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Abstract The use of comparison functions has become standard in systems and con-
trol theory, particularly for the purposes of studying stability properties. The use of
these functions typically allows elegant and succinct statements of stability properties
such as asymptotic stability and input-to-state stability and its several variants. Further-
more, over the last 20 years several inequalities involving these comparison functions
have been developed that simplify their manipulation in the service of proving more
significant results. Many of these inequalities have appeared in the body of proofs or
in appendices of various papers. Our goal herein is to collect these inequalities in one
place.

Keywords Comparison functions · Stability theory · Nonlinear systems

1 History

Jose Massera appears to have been the first scholar to introduce comparison functions
to the study of stability theory in 1956 [26]. In particular, to elegantly capture the
notion of (local) positive definiteness he relied on a function a : R≥0 → R≥0 with

“a(r) being continuous and increasing when r > 0, a(0) = 0.”

To further describe a function having an infinitely small upper bound, he then used a
function b : R≥0 → R≥0 “having the same properties of a(r)”.1

1 It is worth remarking that in his 1949 manuscript studying similar stability problems, Massera [25]
does not use comparison functions, but instead uses the more classical ε−δ formulations, indicating their
development sometime between 1949 [25] and 1956 [26].
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340 C. M. Kellett

In his 1959 manuscript, Wolfgang Hahn [11] termed such functions as class-K
functions2 and also introduced the terminology “decrescent” for what Lyapunov had
originally termed “an infinitely small upper limit” [24]. However, in what remains
a remarkably modern text, it was in his 1967 manuscript [12] where Hahn not only
introduced the additional function classes of class-L and class-KL, but also made
significant use of these comparison functions and their properties.

Following Hahn’s text, functions of class-K appeared occasionally in works through
the 1970s and 1980s. However, the use of these functions was largely limited to the
characterization of positive definite and decrescent functions and the properties that
Hahn elucidated in [12] were essentially ignored [21,32,34,41,42].

Sontag’s seminal 1989 paper [35] introducing the notion of input-to-state stability
represented a return to the elegant formulations first presented in [12]. In particular,
Sontag took as the definition of global asymptotic stability the formulation involving
a class-KL function first proposed in [12, Equation 26.2]. To study systems under
the influence of inputs, Sontag then augmented the class-KL formulation of global
asymptotic stability with a class-K function of the input.

Since the appearance of [35], the use of comparison functions in the analysis of
stability and robustness for nonlinear systems has become standard. Many useful
inequalities and other relationships have been developed for comparison functions.
Unfortunately, these results tend to be reported in appendices or within the context
of proving some larger results relating to stability or robustness. Our goal here is a
modest one: to collect some of the most useful comparison function inequalities and
relationships in one place.

The manuscript is organized as follows: in Sect. 2 we provide the standard com-
parison function definitions and review some well-known facts. In Sect. 3, we provide
lemmas that give upper bounds on a given comparison function. By contrast, in Sect. 4,
we provide lemmas that give lower bounds on a given function. Section 5 provides
lemmas on differential inequalities involving comparison functions. In an overlap of
terminology that should cause no confusion, these lemmas are frequently referred to as
comparison lemmas. In Sect. 6, we provide some other useful relationships involving
comparison functions. In Sect. 7, we briefly mention a few recently defined function
classes that we believe are likely to be more widely used in the future. Finally, in
Sect. 8 we discuss a generalization of class-K functions, termed monotone aggrega-
tion functions, that are defined on R

n≥0 rather than R≥0. For the purpose of illustrating
some of the proof techniques, proofs of selected results are included in the Appendix.

2 Definitions and obvious facts

In what follows, we denote integers by Z and real numbers by R. Restrictions to subsets
of Z or R will be denoted by subscripts such as R≥0 ⊂ R for the nonnegative real
half-line or by the standard notation [a, b) ⊂ R for the half-open interval. We denote

2 It is known that Hahn was aware of Massera’s work [26] as Massera submitted an Erratum for [26] to
Annals of Mathematics on 13 January 1958 where he cites Hahn as having brought an error in the original
paper to his attention.
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A compendium of comparison function results 341

n-dimensional Euclidean space by R
n and use | · | to denote the norm. We will use

both parenthesis and the symbol ◦ to denote function composition; i.e., for functions
α1, α2 : R≥0 → R≥0, we will use either α1(α2(s)) or α1 ◦ α2(s) for all s ∈ R≥0,
where the choice is always made to improve readability.

As previously mentioned, Hahn3 first defined functions of class-K in [11], though
such functions had been previously used in stability analysis by Massera in [26]. In
[12, Defn 2.5] this definition is immediately used to define the notion of a stable
equilibrium point rather than as a precursor to using such functions to characterize
positive definiteness (as done in [11,26,32,41]).

Definition 1 A function α : R≥0 → R≥0 is said to be of class-K (α ∈ K) if it
is continuous, zero at zero, and strictly increasing. For some a ∈ R>0, a function
α : [0, a) → R≥0 is said to be of class-K[0,a), if it is continuous, zero at zero, and
strictly increasing.

As cited in the introduction, the first use of class-K functions was to characterize
the concept of a locally positive definite function. To see that this is indeed the case,
we follow the same argument as [12]. A positive definite function is understood as a
function that is zero at the origin, and (strictly) positive at every other point. Given,
then, a continuous locally positive definite function ρ : R

n → R≥0 on a closed ball of
radius c (denoted by Bc ⊂ R

n), we can define a continuous nondecreasing function
α̂ : R≥0 → R≥0 by

α̂(s)
.= min

{x∈Bc:|x |≥s}
ρ(x), ∀s ∈ [0, c].

Since α̂(s) is strictly positive for (0, c], it is possible to lower bound this nondecreasing
function by one that is strictly increasing to obtain the desired result. Note that globally
positive definite continuous functions that satisfy lims→∞ ρ(s) = 0 cannot be bounded
from below by a class-K function. A comparison function lower bound for globally
positive definite continuous functions is presented in Lemma 18.

Hahn [11] introduced the term radially unbounded and in [12] characterized a
radially unbounded function as one that is lower bounded by a class-K function that
approaches infinity as its argument approaches infinity. Hahn cites [4] for introducing
the same notion under the terminology “α becomes infinitely large”. Sontag [35]
introduced the now standard notation K∞ for such functions.4

Definition 2 A function α : R≥0 → R≥0 is said to be of class-K∞ (α ∈ K∞) if
α ∈ K and, in addition, lims→∞ α(s) = ∞.

3 It has been speculated that Hahn’s usage of the letter K was in reference to Kamke, though Hahn himself
never apparently stated this. Functions similar to class-K functions do appear in [28] and are, in fact, denoted
by K (·). In a similar vein, [27] makes use of a bounding function that is continuous and monotonically
decreasing to zero on (0, ∞).
4 Observe that class-K[0,∞) and class-K∞ are not the same. In fact, class-K[0,∞) is the same as class-K
since the subscript interval refers to the domain of definition of a function. By contrast, the subscript of
K∞ refers to the behavior of the function in the limit as its argument goes to infinity.
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342 C. M. Kellett

One of the most useful properties of class-K and class-K∞ functions is their invert-
ibility. First consider α ∈ K\K∞; i.e., α ∈ K but α /∈ K∞. Since α ∈ K\K∞
is continuous and strictly increasing there exists a constant a ∈ R>0 such that
lims→∞ α(s) = a, the inverse function exists on [0, a), and the inverse function
is also continuous and strictly increasing; i.e., the function α−1 : [0, a) → R≥0 is
continuous, zero at zero, strictly increasing, and hence of class-K[0,a). The inverse
function also satisfies lims→a α−1(s) = ∞. In the case where α ∈ K∞, we observe
that the inverse function will be defined globally and consequently α−1 ∈ K∞. We thus
observe that class-K∞ functions are the set of homeomorphisms on the nonnegative
real half-line, R≥0.

Hahn [12] observed that if α1, α2 ∈ K∞ and if α1(s) ≤ α2(s) for all s ∈ R≥0, then
α−1

1 (s) ≥ α−1
2 (s). This is straightforward to see by considering r = α1(s) in the first

inequality. This property also holds for two class-K functions, though only on [0, a)

where a = lims→∞ min{α1(s), α2(s)}.
Three further useful and straightforward properties are related to the sum, maxi-

mum, or minimum of class-K functions. Suppose we have a finite number of func-
tions αi ∈ K where i ∈ {1, . . . , N } for some finite N ∈ Z>0. Then, the function
α : R≥0 → R≥0 defined by any of

α(s)
.=

N∑

i=1

αi (s),

α(s)
.= max

i∈{1,...,N } αi (s), or

α(s)
.= min

i∈{1,...,N } αi (s),

for all s ∈ R≥0 is of class-K. Furthermore, for the summation or maximum, if αi ∈ K∞
for any i ∈ {1, . . . , N }, then α ∈ K∞. Note that maximization and summation are
specific instances of the monotone aggregation functions discussed in Sect. 8.

Hahn introduced class-L functions in [12, Defn 2.6] as a precursor to defining
attractivity of an equilibrium point.

Definition 3 A function σ : R≥0 → R>0 is said to be of class-L (σ ∈ L), if it is
continuous, strictly decreasing,5 and lims→∞ σ(s) = 0.

Note that, similar to class-K functions, functions of class-L are invertible on their
range and the inverse is itself (nearly) class-L on the range of the original function;
i.e., for σ ∈ L, the inverse σ−1 : (0, σ (0)] → R≥0 is continuous, strictly decreasing,
and lims→0 σ−1(s) = +∞.

