 Let f ∈ R
+[n] with n = 4. The polynomial f is stable if and only if

a1 a4

a2 a3
+ a0 a3

a1 a2
< 1. (5)

Proof It is easily computed that

D1 = a3, D2 = a2 a3 − a1 a4, D3 = a1 a2 a3 − a0 a
2
3 − a2

1 a4, D4 = a0 D3.

By the Routh–Hurwitz criterion, f ∈ H4 implies D3 > 0, i.e.,

a1a2a3 > a0a
2
3 + a2

1a4.

Dividing by a1 a2 a3 we obtain inequality (5).
For the reverse implication, we can conclude from (5) that

a1 a4

a2 a3
< 1

and hence D2 > 0. Moreover, an immediate consequence of (5) is D3 > 0, and so
D4 > 0. Once again we use the Routh–Hurwitz criterion and get the stability of f .

��
Note that for n = 4 and any function f (x) = a4 x4 + a3 x3 + a2 x2 + a1 x + a0 we
have only two wi ’s defined by (4):

w1 = a2a3 − a1a4, w2 = a1a2 − a0a3

and

d := max

{
a1a4

a2a3
,
a0a3

a1a2

}
d := min

{
a1a4

a2a3
,
a0a3

a1a2

}
.

It is worth recalling from the beginning of Sect. 2.1 that for f with positive coefficients
we have d < 1 if all wi ’s are positive and d > 1 whenever all wi ’s are negative.

Theorem 8 Let f ∈ R
+[n] with n = 4 and

p0 := log 0.5

log d
p1 := log 0.5

log d
.

1. If w1, w2 > 0 then f [p] ∈ H4 for all p > p0 > 0.
2. If w1, w2 < 0 then f [p] ∈ H4 for all p < p1 < 0.
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Moreover, the constants p0 and p1 are the best possible, i.e., for p0 it means that there
exists a polynomial f of degree 4 with positive coefficients and w1, w2 > 0 such that
f [p] is not stable for every p ≤ p0.

Proof For the proof of statement 1, we use Lemma 1. For λ = 1/2 and p > p0 we
have

1

2
a p

2 a p
3 − a p

1 a p
4 > 0,

1

2
a p

1 a p
2 − a p

0 a p
3 > 0.

Consequently,

a p
1 a p

4

a p
2 a p

3

<
1

2
and

a p
0 a p

3

a p
1 a p

2

<
1

2

and therefore,

a p
1 a p

4

a p
2 a p

3

+ a p
0 a p

3

a p
1 a p

2

< 1. (6)

By Proposition 7 we get the stability of f [p] for p > p0. Statement 2 can be proved
in an analogous fashion.

By Example 2 given below we show that the constants p0 and p1 cannot be
improved. ��
Example 2 Consider the polynomial

f (x) = 2x4 + x3 + 5x2 + x + 2.

In this case we have

w1 = 5 · 1 − 1 · 2 = 3 > 0, w2 = 1 · 5 − 2 · 1 = 3 > 0

and

d = max

{
2

5
,

2

5

}
= 0.4, p0 = log 0.5

log 0.4
.

Fix p ≤ p0. By Proposition 7, f [p] ∈ H4 if and only if inequality (6) holds. We
calculate

a p
1 a p

4

a p
2 a p

3

+ a p
0 a p

3

a p
1 a p

2

=
(
a1 a4

a2 a3

)p

+
(
a0 a3

a1 a2

)p

= (0.4)p + (0.4)p

= 2 · (0.4)p ≥ 2 · (0.4)p0 = 2 · 0.5 = 1.

We see that inequality (6) does not hold and consequently f [p] is not stable. Addi-
tionally, we can easily verify by Proposition 7 that polynomial f is stable.
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Corollary 9 If f ∈ H4 then f [p] ∈ H4 for all p ≥ 1.

Proof Since (t p + s p)1/p ≤ t + s for all s, t ≥ 0 and p ≥ 1, we have

a p
1 a p

4

a p
2 a p

3

+ a p
0 a p

3

a p
1 a p

2

≤
(
a1 a4

a2 a3
+ a0 a3

a1 a2

)p

< 1

the last estimate being a consequence of the stability of f and Proposition 7. Once
again we use Proposition 7 and we get the stability of f [p]. ��

2.4 Case n ≥ 5

The main result of this subsection will be based on Theorem 3 that deals with
n ≥ 5. We remind the reader that γ denotes the unique real root of the equation
γ (γ + 1)2 = 1. One can verify that γ ∈ (0.4655, 0.466). Quantities w1, . . . , wn−2
and d, d have been defined in the beginning of Sect. 2.1.

