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Abstract
Key message  S29 haplotype does not require the MLPK function for self-incompatibility in Brassica rapa.
Abstract  Self-incompatibility (SI) in Brassicaceae is regulated by the self-recognition mechanism, which is based on the 
S-haplotype-specific direct interaction of the pollen-derived ligand, SP11/SCR, and the stigma-side receptor, SRK. M locus 
protein kinase (MLPK) is known to be one of the positive effectors of the SI response. MLPK directly interacts with SRK, and 
is phosphorylated by SRK in Brassica rapa. In Brassicaceae, MLPK was demonstrated to be essential for SI in B. rapa and 
Brassica napus, whereas it is not essential for SI in Arabidopsis thaliana (with introduced SRK and SP11/SCR from related 
SI species). Little is known about what determines the need for MLPK in SI of Brassicaceae. In this study, we investigated 
the relationship between S-haplotype diversity and MLPK function by analyzing the SI phenotypes of different S haplotypes 
in a mlpk/mlpk mutant background. The results have clarified that in B. rapa, all the S haplotypes except the S29 we tested 
need the MLPK function, but the S29 haplotype does not require MLPK for the SI. Comparative analysis of MLPK-dependent 
and MLPK-independent S haplotype might provide new insight into the evolution of S-haplotype diversity and the molecular 
mechanism of SI in Brassicaceae.
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Introduction

Self-incompatibility (SI) is controlled by a single locus, 
called the S locus, with highly polymorphic multiple 
alleles (Bateman 1955). In Brassicaceae, the S-locus 
region contains two genes, stigma and pollen recognition 
determinant genes, S receptor kinase (SRK) and S-locus 

protein 11 (SP11, also called SCR), respectively (Stein 
et  al. 1991; Takasaki et  al. 2000; Suzuki et  al. 1999; 
Schopfer et al. 1999; Takayama et al. 2000; reviewed in 
Watanabe et al. 2012; Fujii and Takayama 2018; Abhi-
nandan et al. 2021). S-haplotype-specific direct interac-
tion of SRK and SP11 causes phosphorylation of SRK and 
induces self-pollen rejection (Takayama et al. 2001; Shi-
mosato et al. 2007; Murase et al. 2020). Because the SRK 
and SP11 genes are inherited as a single segregational unit, 
S alleles are termed S haplotypes (Nasrallah and Nasrallah 
1993). S-haplotype diversity is determined by sequence 
polymorphism of SRK and SP11 genes in the S locus and 
over 100 have been identified (S1, S2, S3, …, Sn) in the 
genus Brassica (Nou et al. 1993; Sakamoto and Nishio 
2001; Watanabe et al. 2000; Ockendon 1982; Charlesworth 
et al. 2003; Paetsch et al. 2006), and over 30 in Raphanus 
(Kim and Kim 2019; Fukushima et al. 2021). In Brassica, 
S haplotypes are classified into two classes (class-I and 
-II) based on the sequence similarity of the extracellular 
domain encoded by SRK (and its homologous gene termed 
SLG). The pollen-side SI phenotype is almost co-dominant 
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between class-I S haplotypes, and the stigma-side is also 
co-dominant with a few exceptions (Hatakeyama et al. 
1998b). On the other hand, class-II S haplotypes are gen-
erally recessive to class-I S haplotypes in pollen, but the 
two classes are co-dominant in the stigma (Hatakeyama 
et al. 1998b). Diploid plants carrying two co-dominant 
S haplotypes exhibit SI specificity of both S haplotypes 
encoded by the parental genome. The regulation of SP11 
gene expression controls this dominance relationship on 
the pollen side through epigenetic mechanisms, includ-
ing small RNA-mediated DNA methylation (Shiba et al. 
2002; Kakizaki et al. 2003; Tarutani et al. 2010; Yasuda 
et al. 2016).

Studies of the molecular mechanism of SI in Brassicaceae 
have been conducted mainly in Brassica species (Brassica 
rapa, Brassica oleracea, Brassica napus). However, in 
Arabidopsis thaliana, a naturally self-compatible species, 
it has been reported that SI can be imparted by introducing 
SRK and SP11 genes of closely related SI species (Arabi-
dopsis lyrata, Arabidopsis halleri) (Nasrallah et al. 2002; 
Zhang et al. 2019; Fujii et al. 2020). In addition, it has been 
reported that a change from self-compatibility (SC) to SI 
occurs by restoring the inversion of the SP11 gene in A. 
thaliana (Tsuchimatsu et al. 2010). This suggests that the 
components required for the SI reaction are common to 
Brassica and Arabidopsis species.