5 Note that some authors only assume that functions of class-L are nonincreasing. In many cases, this is
sufficient. However, we prefer the symmetry with the strictly increasing property of class-K functions and
the clean results on class-L functions that the assumption of strictly decreasing enables. Note that, since
functions of class-L are strictly decreasing and go to zero in the limit, these functions are also strictly
positive. This is explicit in the definition in that the range of class-L functions is R>0.
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A compendium of comparison function results 343

In [12, Section 24], Hahn noted two somewhat obvious facts about the composition
of comparison functions. Suppose α, α1, α2 ∈ K and σ ∈ L. Then

α1 ◦ α2 ∈ K; and
α ◦ σ ∈ L.

In addition, we observe that for σ1, σ2 ∈ L and with c
.= σ1 ◦ σ2(0) we have

σ1 ◦ σ2 − c ∈ K.

As a final definition, Hahn [12, Defn 24.2] introduced the class of KL functions:

Definition 4 A function β : R≥0 × R≥0 → R≥0 is said to be of class-KL (β ∈ KL)
if it is class-K in its first argument and class-L in its second argument. In other words,
β ∈ KL if for each fixed t ∈ R≥0, β(·, t) ∈ K and for each fixed s ∈ R≥0, β(s, ·) ∈ L.

For consistency, we will generally use α or ϕ for functions of class-K or class-
K∞, σ for functions of class-L, β for functions of class-KL, ρ for positive definite
functions, and a, b, c, or λ for positive constants in R>0. For functions α ∈ K that are
differentiable, we will denote the derivative by α′. We will denote the identity function
by id; i.e., id(s) = s for all s ∈ R≥0.

2.1 Example: Lyapunov functions and KL-stability

As a brief example of the elegance enabled by the use of comparison functions, we
demonstrate the proof that a Lyapunov function implies uniform global asymptotic
stability of the origin for an autonomous system

ẋ = f (x).

Here, we assume the existence and uniqueness of solutions and denote solutions to
the above differential equation from an initial point x0 = x(0) ∈ R

n by x(t) for all
t ∈ R≥0.

Definition 5 The origin is globally asymptotically stable for ẋ = f (x) if there exists
a function β ∈ KL such that, for all x0 ∈ R

n ,

|x(t)| ≤ β(|x0|, t), ∀t ∈ R≥0.

It is obvious that the above definition is equivalent to the standard definition of global
asymptotic stability as the combination of stability and attractivity (see [22, Proposition
2.5]).

Definition 6 A Lyapunov function V : R
n → R≥0 for ẋ = f (x) is a continuously

differentiable function such that there exist α1, α2 ∈ K∞, a continuous positive definite
function ρ : R

n → R≥0 and, for all x ∈ R
n ,

α1(|x |) ≤ V (x) ≤ α2(|x |) (1)
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V̇ (x) = 〈∇V (x), f (x)〉 ≤ −ρ(x). (2)

Assume the existence of a Lyapunov function for ẋ = f (x). Lemma 18 in the
sequel yields the existence of α ∈ K∞ and σ ∈ L such that

ρ(x) ≥ α(|x |)σ (|x |), ∀x ∈ R
n . (3)

Since the functions α1, α2 ∈ K∞, they are both invertible and we define

α̂
.= α ◦ α−1

2 ∈ K∞ and σ̂
.= σ ◦ α−1

1 ∈ L.

Finally, we define ρ̂ : R≥0 → R≥0 by

ρ̂(s)
.= α̂(s)σ̂ (s), ∀s ∈ R≥0 (4)

and note that the product of a class-K∞ function and a class-L function is a positive
definite function and hence ρ̂ is a positive definite function. Therefore, using (1), (3),
and the definitions of functions α̂, σ̂ , and ρ̂, we may bound the decrease condition (2) as

V̇ (x) ≤ −α(|x |)σ (|x |) ≤ −α
(
α−1

2 (V (x))
)

σ
(
α−1

1 (V (x))
)

= −ρ̂(V (x)). (5)

Using a comparison lemma from the sequel (Lemma 20) we have the existence of
a function β̂ ∈ KL such that, for all x(0) = x0 ∈ R

n ,

V (x(t)) ≤ β̂(V (x0), t), ∀t ∈ R≥0.

By manipulating the upper and lower bounds in (1) we obtain

|x(t)| ≤ α−1
1

(
β̂ (α2(|x0|), t)

)
.= β(|x0|, t),

for all t ∈ R≥0 and x0 ∈ R
n , proving global asymptotic stability of the origin.

Furthermore, we note that any nonlinear scaling of a Lyapunov function by a con-
tinuously differentiable function ᾱ ∈ K∞ satisfying ᾱ′(s) > 0 for all s ∈ R>0 yields a
Lyapunov function6. To see this, given a Lyapunov function V , functions α1, α2 ∈ K∞
and a continuous positive definite function ρ : R

n → R≥0 so that (1) and (2) hold,
define

W (x)
.= ᾱ(V (x)), ∀x ∈ R

n .

We define α̂1
.= ᾱ ◦ α1 ∈ K∞ and α̂2

.= ᾱ ◦ α2 ∈ K∞ and see that (1) implies that W
satisfies the necessary upper and lower bounds

α̂1(|x |) ≤ W (x) ≤ α̂2(|x |), ∀x ∈ R
n .

6 Despite the fact that functions α ∈ K are strictly increasing, it is possible that α′(s) = 0 for isolated
points s ∈ R>0. For example, α(s)

.= ∫ s
0 (1 + sin(τ ))dτ is one such function.
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Since ᾱ ∈ K∞ is continuously differentiable and ᾱ′(s) > 0 for all s ∈ R>0, we have

〈∇W (x), f (x)〉 = ᾱ′(V (x))〈∇V (x), f (x)〉 ≤ −ᾱ′(V (x))ρ(x) (6)

for all x ∈ R
n\{0}, where the right-hand side is a continuous positive definite func-

tion. In other words, the function W (x) = ᾱ(V (x)) is a Lyapunov function for any
continuously differentiable ᾱ ∈ K∞.

Finally, let the continuous positive definite function ρ̂ : R≥0 → R≥0 be defined as
in (4) so that we have the decrease condition (5). Then for ρ̂, Lemma 24 in the sequel
yields an ᾱ ∈ K∞ that is continuously differentiable on R>0 such that

ᾱ(s) ≤ ρ̂(s)ᾱ′(s), ∀s ∈ R>0.

Repeating the calculations of (5) and (6) we see that, for W (x)
.= ᾱ(V (x)) we have

Ẇ (x) = 〈∇W (x), f (x)〉 ≤ −ᾱ′(V (x))ρ̂(x) ≤ −ᾱ(V (x)) = −W (x)

for all x ∈ R
n\{0}. In other words, the Lyapunov function W (x) = ᾱ(V (x)) decreases

exponentially.

2.2 A word on regularity

Since class-K and class-L functions are monotonic, a theorem due to Lebesgue states
that these functions must be differentiable almost everywhere (see, for example, [31,
Section 2]) and this property holds without the functions necessarily being continuous.

While we have assumed that functions of class-K or class-L are continuous func-
tions, it is sometimes useful to require functions with more regularity; for example,
when discussing the nonlinear scaling of Lyapunov functions in the previous section
we required the nonlinear scaling α ∈ K∞ to be continuously differentiable. In fact,
we can always bound comparison functions from above and below by smooth func-
tions on R>0. We here state [5, Lemma 2.5] as two lemmas to separately state the
results for nondecreasing and nonincreasing functions.

Lemma 1 Let α : R≥0 → R≥0 be continuous, zero at zero, strictly positive on R>0,
and nondecreasing. Then there exist functions α1, α2 ∈ K, smooth on R>0, so that

α1(s) ≤ α(s) ≤ α2(s), ∀s ∈ R≥0.

Furthermore, if lims→∞ α(s) = ∞ then both functions may be chosen to satisfy
α1, α2 ∈ K∞.

Lemma 2 Let σ : R≥0 → R>0 be continuous, nonincreasing, and satisfying
lims→∞ σ(s) = 0. Then, there exist functions σ1, σ2 ∈ L, smooth on R>0, so that

σ1(s) ≤ σ(s) ≤ σ2(s), ∀s ∈ R≥0.
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346 C. M. Kellett

In contrast to the above results, when we assume that the function we wish to
approximate is of class-K or class-L, we may additionally control how close the
smooth function is to the given function.

Lemma 3 For α ∈ K and any ε > 0 there exist α1, α2 ∈ K, smooth on R>0, so that,
for all s ∈ R≥0

α(s) − ε < α1(s) ≤ α(s) ≤ α2(s) < α(s) + ε. (7)

Lemma 4 For σ ∈ L and any ε > 0 there exist σ1, σ2 ∈ K∞, smooth on R>0 so that,
for all s ∈ R≥0

σ(s) − ε < σ1(s) ≤ σ(s) ≤ σ2(s) ≤ σ(s) + ε.

With a further requirement that the given function be of class-K∞, we obtain the
following two smooth approximation lemmas.

Lemma 5 [9, Lemma B.2.1] Given α ∈ K∞ and ρ : R≥0 → R≥0 is continuous and
positive definite, there exists α̃ ∈ K∞, smooth on R>0, so that

|α(s) − α̃(s)| ≤ ρ(α(s)), ∀s ∈ R≥0.

Lemma 6 [9, Lemma B.2.2] Given α ∈ K∞ and ρ : R≥0 → R≥0 is continuous and
positive definite, there exists α1, α2 ∈ K∞, smooth on R>0, so that, for all s ∈ R≥0,

α(s) − ρ(α(s)) ≤ α1(s) < α(s) < α2(s) ≤ α(s) + ρ(α(s)).