Theorem 10 Let f ∈ R
+[n] with n ≥ 5 and

p0 := log γ

log d
p1 := log γ

log d
.

1. If w1, . . . , wn−2 > 0 then f [p] ∈ Hn for all p > p0 > 0.
2. If w1, . . . , wn−2 < 0 then f [p] ∈ Hn for all p < p1 < 0.

Proof Take p > p0 in the case of w1, . . . , wn−2 > 0 or p < p1 in the
case w1, . . . , wn−2 < 0. In both cases, by Lemma 1 used for λ = γ , we have
γ a p

n−i−1 a
p
n−i − a p

n−i−2 a
p
n−i+1 > 0 for all i = 1, . . . , n − 2. Thanks to Theorem 3

we obtain the stability of f [p] and the proof is completed. ��
Let us observe that p0 and p1 in Theorem 10 are not far from being optimal as
evidenced in the next example.

Example 3 Consider the polynomial

f (x) = x5 + 5x4 + 2x3 + 5x2 + x + 1.

We have

w1 = a3 a4 − a2 a5 = 5 > 0, w2 = a2 a3 − a1 a4 = 5 > 0,

w3 = a1 a2 − a0 a3 = 3 > 0

and

d = max

{
a2 a5

a3 a4
,
a1 a4

a2 a3
,
a0 a3

a1 a2

}
= max

{
1

2
,

1

2
,

2

5

}
= 1

2
.
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The Hurwitz matrix H( f ) associated to f is

H( f ) =

⎡
⎢⎢⎢⎢⎣

5 5 1 0 0
1 2 1 0 0
0 5 5 1 0
0 1 2 1 0
0 0 5 5 1

⎤
⎥⎥⎥⎥⎦

.

The leading principal minors are

D1 = 5, D2 = 5, D3 = 5, D4 = −1 < 0, D5 = −1 < 0

and therefore, by the Routh–Hurwitz criterion, f is not stable.
Now take p ∈ R and compute the 4th leading principal minors of H( f [p]):

D4(p) = 50p + 5p − 25p − 25p − 20p − 1 + 5p + 10p.

If we take p close to 1 then f [p] is not stable because of the continuity of exponential
functions and since D4(1) < 0.

On the other hand, by Theorem 10, f [p] is stable for all p ≥ 1.1032 as

p0 = log γ

log d
= log γ

log 0.5
<

− log 0.4655

log 2
≈ 1.10315 < 1.1032.

We conclude that the quantity p0 given in Theorem 10 is close to the value, where the
stability of f [p] changes.

The above example shows also that Theorem 8 proved for n = 4 cannot be
applied for polynomials of degree 5, because by Theorem 8 we get f [p] ∈ Hn for
all p >

log 0.5
log d

. However, for the polynomial f considered in Example 3 we have
log 0.5
log d

= 1 and we see that f [p] is not stable for p close to 1.

We can show by the next example that the constant γ in Theorem 3 is close to the
optimal one.

Example 4 Let

f (x) = x5 + 5x4 +
(

3 − 2√
5

)
x3 + 5x2 + x + 1.

Observe that f has all positive coefficients and for

λ = 0.475 >
1

3 − 2√
5

≈ 0.47493

that is close to γ ∈ (0.4655, 0.466), we have

λa3 a4 − a2 a5 = λ
(

3 − 2√
5

)
· 5 − 5 > 0,
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λa2 a3 − a1 a4 = λ · 5
(

3 − 2√
5

)
− 5 > 0,

λa1 a2 − a0 a3 = λ · 5 −
(

3 − 2√
5

)
>

5(
3 − 2√

5

)

−
(

3 − 2√
5

)
= 12

5
(

3 − 2√
5

) (
√

5 − 2) > 0.

By Theorem 3 analogous inequalities satisfied for γ (instead of λ) imply the Hurwitz
stability of f . However, in the considered case we get

D4 = det

⎡
⎢⎢⎢⎣

5 5 1 0
1 3 − 2√

5
1 0

0 5 5 1
0 1 3 − 2√

5
1

⎤
⎥⎥⎥⎦ = 0

and therefore, by the Routh–Hurwitz criterion f is not stable.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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