The proofs of all of the lemmas in this section follow a similar idea where a contin-
uous piecewise linear function is constructed to bound the given function from above
or below while giving the additional desired inequalities. Standard techniques can then
be used to smooth these functions where they are pieced together. As an example, and
because we have not seen the result previously in the literature, we present the proof
of Lemma 3 in Appendix A.1 and provide a remark on the necessary modifications to
obtain Lemma 4.

3 Upper bounds

Arguably the most useful lemma regarding KL-functions is widely known as Sontag’s
Lemma on KL-Estimates which originally appeared as [36, Proposition 7]. The version
given here is from [19] and provides some nice properties on one of the resulting K∞
functions. The proof is provided in Appendix A.2.

Lemma 7 [19, Lemma 5.3] Given β ∈ KL and λ ∈ R>0, there exist α1, α2 ∈ K∞
such that α1(·) is Lipschitz on its domain, smooth on R>0, α1(s) ≤ sα′

1(s) for all
s ∈ R>0 and

α1 (β(s, t)) ≤ α2(s)e
−λt , ∀(s, t) ∈ R≥0 × R≥0.
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A precursor to the above result was presented by Hahn [12]:

Lemma 8 Let α1, α2 ∈ K, σ ∈ L, and either α′
1 or α2 be bounded. Then, there exist

α̂ ∈ K and σ̂ ∈ L such that

α1 (α2(s)σ (t)) ≤ α̂(s)σ̂ (t), ∀s, t ∈ R≥0.

Proof If there exists a c ∈ R>0 so that α′
1(s) ≤ c for all s ∈ R>0, then the mean value

theorem yields the desired result with α̂
.= cα2 and σ̂

.= σ .
On the other hand, if there exists c ∈ R>0 so that α2(s) ≤ c for all s ∈ R>0, then

the result holds with α̂(s)
.= √

α1(σ (0)α2(s)) for all s ∈ R≥0 and σ̂ (t)
.= √

α1(cσ(t))
for all t ∈ R≥0. ��

The following result describes a class of functions that can be bounded from above
by a class-KL function. This result was proved, though not formally stated, in [22].

Lemma 9 [1, Lemma 4.1] Suppose a function φ : R≥0 × R≥0 → R satisfies

– for all r, ε ∈ R>0, there exists some T = T (r, ε) ∈ R>0 such that φ(s, t) < ε for
all s ≤ r and t ≥ T ; and

– for all ε ∈ R>0 there exists δ ∈ R>0 such that φ(s, t) ≤ ε for all s ≤ δ and all
t ∈ R≥0.

Then there exists some β ∈ KL such that φ(s, t) ≤ β(s, t) for all s, t ∈ R≥0.

As in analysis more generally, the existence of a triangle inequality is extremely
useful. In [35, Equation (12)], Sontag observed that for any function α ∈ K and any
a, b ∈ R≥0,

α(a + b) ≤ α(2a) + α(2b). (8)

A generalization of this was presented in [17] where an additional function ϕ ∈ K∞
can be used to trade off the relative weighting on the first argument versus the second
argument. The following is sometimes referred to as a weak triangle inequality. A
proof is provided in Appendix A.3.

Lemma 10 [17, Equation (6)] Given α ∈ K and any function ϕ ∈ K∞ such that
ϕ − id ∈ K∞, then for any a, b ∈ R≥0

α(a + b) ≤ α(ϕ(a)) + α
(
ϕ ◦ (ϕ − id)−1(b)

)
. (9)

Clearly, choosing ϕ(s) = 2s for all s ∈ R≥0 regains the original form of the weak
triangle inequality (8). More generally, we can select ϕ(s) = (1 + c)s with c ∈ R>0,
which satisfies

ϕ ◦ (ϕ − id)−1(s) = 1 + c

c
s.
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348 C. M. Kellett

Consequently, choosing c < 1 puts a larger weighting on the b term, whereas choosing
c > 1 puts a larger weighting on the a term.

We note that an alternate, more symmetric, form of (9) can be obtained by choosing
ϕ̂

.= ϕ − id ∈ K∞ so that

α(a + b) ≤ α ◦ (
ϕ̂ + id

)
(a) + α ◦

(
ϕ̂−1 + id

)
(b), ∀a, b ∈ R≥0. (10)

This form of the weak triangle inequality was presented in [33, Lemma 1.1.2].
It is possible to weakly factor functions of two variables that are jointly of

class-K.

Lemma 11 [3, Corollary IV.5] Suppose α : R
2≥0 → R≥0 is such that α(·, s) ∈ K

for each fixed s ∈ R≥0 and α(r, ·) ∈ K for each fixed r ∈ R≥0. Then there exists a
function α̂ ∈ K such that

α(r, s) ≤ α̂(r)α̂(s). (11)

We present a sketch of the proof in Sect. 7.4.
A precursor to the above appeared as [36, Corollary 10] where the relationship

between the arguments is a product.

Lemma 12 [36, Corollary 10] Given α ∈ K∞ there exist α1, α2 ∈ K∞ such that

α(rs) ≤ α1(r)α2(s), ∀r, s ∈ R≥0.

Hahn [12] made use of a similar upper bound in a fairly simple case. In particular,
given α ∈ K and constants c, λ ∈ R>0 such that α(s) ≤ csλ for all s ∈ R≥0. Then

α(rs) ≤ crλsλ, ∀r, s ∈ R≥0.

The following lemma provides an upper bound on a given class-K function in terms
of the composition of convex and concave functions of class-K.

Lemma 13 [30, Lemma 14] Given α ∈ K there exist continuously differentiable and
convex αv ∈ K and continuously differentiable and concave αc ∈ K such that

α(s) ≤ αc ◦ αv(s), ∀s ∈ R≥0.

The key idea of the proof involves the fact that the integral of a class-K function is
convex. On the one hand, the convex function required is directly defined by

αv(s)
.= α−1(s∗)

s∗

2s∫

0

α(τ)dτ + s, ∀s ∈ R≥0
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A compendium of comparison function results 349

where s∗ .= min{1, a
2 } and a = lims→∞ α(s). These latter points guarantee that the

inverse α−1 is well defined. On the other hand, the concave function is defined by
specifying its inverse as the convex function

α−1
c (s)

.=
{∫ s

0 α−1(τ )dτ, ∀s ∈ [0, s∗]
α−1

c (s∗) + (s − s∗)α−1(s∗), ∀s > s∗.

An upper bound for class-L functions was presented in [12] as follows:

Lemma 14 If σ ∈ L then there exist σ1, σ2 ∈ L such that

σ(r + s) ≤ σ1(r)σ2(s), ∀r, s ∈ R≥0.

The proof of the above is provided in Appendix A.4.
Finally, we introduce the Legendre–Fenchel transform to present a general version

of Young’s Inequality. Suppose α ∈ K∞ is continuously differentiable and that, in
addition, α′ ∈ K∞. To ease the notation, denote (α′)−1(s)

.= ϕ(s) for all s ∈ R≥0.
Then the Legendre–Fenchel transform of α is defined by

�α(s)
.=

s∫

0

ϕ(τ)dτ, ∀s ∈ R≥0. (12)

The Legendre–Fenchel transform appears to have first been used in conjunction with
comparison functions in [29]. Several interesting properties of the Legendre–Fenchel
transform were provided in [20].

Lemma 15 [20, Lemma A.1] If α, α′ ∈ K∞, then the Legendre–Fenchel transform
(12) satisfies

(i) �α(s) = sϕ(s) − α ◦ ϕ(s), ∀s ∈ R≥0;
(ii) ��α(s) = α(s), ∀s ∈ R≥0;
(iii) �α(α′(s)) = sα′(s) − α(s), ∀s ∈ R≥0; and
(iv) �α ∈ K∞; .

Using the Legendre–Fenchel transform, the following general version of Young’s
Inequality was presented in [29].

Lemma 16 For any continuously differentiable α ∈ K∞ such that α′ ∈ K∞ and any
x, y ∈ R

n

xT y ≤ α(|x |) + �α(|y|)

with equality if and only if

y = α′(|x |)
|x | x .
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The original version of Young’s inequality [13, Theorem 156] bounds the product
of two nonnegative numbers as follows: for any α̂ ∈ K∞ and a, b ∈ R≥0,

ab ≤
a∫

0

α̂(τ )dτ +
b∫

0

α̂−1(τ )dτ, (13)

with equality if and only if b = α̂(a). The relationship of (13) to Lemma 16 is
straightforward to see by considering α̂ = α′.

A useful result for bounding from above the product of two nonnegative numbers
based on any given K∞ function was presented in [30].

Lemma 17 For any α ∈ K∞ and any p ∈ R>0,

ab ≤ α−1(pa)a + α(b)b

p
, ∀a, b ∈ R≥0.

The proof is straightforward by considering the two cases of α−1(pa) ≥ b and
α−1(pa) < b. Alternatively, this can be shown via Young’s inequality (13) by con-
sidering α

.= 1
p α̂ ∈ K∞.

4 Lower bounds

As comparison functions are most frequently used in gain and stability estimates, they
tend to be used to upper bound various quantities. As a consequence, the literature
contains many more results for bounding functions from above than for bounding
functions from below. Nonetheless, lower bounds have occasionally proved useful.

As previously noted, the initial use of class-K functions was for the characterization
of locally positive definite functions. However, it is not possible to bound every globally
positive definite function from below by a function of class-K. A complete charac-
terization of positive definite functions on R≥0 in terms of a lower bound depending
on both a class-K function and a class-L function was given by in [3, Lemma IV.1].
The version presented here extends the characterization to positive definite functions
defined on R

n . A proof is provided in Appendix A.5.

Lemma 18 Let ρ : R
n → R≥0 be a continuous positive definite function. Then, there

exist functions α ∈ K∞ and σ ∈ L such that

ρ(x) ≥ α(|x |)σ (|x |), ∀x ∈ R
n .

The following lower bound on functions of class-KL was introduced in [37] to
separate the effect of the two arguments when considering the decrease condition
for an input-to-output stability Lyapunov function.7 The main idea of the proof is
discussed in Sect. 7.4.

7 We note that the statement of Lemma 19 in [37] was not entirely precise in two respects. The first is that
the authors explicitly defined class-KL functions as nonincreasing, rather than strictly decreasing, in their
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Lemma 19 [37, Lemma A.2] For any β ∈ KL there exist α1 ∈ K, α2 ∈ K∞ such
that

β(s, t) ≥ α1(s)

1 + α2(t)
(14)

for all (s, t) ∈ R≥0 × R≥0.

5 The comparison principle

The comparison principle or comparison lemma makes use of a (usually solvable)
scalar differential inequality to make statements about the nature of solutions to a
scalar differential equation. An example application of this principle was provided in
Sect. 2.1. In the case where the right-hand side of the scalar differential inequality is
a continuous negative definite function, then solutions are bounded by a function of
class-KL. The following result was first demonstrated in a slightly more restrictive
form by Hahn [12, Section 24E].

Lemma 20 [37, Lemma A.4] For any continuous positive definite functionρ : R≥0 →
R≥0 there exists β ∈ KL such that if y(·) is any locally absolutely continuous function
defined on some interval [0, T ] with y(t) ≥ 0 for all t ∈ [0, T ], and if y(·) satisfies
the differential inequality

ẏ(t) ≤ −λρ(y(t)) (15)

for almost all t ∈ [0, T ] for some λ ≥ 0 with y(0) = y0 ∈ R≥0 then

y(t) ≤ β(y0, λt), ∀t ∈ [0, T ].

The above, with λ = 1, first appeared in [22, Lemma 4.4]. A precursor to this where
y(t) satisfying a differential equation, rather than the inequality above, implies a KL
bound appeared in [35, Lemma 6.1]. A proof of Lemma 20 is provided in Appendix
A.6.

An extension to the above comparison principle allows the right-hand side of the
differential inequality to also depend on an external input. This is particularly use-
ful when considering robust stability in the context of input-to-state stability and its
variants. The following two lemmas allow the input to enter via a maximization and
a summation, respectively.

Lemma 21 [3, Lemma IV.2] Given any continuous positive definite function ρ :
R≥0 → R≥0 there exists β ∈ KL so that if, for some t̄ ∈ R>0, v : [0, t̄) → R≥0 is a

Footnote 7 continued
second argument. However, this definition admits functions such that β(s, t) = 0 for some s, t ∈ R>0
finite, while the right-hand side of (14) is strictly positive. The second is that it is necessary that α2 ∈ K∞
whereas in [37, Lemma A.2] it is only stated that α2 ∈ K. However, if α2 ∈ K is not of class-K∞, then
the right-hand side of (14) may remain bounded away from zero as t → ∞ while limt→∞ β(s, t) = 0.
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continuous function and y : [0, t̄) → R is a (locally) absolutely continuous function
with y(0) = y0 ∈ R≥0, and if

ẏ(t) ≤ −ρ (max{y(t) + v(t), 0})

holds for almost all t ∈ [0, t̄) then

y(t) ≤ max

{
β(y0, t), sup

τ∈[0,t]
|v(τ)|

}
, ∀t ∈ [0, t̄).

The proof relies on Lemma 18 applied to the positive definite function ρ to obtain
α ∈ K∞ and σ ∈ L, so that, with the decreasing property of σ , ρ(s) ≥ α(s)σ (2s)
for all s ∈ R≥0. Without being overly precise, two time intervals are then considered:
times such that y(t) ≤ supτ∈[0,t] |v(τ)| and times such that y(t) exceeds this bound.
The former set is invariant since y(t) is decreasing and supτ∈[0,t] |v(τ)| is increasing.
In the latter case, we see that y(t) > v(t) so that y(t) ≤ y(t) + v(t) ≤ 2y(t). Then,
since α ∈ K∞, ẏ(t) ≤ α(y(t))σ (2y(t)) and we can appeal to Lemma 20 to obtain the
desired result. See [3] for a detailed proof.

Lemma 22 [3, Corollary IV.3] Given any continuous positive definite function ρ :
R≥0 → R≥0 there exists β ∈ KL so that if, for some t̄ ∈ R>0, v : [0, t̄) → R≥0 is a
measureable, locally essentially bounded function and y : [0, t̄) → R≥0 is (locally)
absolutely continuous function with y(0) = y0 ∈ R≥0, and if

ẏ(t) ≤ −ρ(y(t)) + v(t)

for almost all t ∈ [0, t̄), then

y(t) ≤ β(y0, t) +
t∫

0

2v(τ)dτ, ∀t ∈ [0, t̄).

The proof follows by defining certain auxiliary functions and showing that these
functions satisfy the requirements of Lemma 21. In particular, let w(t) be the solution
to the initial value problem

ẇ(t) = −ρ(w(t)) + v(t), w(0) = y(0),

let v1(t) = ∫ t
0 v(τ)dτ , and let w1(t) = w(t) − v1(t). The function w1 then plays the

role of y in Lemma 21. As before, see [3] for a detailed proof.

6 Other relationships

In addition to the previously presented lemmas providing upper and lower bounds and
comparison principles, several results involving comparison functions are available
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that do not neatly fit into these categories. In this section, we summarize several such
results.

Many factorizations of comparison functions are possible, with the derivations
frequently relying on the invertibility of class-K∞ functions. A proof of the following
is in Appendix A.7.

Lemma 23 [33, Lemma 1.1.3] For any α ∈ K, there exist α1, α2 ∈ K such that

α + id = (α1 + id) ◦ (α2 + id).

Furthermore, if α ∈ K∞ then α1 and α2 can be chosen of class-K∞ as well.

The next two lemmas presented were used to modify decrease conditions of Lya-
punov functions in continuous time (Lemma 24) and discrete time (Lemma 25). The
following is a combination of [30, Lemmas 11 and 12].

Lemma 24 [19, Lemma 5.4] For each continuous, positive definite function ρ :
R≥0 → R≥0 there exists α ∈ K∞ such that α(·) is locally Lipschitz on its domain,
continuously differentiable on (0,∞) and

α(s) ≤ ρ(s)α′(s), ∀s ∈ R>0.

The form of the function α ∈ K∞ used in the proof of Lemma 24 is

α(s)
.= exp

⎛

⎝2

s∫

1

1

min{τ, ρ(τ )}dτ

⎞

⎠ , ∀s ∈ R>0

and α(0) = 0.

Lemma 25 [18, Lemma 19] If λ > 1 and if α ∈ K∞ satisfies (α − id) ∈ K∞, then
there exists α̂ ∈ K∞ such that

α̂ ◦ α(s) = λα̂(s), ∀s ∈ R≥0. (16)

A proof of the above lemma is provided in Appendix A.8. While the proof is
generally nonconstructive, for linear functions of class-K∞

α(s) = cs, c > 1

one choice for the K∞ function of Lemma 25 can be seen to be

α̂(s) = sm, m = log λ

log c
.

Since λ, c > 1, we have that m > 0 and

α̂ ◦ α(s) = c
log λ
log c sm = λsm = λα̂(s).
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It is possible to derive a corollary to Lemma 25 to allow for positive constants less
than one. The proof is provided in Appendix A.9.

Corollary 1 If λ ∈ (0, 1) and if α ∈ K∞ satisfies (id − α) ∈ K∞ then there exists
α̂ ∈ K∞ such that

α̂ ◦ (id − α)(s) = λα̂(s), ∀s ∈ R≥0. (17)

Given a function of class-K, it is possible to find another function of class-K that
upper bounds the given function away from the origin and is linear near the origin.

Lemma 26 [16, Lemma 1] For any α ∈ K and any λ ∈ R>0, there exist two numbers
λ1, λ2 ∈ R>0 and a smooth α̂ ∈ K∞ such that

α(s) ≤ α̂(s), ∀s ≥ λ

α̂(s) = λ1s, ∀s ∈ [0, λ2).

The following lemma describes a condition under which the order of composition
of two class-K functions can be reversed whilst maintaining a contraction principle.

Lemma 27 [38, Fact A.2] Let α1, α2 ∈ K and let c ∈ R>0. Then

α1 ◦ α2(s) ≤ s, ∀s ∈ [0, c] ⇐⇒ α2 ◦ α1(s) ≤ s, ∀s ∈ [0, α2(c)]. (18)

We note that [38, Fact A.2] only proved one direction of the implication. The proof
of Lemma 27 is provided in Appendix A.10.

As a corollary to the above, we obtain the following result when both functions are
of class-K∞.

Corollary 2 Let α1, α2 ∈ K∞. Then

α1 ◦ α2(s) ≤ s, ∀s ∈ R≥0 ⇐⇒ α2 ◦ α1(s) ≤ s ∀s ∈ R≥0.

A simple example shows that, for more than two functions, we cannot change the
order of composition and maintain a contraction condition. For all s ∈ R≥0, let

α1(s)
.= √

s, α2(s)
.= 3

2
s, and α3(s)

.= 1

2
s2.

Then, for all s ∈ R>0, α1 ◦ α2 ◦ α3(s) =
√

3
2 s < s but α3 ◦ α2 ◦ α1(s) = 9

8 s > s.
Finally, in [23], the following characterization of growth rates of some class-K∞

functions was provided.

Lemma 28 [23, Proposition 5] The following are equivalent:

– A function α ∈ K∞ satisfies, for every ε ∈ R>0

lim
s→∞ {α ((1 + ε)s) − α(s)} = ∞; (19)
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– For every ε ∈ R>0 there exists ϕε ∈ K∞ such that

α(s − t) ≤ α ((1 + ε)s) − ϕε(t), ∀s ≥ t ≥ 0.

It was noted in [23] that K∞ functions of the form α(s) = sλ for λ ∈ R>0 satisfy the
growth condition of (19). By contrast, K∞ functions of the form α(s) = λ log(1 + s)
for λ ∈ R>0 do not satisfy (19).

7 Other function classes

Functions of class-K, K∞, L, and KL have been used in stability theory for over
40 years going back to the original work of Massera and Hahn. Other useful classes
have been introduced more recently.

7.1 Functions of class-KLD

In [9], Grüne defined a subset of class-KL functions, which he called class-KLD.

Definition 7 A function μ : R≥0 × R → R≥0 is said to be of class-KLD if its
restriction to R≥0 × R≥0 is class-KL and, in addition,

μ(r, 0) = r and μ (μ(r, t), s) = μ(r, t + s) (20)

for all r ∈ R≥0, s, t ∈ R.

The D in KLD above denotes dynamical and refers to the fact that, as a conse-
quence of (20), a function of class-KLD defines a dynamical system on R≥0. Class-
KLD functions were introduced in [9,10] to characterize the notion of input-to-state
dynamical stability (ISDS). ISDS is a robust stability concept equivalent to input-to-
state stability and, as such, it is useful to know that any function of class-KL can be
bounded from above by a function of class-KLD as follows.

Lemma 29 [9, Lemma B.1.4] For any β ∈ KL, there exist functions μ ∈ KLD and
α ∈ K∞ such that

β(s, t) ≤ μ (α(s), t) , ∀s, t ∈ R≥0.

7.2 Extended real-valued functions

As was earlier noted, functions of class-K are invertible only on their range. Hence,
when using functions of class-K, if their inverses are required, a certain level of
notational overhead is necessary. To reduce this notational burden and to provide
approximate inverses for functions that are not strictly increasing (see class-G functions
below), Ito [14] considered extended real-valued functions (see also [15]); that is,
functions on R≥0

.= R≥0 ∪ {∞}.
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For continuity at infinity of a function α : R≥0 → R≥0 we intend that the usual
limit condition sn → s implies α(sn) → α(s) including for sequences sn → ∞ as
well as for any s ∈ R>0 such that α(s) = ∞.

Definition 8 A function α : R≥0 → R≥0 is said to be of class-K if it is continuous,
zero at zero, strictly increasing on the range R≥0 and infinite otherwise.

By strictly increasing on the range R≥0 we mean that on the set

{s ∈ R≥0 : α(s) �= ∞}

the function α is strictly increasing. An example of a function α ∈ K is

α(s) =
{

arctan(s), s ∈ R≥0
π
2 , s = ∞.

(21)

Another example of a function ϕ ∈ K is

ϕ(s) =
{

tan(s), s ∈ [
0, π

2

)

∞, s ∈ [
π
2 ,∞]

.
(22)

Ito defined the pseudo-inverse of a function α ∈ K as

α�(s)
.=

{
α−1(s), s ∈ [0, limτ→∞ α(τ))

sup{s ∈ R≥0 : α(s) < ∞}, otherwise.
(23)

We note that, with these definitions, if a function α ∈ K then α� ∈ K. Furthermore,
we may state the following result.

Lemma 30 Let α ∈ K. If

sup{s ∈ R≥0 : α(s) < ∞} = ∞ (24)

then, for all s ∈ R≥0,

α� ◦ α(s) = s and α ◦ α�(s) ≤ s. (25)

On the other hand, if

sup{s ∈ R≥0 : α(s) < ∞} = c < ∞ (26)

then, for all s ∈ R≥0,

α� ◦ α(s) ≤ s and α ◦ α�(s) = s. (27)
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Proof Let a = limτ→∞ α(τ) so that α : R≥0 → [0, a] and α−1 : [0, a) → [0,∞).
If (24) holds then

α�(s) =
{

α−1(s), s ∈ [0, a)

∞, s ≥ a

so that

α� ◦ α(s) =
{

s, s ∈ [0,∞)

∞, s = ∞ and α ◦ α�(s) =
{

s, s ∈ [0, a)

a, s ≥ a.

Therefore, (25) holds.
If (26) holds then lims↗c α(s) = ∞ (i.e., α(c) = ∞) and

α�(s) =
{

α−1(s), s ∈ [0,∞)

c, s = ∞

so that

α� ◦ α(s) =
{

s, s ∈ [0, c)
c, s ≥ c

and α ◦ α�(s) =
{

s, s ∈ [0,∞)

∞, s = ∞.

Therefore, (27) holds. ��
We observe that α, ϕ ∈ K from (21) and (22) are pseudo-inverses of each other;

i.e., α� = ϕ and ϕ� = α. Furthermore, α ∈ K satisfies (24) while ϕ ∈ K satisfies
(26).

Definition 9 A function σ : R≥0 → R≥0 is said to be of class-L if it is continuous,
strictly decreasing, and σ(∞) = 0.

For σ : R≥0 → R≥0, it is understood that strictly decreasing allows σ(0) = ∞ but
requires σ(s) < ∞ for all s ∈ R>0.

We define the pseudo-inverse of a function σ ∈ L as

σ †(s)
.=

⎧
⎨

⎩

∞, s = 0
σ−1(s), s ∈ (0, σ (0))

0, s ∈ [σ(0),∞].
(28)

Similar to the fact that the inverse of a function σ ∈ L is nearly of class-L (see
Section 2), the pseudo-inverse of a function σ ∈ L is nearly of class-L; i.e., σ † :
R≥0 → R≥0 is continuous, strictly decreasing for s ∈ [0, σ (0)), and σ †(∞) = 0.

We observe that, for all s ∈ R≥0,

σ † ◦ σ(s) = s and σ ◦ σ †(s) ≤ s.
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Constraining σ ∈ L so that σ(0) = ∞ yields that σ † ∈ L is a true inverse of σ ∈ L.
For example, the function

σ(s) =
⎧
⎨

⎩

∞, s = 0
1
s , s ∈ (0,∞)

0, s = ∞

is of class-L and is its own pseudo-inverse.

7.3 Functions of class-G

The function class-G was defined in [40] by enlarging the class-K to include functions
that are not strictly increasing.8

Definition 10 A function α : R≥0 → R≥0 is said to be of class-G if it is continuous,
nondecreasing, and α(0) = 0.

It is clear that any class-G function can be bounded from above by a function of
class-K. However, it is not the case that every class-G function can be bounded from
below by a function of class-K. For example, a function which is identically zero for
all s ∈ [0, 1] and equal to s − 1 for all s > 1 is of class-G, but cannot be bounded
from below by a function of class-K.

Since class-G functions are not strictly increasing, they may fail to be invertible.
This shortcoming can typically be circumvented by allowing set-valued inverses or by
the introduction of class-K upper and lower bounds, where especial care is required
to properly deal with any lower bound.

An alternative approach is to make use of the extended real-valued functions defined
in the previous section to construct approximate inverses. Define class-G as the enlarge-
ment of class-K to include functions that are not strictly increasing.

Lemma 31 [15, Proposition 1] Suppose γ ∈ G is positive definite and α ∈ K. Let
c ∈ R≥0 be given by c = sup{s ∈ R≥0 : α(s) < ∞} and assume

c < ∞ ⇒ γ (∞) < c. (29)

Then, for all s ∈ R≥0,

α ◦ γ (s) ≤ s if and only if γ ◦ α(s) ≤ s. (30)

The proof of the above lemma is provided in Appendix A.11.

8 These functions were introduced in [39] under the nomenclature of “gain functions”, leading to the natural
function class name of G in [40]. In [7], these functions were defined as class-K while in [15] such functions
were denoted by class-J .
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As an example, suppose we wish to derive an approximate inverse for the positive
definite function γ ∈ G defined by

γ (s) = sat(2s)
.=

{
2s, s ∈ [

0, 1
2

]

1, s > 1
2

.

A well-defined inverse exists on [0, 1) but we encounter an obvious difficulty at the
value of one. One possible approximation of an inverse for γ is given by α ∈ K defined
as

α(s)
.=

⎧
⎪⎪⎨

⎪⎪⎩

1
2 s, s ∈ [0, 1]

a−1
2(a−s) , s ∈ [1, a)

∞, s ≥ a

for some a > 1. We see that this extended real-valued function is the expected inverse
on [0, 1] and goes to infinity arbitrarily close to one. It is straightforward to see that,
for all s ∈ R≥0, both α ◦ γ (s) ≤ s and γ ◦ α(s) ≤ s, indicating that Lemma 31
captures a property of reasonable approximations of inverses of class-G functions.

7.4 Functions of class-N

The nomenclature of class-N has been used to denote two different function classes9.
We here adopt the definition in [3].

Definition 11 A function ν : R → R is said to be of class-N if it is continuous,
nondecreasing, and unbounded below (that is, inf ν = −∞).

The following lemma is the key element in the proofs of Lemma 11 and Lemma 19.

Lemma 32 [3, Proposition IV.4] Suppose φ : R
2 → R is class-N in each of its

arguments; i.e., φ(·, y) ∈ N for each fixed y ∈ R and φ(x, ·) ∈ N for each fixed
x ∈ R. Then there exists κ ∈ N such that

φ(x, y) ≤ κ(x) + κ(y), ∀(x, y) ∈ R
2.

To prove Lemma 11, given α : R
2≥0 → R≥0 of class-K in each of its arguments

independently, the function

φ(x, y)
.= log

(
α

(
ex , ey)) , ∀x, y ∈ R,

where log denotes the natural logarithm, can be shown to be of class-N . Applying
Lemma 32, Lemma 1, and taking an exponential on both sides of the resulting inequal-
ity gives the desired result with α̂ ∈ K bounding ϕ(s)

.= ek(log(s)) from above.

9 In [2], the function class-N denotes those functions which map R≥0 to R≥0 and are continuous and
increasing. In this case, class-K is the subset of class-N functions that are also zero at zero.
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The core idea of the proof of Lemma 19 similarly requires defining an appropriate
function φ. Define |x |+ .= max{0, x} and

φ(x, y)
.= − log

(
β̃

(
1

|x |+ , |y|+
))

− | − x |+ − | − y|+, ∀x, y ∈ R,

for a function β̃ ∈ KL that is a lower bound for the given β ∈ KL with certain
desirable properties. Again we apply Lemma 32, Lemma 1, and take exponentials on
both sides of the resulting inequality. Some straightforward manipulations then yield
the desired result.

8 Monotone aggregation functions

To compare two vectors x, y ∈ R
n≥0, we use x >> y if and only if xi > yi for all

i ∈ {1, . . . , n}. In other words, each element of x ∈ R
n≥0 must be greater than the

corresponding element in y ∈ R
n≥0.

A generalization of class-K functions allowing a domain of R
n≥0, rather than a

domain of R≥0, was introduced in [33] (see also [6]). These so-called monotone
aggregation functions are defined as follows:

Definition 12 A continuous function μ : R
n≥0 → R≥0 is a monotone aggregation

function (MAFn) if it is positive definite and strictly monotone; i.e., for any x, y ∈ R
n≥0,

if x >> y then μ(x) > μ(y). The class of unbounded monotone aggregation functions
on R

n≥0 is denoted by MAFn,∞.

Together with gain matrices describing the interconnection structure of large-scale
systems, monotone aggregation functions were used in [33] and subsequent works
to provide results on stability of large-scale systems, particularly through the use of
small-gain theorems.

Examples of monotone aggregation functions include maximization and all p-
norms on R

n . As such, they provide a general and elegant formulation encapsulating
and expanding the standard input-to-state stability estimates for systems with inputs.
In particular, for ẋ = f (x, w), we can subsume both the estimate

|x(t)| ≤ β(|x(0)|, t) + γ (||w||∞)

and the estimate

|x(t)| ≤ max {β(|x(0)|, t), γ (||w||∞)}

by the use of a function μ ∈ MAF2 and the estimate

|x(t)| ≤ μ (β(|x(0)|, t), γ (||w||∞)).

There are several useful and straightforward relationships between functions of
class-K and monotone aggregation functions:
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– The function classes K and MAF1 are equivalent.
– If α ∈ K and μ ∈ MAFn , then α ◦ μ ∈ MAFn .
– If αi ∈ K for i = 1, . . . , n, and μ ∈ MAFn , then the function

μα(s1, . . . , sn)
.= μ(α1(s1), . . . , αn(sn))

is in MAFn .
– Denote the vector of all ones in R

n by 1n . If μ ∈ MAFn then μ(s1n), s ∈ R≥0, is
a function of class-K.

Despite the equivalence of class-K and MAF1, monotone aggregation functions are
in fact different to functions α : R

n≥0 → R≥0, n ∈ Z>1, that are of class-K in each
argument, or what might be termed jointly class-K. For example, in the case of a jointly
class-K function of two arguments, α ∈ K2, we see that α(s, 0) = 0 for all s ∈ R≥0.
On the other hand, a function μ ∈ MAF2 is positive definite; i.e., μ(s, 0) > 0 for all
s ∈ R>0.

Lemma 33 Given μ ∈ MAFn and integers n1, n2 such that n1 + n2 = n, there exist
μ1 ∈ MAFn1 and μ2 ∈ MAFn2 such that

μ(s1, . . . , sn) ≤ μ1
(
s1, . . . , sn1

) + μ2
(
sn1+1, . . . , sn

)

for all (s1, . . . , sn) ∈ R
n≥0.

Proof Denote a ball of radius r ≥ 0 in the positive orthant by B+
r and let α ∈ K be

given by

α(s)
.= max

x∈B+
s

μ(x). (31)

That α ∈ K follows directly from the fact that μ ∈ MAFn . We see that

μ(s1, . . . , sn) ≤ α(s1) + · · · + α(sn)

=
n1∑

i=1

α(si ) +
n∑

i=n1+1

α(si )

=: μ1
(
s1, . . . , sn1

) + μ2
(
sn1+1, . . . , sn

)
.

That μ1 ∈ MAFn1 and μ2 ∈ MAFn2 follow from the fact that the sum of n functions
of class-K is a function of class-MAFn . ��

The above result leads to the following result from [8] allowing a general monotone
aggregation function to be bounded from above by a summation. We denote by K∞ ∪
{0} those functions that are either class-K∞ or identically zero.

Lemma 34 For any μ ∈ MAFn+1, β ∈ KL, and αi ∈ K∞ ∪ {0}, i = 1, . . . , n there
exist μ̂ ∈ MAFn−1, β̂ ∈ KL, α̂n ∈ K∞ ∪ {0} such that
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μ (β(s0, t), α1(s1), . . . , αn(sn)) ≤ β̂(s0, t) + μ̂ (α1(s1), . . . , αn−1(sn−1)) + α̂n(sn)

for all t, s0, . . . , sn ∈ R≥0.

Proof We apply Lemma 33 twice to the function μ ∈ MAFn+1 to obtain μ̂1 ∈ MAF1,
μ̂2 ∈ MAF1, and μ̂ ∈ MAFn−1. With the equivalence of class-K and MAF1, we can
define β̂

.= μ̂1 ◦ β ∈ KL and α̂n
.= μ̂2 ◦ αn ∈ K. ��
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Appendix

In this appendix, we present proofs of selected lemmas. The proofs generally follow
those presented in the citation accompanying the associated lemma.

A.1 Proof of Lemma 3 (Smooth approximations)

Without loss of generality, assume ε < 4
3 sup α. Define a

.= sup α and

I
.= sup

{
i ∈ Z>0 : (i + 1)

ε

4
≤ a − ε

4

}
. (32)

Note that if α ∈ K∞, then both a and I are taken to be infinity. If α ∈ K\K∞, then the
supremum defining I is a maximum. Finally, the fact that the set is nonempty follows
from the constraint that ε < 4

3 a.
Define the double-sided infinite sequence

Ri
.=

⎧
⎪⎪⎨

⎪⎪⎩

ε
4 2i , i ∈ Z≤0

(i + 1) ε
4 , i ∈ {1, . . . , I }

(I + 1) ε
4 + (

a − (I + 1) ε
4

)
)
∑i−I

j=1 2− j , i ∈ Z>I

(33)

where, from the definition of I in (32), we have that RI ≤ a − ε
4 . We observe that

Ri < Ri+1 for all i ∈ Z, limi→−∞ Ri = 0 and limi→∞ Ri = a. Therefore, Ri

partitions the open interval (0, a).
Note that, if α ∈ K∞, then I = ∞ and the partition definition (33) only requires

the regions i ∈ Z≤0 and i ∈ Z>0.
Define a strictly increasing continuous function ᾱ2 : R≥0 → R≥0 by ᾱ2(0) = 0

and

ᾱ2(s)
.= Ri+1 + (s − α−1(Ri−1))

Ri+2 − Ri+1

α−1(Ri ) − α−1(Ri−1)
, (34)
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for all s ∈ [α−1(Ri−1), α
−1(Ri )). That ᾱ2 is continuous at the origin follows from

the fact that i → −∞ when s → 0 and both limi→−∞ Ri = 0 and limi→−∞(Ri+2 −
Ri+1) = 0.

We see that, for all s ∈ [α−1(Ri−1), α
−1(Ri )),

α(s) + (Ri+1 − Ri ) < ᾱ2(s) < α(s) + (Ri+2 − Ri−1). (35)

It is straightforward to calculate

Ri+1 − Ri =

⎧
⎪⎪⎨

⎪⎪⎩

ε
4 2i , i ∈ Z≤0

ε
4 , i ∈ {1, . . . , I − 1}
ε
4 2−(i+1−I ), i ∈ Z≥I

(36)

A standard regularization technique applied to ᾱ2 then yields a function α2 ∈ K that
is smooth on R>0 and satisfies

α(s) ≤ α2(s) < α(s) + ε, ∀s ∈ R≥0. (37)

Finally, the smooth function α1 ∈ K can be obtained by a similar procedure where
a strictly increasing continuous function similar to (34) is defined by

ᾱ1(s)
.= Ri−1 + (s − α−1(Ri−1))

Ri − Ri−1

α−1(Ri ) − α−1(Ri−1)
,

for all s ∈ [α−1(Ri−1), α
−1(Ri )) and ᾱ1(0) = 0. ��

Remark 1 The proof of Lemma 4 follows a similar approach with the only significant
difference being the definition of the partition. This is done by first defining

I
.= min

{
i ∈ Z<0 : (−i + 1)

ε

4
≤ σ(0) − ε

4

}

(compare with (32)) and then

Ri
.=

⎧
⎨

⎩

ε
4 2−i , i ∈ Z≥0
(−i + 1) ε

4 , i ∈ {I, . . . ,−1}
RI + (σ (0) − RI )

∑−i+I
j=1 2− j , i ∈ Z<I

(compare with (33)). The proof then follows that of Lemma 3, mutatis mutandis, by
defining similar continuous, though strictly decreasing, functions.

A.2 Proof of Lemma 7 (Sontag’s Lemma on KL-Estimates)

We require the following:
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Claim Given β ∈ KL, there exist α ∈ K∞ and σ ∈ L, smooth on R>0 such that

β(α(t), t) ≤ σ(t), ∀t ∈ R≥0. (38)

Proof To see this, let {εk}∞k=1 be a sequence strictly decreasing to zero. Since β ∈ KL,
there exists a strictly increasing sequence {tk}∞k=1 satisfying limk→∞ tk = ∞ such that

β(k + 1, tk) ≤ εk, ∀k ∈ Z≥1.

Let t0 = 0 and ε0 = max {β(1, 0), 2ε1}.
Now, let α : R≥0 → R≥0 be any class-K∞ function bounded from above by the

nondecreasing piecewise constant function defined by α̂(t) = k + 1 for t ∈ [tk, tk+1).
Additionally, let σ : R≥0 → R≥0 be any smooth on R>0 class-L function that is
bounded from below by the nonincreasing piecewise constant function defined by
σ̂ (t) = εk for t ∈ [tk, tk+1). Then, for every k ∈ Z≥0 and t ∈ [tk, tk+1) (and hence for
all t ∈ R≥0)

β(α(t), t) ≤ β(α̂(t), t) ≤ β(k + 1, t) ≤ β(k + 1, tk) ≤ εk ≤ σ(t).

��
Given β ∈ KL, take α ∈ K∞ and σ ∈ L from the above claim. Since σ ∈

L and smooth on R>0, σ−1 : (0, σ (0)] → R≥0 is continuous, smooth on R>0,
strictly decreasing, and satisfies lims→0 σ−1(s) = +∞. Consequently, the function
e−2λσ−1(s) is continuous, smooth on R>0, and strictly increasing for s ∈ (0, σ (0)]. Let
π : R≥0 → R≥0 be a continuous, smooth on R>0, positive, nondecreasing function
that satisfies π(0) = 0,

π(s) = 1

2σ(0)
e−2λσ−1(s), s ∈ (0, σ (0)] (39)

and π(s) < 1
σ(0)

for s ≥ σ(0).

We now define α1(s)
.= ∫ s

0 π(τ)dτ . It is clear that α1 ∈ K∞. Clearly α1(·) is glob-
ally Lipschitz on R≥0 and smooth on R>0. Furthermore, since π(·) is nondecreasing

α1(s) =
s∫

0

π(τ)dτ ≤ sπ(s) = sα′
1(s), ∀s ∈ R>0

and, for s ∈ (0, σ (0)]

α1(s) ≤ sπ(s) ≤ σ(0)π(s) = 1

2
e−2λσ−1(s).

This property in combination with (38) allows us to write

α1 (β(α(t), t)) e2λt ≤ α1(σ (t))e2λt ≤ 1

2
e−2λt e2λt < 1. (40)
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To derive the desired expression for α2 ∈ K∞, we consider the argument s ∈ R≥0
on two regions and calculate bounds on α1(β(s, t))eλt . First, for s ∈ (0, α(t)] we see
that

α1(β(s, t))eλt = √
α1(β(s, 0))

√
α1(β(s, t))

α1(β(s, 0))

√
α1(β(s, t))e2λt

≤ √
α1(β(s, 0))

√
α1(β(α(t), t))e2λt

≤ √
α1(β(s, 0)), (41)

where the first inequality follows from the fractional term being less than one and
s ≤ α(t), while the second inequality follows from (40).

Second, for s ≥ α(t) we see that

α1(β(s, t))eλt ≤ α1(β(s, 0))eλα−1(s). (42)

We observe that both upper bounds (41) and (42) are of class-K∞ and note that the
maximum of two K∞ functions is itself a K∞ function. Hence, setting

α2(s)
.= max

{√
α1(β(s, 0)), α1(β(s, 0))eλα−1(s)

}

completes the proof. ��

A.3 Proof of Lemma 10 (Weak triangle inequality)

We here prove the weak triangle inequality in the form of Eq. (10): given α ∈ K, for
any ϕ ∈ K∞

α(a + b) ≤ α ◦ (ϕ + id) (a) + α ◦
(
ϕ−1 + id

)
(b), ∀a, b,∈ R≥0.

We consider two cases: ϕ(a) ≥ b and ϕ(a) < b. In the first case, making use of
the invertibility of K∞ functions, we have that a ≥ ϕ−1(b) so that

α (ϕ(a) + a) + α
(
ϕ−1(b) + b

)
≥ α

(
ϕ ◦ ϕ−1(b) + a

)
+ α

(
ϕ−1(b) + b

)

≥ α(b + a)+α
(
ϕ−1(b)+b

)
≥α(a + b). (43)

On the other hand, if ϕ(a) < b, then a < ϕ−1(b) and we see that

α (ϕ(a) + a) + α
(
ϕ−1(b) + b

)
> α (ϕ(a) + a) + α (a + b)

≥ α(a + b). (44)

Combining (43) and (44) then yields the result. ��
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A.4 Proof of Lemma 14 (Class-L upper bound)

Using the fact that a class-K function of a class-L is again a class-L function, we see
that if σ ∈ L then

√
σ ∈ L. Furthermore, since σ ∈ L is strictly decreasing, we know

that σ(t + τ) ≤ σ(t) for all t, τ ∈ R≥0. Let σi ∈ L satisfy σi (t) ≥ √
σ(t) for i = 1, 2

and all t ∈ R≥0. Then, for all r, s ∈ R≥0 we may write

σ1(r)σ2(s) ≥ √
σ(r)

√
σ(s) ≥ √

σ(r + s)
√

σ(r + s) = σ(r + s).

��

A.5 Proof of Lemma 18 (Positive definite functions)

Without loss of generality we assume ρ(x) → 0 as |x | → ∞. (If this is not the case,
since we are interested in deriving a lower bound for ρ(x), we can instead consider
any positive definite function ρ̂ : R

n → R≥0 satisfying ρ̂(x) ≤ ρ(x) for all x ∈ R
n

and ρ̂(x) → 0 as |x | → ∞.) With this assumption, and the facts that ρ(0) = 0 and
ρ(x) > 0 for all x ∈ R

n\{0}, we know that the function has a global maximum,
x∗ ∈ R

n and that ρ(x∗) > 0.
We define the continuous, positive, and nondecreasing function

α̃(s)
.=

⎧
⎪⎪⎨

⎪⎪⎩

min
s≤|y|≤|x∗|

ρ(y)

ρ(x∗)
, s ≤ |x∗|,

min|y|=|x∗|
ρ(y)

ρ(x∗)
, s > |x∗|.

We also define the continuous, positive, and nonincreasing function

σ̃ (s)
.=

⎧
⎪⎪⎨

⎪⎪⎩

min|y|=|x∗|
ρ(y)

ρ(x∗)
, s < |x∗|,

min|x∗|≤|y|≤s}
ρ(y)

ρ(x∗)
, s ≥ |x∗|.

Since min|y|=|x∗| ρ(y)
ρ(x∗) ≤ 1, we observe that the product of these two functions satisfies

α̃(|x |)σ̃ (|x |) ≤ ρ(x)

ρ(x∗)
. (45)

To complete the proof, we define α ∈ K∞ and σ ∈ L by

α(s)
.= ρ(x∗)α̃(s)s

σ(s)
.= σ̃ (s)

1

1 + s
.
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We then see that, with (45),

α(|x |)σ (|x |) = ρ(x∗)α̃(|x |)σ̃ (|x |) |x |
1 + |x | ≤ ρ(x).

��

A.6 Proof of Lemma 20 (Comparison principle)

We first demonstrate the result in the case of λ = 1. The general result will then follow
from a standard rescaling of time. Given the continuous, positive definite function
ρ : R≥0 → R≥0 of the lemma, we define

ρ̂(s)
.= min{s, ρ(s)}

and note that an absolutely continuous function y : [0, T ] → R≥0 which satisfies (15)
must also satisfy

ẏ(t) ≤ −ρ̂(y(t)), for almost all t ∈ [0, T ]. (46)

For s ∈ (0,∞) define

η(s)
.= −

s∫

1

dτ

ρ̂(τ )
. (47)

We observe that η(s) is continuously differentiable and strictly decreasing for s ∈
(0,∞). Additionally,

lim
s→0+ η(s) ≥ lim

s→0+

1∫

s

dτ

τ
= +∞. (48)

and with

0 < c
.= − lim

s→∞ η(s) (49)

(where it is possible that c = +∞) we see that η : (0,∞) → (−c,∞) and η−1 :
(−c,∞) → (0,∞). We further note that η−1 is continuous and strictly decreasing to
zero. We can then define

β(s, t)
.=

{
0, s = 0
η−1 (η(s) + t) , s > 0

(50)

for all s, t ∈ R≥0.
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Since η−1(·) is strictly decreasing to zero and continuous, β(s, ·) ∈ L for all
s ∈ R≥0. To see that β(s, t) is continuous at s = 0 for each fixed t ∈ R≥0, fix ε > 0.
Since η−1(·) is continuous and strictly decreasing to zero, there exists N (ε) > 0 so
that if η(s) > N (ε) then η−1(η(s) + t) < ε for all t ∈ R≥0. Furthermore, since
η(·) is continuous and satisfies (48), there exists δN (ε) > 0 so that if s < δN (ε) then
η(s) > N (ε) and therefore β(s, t) < ε. Finally, since both η(·) and η−1(·) are strictly
decreasing and continuous, β(·, t) ∈ K for all t ∈ R≥0. Therefore, β ∈ KL.

We note that (46) and the condition that y(t) ≥ 0 for all t ∈ [0, T ] imply that if
there exists a t̄ ∈ [0, T ] such that y(t̄) = 0, then y(t) ≡ 0 for all t ∈ [t̄, T ]. In the
event that such a time exists, let t∗ .= min{t ∈ [0, T ] : y(t) = 0}. We then see that,
for all t ∈ [t∗, T ], the bound y(t) ≤ β(y0, t) is trivially satisfied. Note that if y0 = 0,
then t∗ = 0 and we are done. Hence, we subsequently assume y0 > 0.

For t ∈ [0, t∗) (or t ∈ [0, T ] if t∗ fails to exist), we observe that ρ̂(y(t)) > 0 so
that (46) implies

ẏ(t)

ρ̂(y(t))
≤ −1 ⇒

t∫

0

d(y(τ ))

ρ̂(y(τ ))
≤ −t (51)

and the change of variables y(τ ) = r yields

y0∫

y(t)

dr

ρ̂(r)
≥ t ⇒ −

y(t)∫

1

dr

ρ̂(r)
+

y0∫

1

dr

ρ̂(r)
≥ t. (52)

With the definition (47) we see that this implies

η(y(t)) ≥ η(y0) + t, ∀t ∈ [0, t∗). (53)

Since η−1 is strictly decreasing, and since the bound is trivially satisfied for t ∈ [t∗, T ],
we have

y(t) ≤ η−1 (η(y0) + t) = β(y0, t), ∀t ∈ [0, T ]

as required.
Finally, by taking the time rescaling τ = λt , we see that ẏ(t) ≤ −λρ̂(y(t)) for

almost all t ∈ [0, T ] becomes

d

dτ
y (τ/λ) ≤ −ρ̂ (y (τ/λ)) , for almost all τ ∈ [0, λT ].

Following the above, we have a function β ∈ KL such that

y (τ/λ) ≤ β(y0, τ ), ∀τ ∈ [0, λT ]
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and hence

y(t) ≤ β(y0, λt), ∀t ∈ [0, T ].

��

A.7 Proof of Lemma 23 (A factorization of Class-K functions)

Let ϕ1, ϕ2 ∈ K∞ be such that ϕ1 + ϕ2 = id. We observe that for α ∈ K, (id + ϕ2 ◦ α)

is of class-K∞ and, as such, (id + ϕ2 ◦ α)−1 exists and is of class-K∞. Taking

α1
.= ϕ1 ◦ α ◦ (id + ϕ2 ◦ α)−1 , and α2

.= ϕ2 ◦ α

we immediately have

(α1 + id) ◦ (α2 + id) = α1 ◦ (α2 + id) + α2 + id

= ϕ1 ◦ α ◦ (id + ϕ2 ◦ α)−1 ◦ (id + ϕ2 ◦ α) + ϕ2 ◦ α + id

= ϕ1 ◦ α + ϕ2 ◦ α + id = α + id.

We observe that when α ∈ K∞, we have α1, α2 ∈ K∞. ��

A.8 Proof of Lemma 25

Since α − id ∈ K∞, we know that the interval [1, α(1)) is nonempty. Let the function
ᾱ : [1, α(1)) → [1, λ) be continuous, strictly increasing, and satisfy the endpoint
conditions

ᾱ(1) = 1 and lim
s↗α(1)

ᾱ(s) = λ. (54)

Since α ∈ K∞, by a slight abuse of notation, we observe that the interval map-
pings satisfy α([1, α(1))) �→ [α(1), α2(1)) and α−1([1, α(1))) �→ [α−1(1), 1) and,
in general

αk ([1, α(1))) �→ [αk(1), αk+1(1)).

It is clear that the intervals [αk(1), αk+1(1)), k ∈ Z, are disjoint and cover R>0. Since
α is monotonically increasing, it follows that, for s > 0, there are unique values
(k(s), r(s)) ∈ Z × [1, α(1)) such that

s = αk(s)(r(s)). (55)

We define α̂ : R≥0 → R≥0 as

α̂(s)
.=

{
λk(s)ᾱ(r(s)), s > 0
0, s = 0.

(56)
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We first verify that α̂ ∈ K∞. Continuity of α̂ on the intervals [αk(1), αk+1(1)) follows
from the assumption of continuity of ᾱ, while continuity at the endpoints of the intervals
follows from (54). Furthermore, we see that α̂ is continuous at the origin since λ > 1
and k(s) → −∞ as s → 0. The fact that α̂ is strictly increasing follows from the
assumption that ᾱ is strictly increasing. That α̂ is unbounded follows from the facts
that λ > 1, k(s) → ∞ as s → ∞, and ᾱ(r) ≥ 1 for r ∈ [1, α(1)).

We now verify (16). From (55) we see that for all s ∈ R≥0

α(s) = α ◦ αk(s)(r(s)) = αk(s)+1(r(s)).

Consequently, with the definition (56)

α̂ ◦ α(s) = α̂ ◦ αk(s)+1(r(s)) = λk(s)+1ᾱ(r(s))

= λ
(
λk(s)ᾱ(r(s))

)
= λα̂(s).

��
A.9 Proof of Corollary 1

Define ϕ
.= (id − α)−1 and note that ϕ ∈ K∞. Manipulating the definition of ϕ,

we obtain ϕ(s) − s = α ◦ ϕ(s) for all s ∈ R≥0. Since ϕ, α ∈ K∞, we have that
(ϕ − id) ∈ K∞. We then appeal to Lemma 25 with λ−1 > 1 and ϕ ∈ K∞ to obtain
α̂ ∈ K∞ such that

α̂ ◦ ϕ(r) = λ−1α̂(r), ∀r ∈ R≥0.

Substituting the definition of ϕ yields

λα̂ ◦ (id − α)−1(r) = α̂(r), ∀r ∈ R≥0.

Taking s = (id − α)(r) then yields (17). ��
A.10 Proof of Lemma 27

The proof in one direction follows that in [38]. The converse uses a similar argument
but illustrates the care that must be taken when using class-K functions rather than
class-K∞ functions.

To obtain a contradiction, suppose there exists s∗ ∈ [0, α2(c)] such that

α2 ◦ α1(s
∗) > s∗.

Then, since α2 ∈ K is invertible on its range, α−1
2 (s∗) is well defined and therefore

α1(s∗) > α−1
2 (s∗) .= r∗ ∈ [0, c]. Therefore,

α1 ◦ α2(r
∗) = α1(s

∗) > α−1
2 (s∗) = r∗

which contradicts α1 ◦ α2(s) ≤ s for all s ∈ [0, c].
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To show the converse implication, we again argue by contradiction. Suppose there
exists s∗ ∈ [0, c] such that

α1 ◦ α2(s
∗) > s∗. (57)

Define a1 = lims→∞ α1(s). We consider three cases.
Case 1: Suppose a1 ≥ c. Then r∗ .= α−1

1 (s∗) is well defined. We see that (57)
implies α2(s∗) > α−1

1 (s∗) = r∗ so that r∗ ∈ [0, α2(c)]. Therefore, (57) implies

α2 ◦ α(r∗) = α2(s
∗) ≤ α−1

1 (s∗) = r∗

which contradicts α2 ◦ α1(s) ≤ s for all s ∈ [0, α(c)].
Case 2: Suppose a1 < c and s∗ ∈ [0, a1) then, as in Case 1, r∗ = α−1

1 (s∗) is well
defined and a contradiction follows by the same argument.

Case 3: Finally, suppose a1 < c and s∗ ∈ [a1, c]. Then

α1 ◦ α2(s
∗) < a1 ≤ s∗

which immediately contradicts (57) and thus proves the lemma. ��
We note that the same proof can be used to demonstrate Corollary 2 without needing

to account for the values for which α−1
2 is well defined.

A.11 Proof of Lemma 31

The proof considers two cases: c = ∞ and c < ∞.
Consider c = ∞, so that (24) holds, and define a

.= lims→∞ α(s). We see that
α ◦ γ (s) ≤ s and (25) imply

α� ◦ α ◦ γ (s) = γ (s) ≤ α�(s), ∀s ∈ R≥0. (58)

Let r ∈ [0, a] be given by r = α(s). Then (25) and (58) yield

γ ◦ α(s) = γ (r) ≤ α�(r) = α� ◦ α(s) = s.

To demonstrate the converse, we first note that since for all s ∈ R≥0 we have
α(s) ≤ a, then for s ≥ a we have s ≥ a ≥ α ◦ γ (s). Hence, we restrict attention to
s ∈ [0, a). Let α(r) = s so that r = α�(s). Then γ ◦α(r) ≤ r implies γ (s) ≤ α�(s).
Applying α to both sides of this inequality and using (25) we obtain

α ◦ γ (s) ≤ α ◦ α�(s) ≤ s, ∀s ∈ [0, a),

which completes the proof for c = ∞.
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Now consider c < ∞. The proof for both implications proceeds by contradiction.
To obtain a contradiction in the first instance, suppose there exists s∗ ∈ R≥0 so that
γ ◦ α(s∗) > s∗. First consider s∗ < c. Then there exists r∗ < ∞ so that α(s∗) = r∗.
This then implies

γ (r∗) = γ ◦ α(s∗) > s∗ = α−1(r∗)

and therefore α ◦ γ (r∗) > r∗, which is a contradiction.
Next, consider s∗ ≥ c. In this case, α(s∗) = ∞ so that

γ ◦ α(s∗) = γ (∞) > s∗ ≥ c,

which contradicts the condition that γ (∞) < c. This then proves the first implication.
To prove the converse, suppose there exists s∗ ∈ R≥0 so that α ◦ γ (s∗) > s∗. Since

γ (∞) < c, we see that

∞ > α ◦ γ (s∗) > s∗.

For c < ∞ the domain of α−1 is [0,∞) and so we have

α−1 ◦ α ◦ γ (s∗) = γ (s∗) > α−1(s∗).

Observe that c < ∞ implies lims→c α(s) = ∞ and so there exists r∗ ∈ R≥0 so that
α(r∗) = s∗. Consequently,

γ ◦ α(r∗) > r∗

which provides our final contradiction and hence completes the proof. ��
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