In the Brassica SI system, downstream signaling path-
ways and the target of SRK leading to self-pollen rejection 
are becoming better understood. The M-locus protein kinase 
(MLPK), which was isolated by positional cloning of the M 
locus of the self-compatible B. rapa variety ‘yellow sarson’, 
is an essential positive regulator of the SI response (Murase 
et al. 2004). MLPK belongs to the receptor-like cytoplasmic 
kinase family. Biochemical analysis revealed that MLPK is a 
membrane-bound kinase present in the cell membrane frac-
tion of the stigma, the N-terminal myristoylation motif is 
involved in membrane localization (Murase et al. 2004), and 
MLPK directly interacts with and is phosphorylated by SRK 
(Kakita et al. 2007). Because MLPK-deficient plants exhibit 
a completely SC phenotype in B. rapa and B. napus, MLPK 
is considered to be an essential protein that positively regu-
lates the self-incompatibility signaling system in Brassica 
(Murase et al. 2004; Chen et al. 2019). On the other hand, 
it has been reported that mutation of APK1b, the gene in A. 
thaliana that shares the highest similarity to MLPK, does 
not affect the SI response of self-incompatible SRK/SP11 
transgenic A. thaliana (Kakita et al. 2007; Kitashiba et al. 
2011), and APK1b has been shown to be involved in light-
induced stomatal opening in A. thaliana (Elhaddad et al. 
2014). According to the analysis by Azibi et al. (2020), 
there are 3 copies of MLPK in the genus Brassica, which 
have arisen by whole-genome triplication (WGT), and in the 
phylogenetic analysis, the gene closest to APK1b in B. rapa 

is one of the paralogues of MLPK, not MLPK itself. Thus, 
the recruitment of MLPK in SI signaling in Brassica may be 
the result of neo-functionalization of the duplicated genes, 
which occurred after the WGT in the origin of Brassica spe-
cies (Azibi et al. 2020).

In this study, we investigated the genetic association of 
MLPK with the SI signaling of different S haplotypes in B. 
rapa. We found that the S29 haplotype of B. rapa does not 
require MLPK functionality in SI, unlike other S haplotypes.

Materials and methods

Plant materials and test pollination

Plant materials used in this study are listed in Supplemen-
tary Table S1. As the mlpk/mlpk mutant donor line, we used 
S8/S8, mlpk/mlpk (hereafter referred to as S8S8, mm) from 
Murase et al. (2004). The 11 S homozygous lines of B. rapa 
used in the present experiment were selected from those 
established by Nou et al. (1993) containing two different 
populations, from Oguni in Japan and from Balcesme in 
Turkey. In addition to these 11 lines, one S homozygous line 
(S60), which was derived from a Japanese commercial hybrid 
variety (cv. Osome, Takii & Co., Ltd, Takasaki et al 1999), 
was also used in this study. All S homozygous lines have 
been confirmed to exhibit the self-incompatible phenotype 
(Nou et al. 1993; Takasaki et al 1999). Pollination phenotype 
was determined by test cross as described in Takada et al. 
(2017). Pollinated stigmas were stained with aniline blue 
and observed by UV fluorescence microscopy (Zeiss Axio 
Imager A2, Kho and Bear 1968). The degree of compat-
ibility (compatibility score; CS) in each test pollination was 
scored on a five-point scale based on pollen tube penetration 
as follows: (CS = 5) penetration of more than 10 pollen tubes 
into the style; (CS = 4) penetration of 1–10 pollen tubes into 
the style; (CS = 3) penetration of pollen tubes into papilla 
cells but not into the style; (CS = 2) germination of pollen 
but no pollen-tube penetration into papilla cells; (CS = 1) 
no germination of pollen. Average scores less than 3 were 
defined as incompatible, and scores 3 and above as compat-
ible (Takada et al. 2017; 2021). Stigmas from at least three 
flowers for each cross combination were tested and this was 
replicated on at least five different dates.

Determination of the S haplotype and MLPK 
genotype

The S haplotype of each plant was determined by polymerase 
chain reaction (PCR). Total DNA was extracted from young 
leaf tissue of B. rapa using DNeasy plant mini kit (Qiagen). 
PCR was performed using ExTaq DNA polymerase (Takara 
Bio). To determine the S haplotype of each plant, class I/
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class II-specific PCR primers for amplification of SLG were 
used, as described in Nishio et al. (1996). The each SP11 
genes were amplified by using S-haplotype-specific SP11 
primer sets (Supplementary Table S2). For genotyping of 
MLPK, the functional MLPK allele was specifically ampli-
fied using the PCR primers wtMLPK-F and wtmMLPK-R, 
and the mutated mlpk allele was specifically amplified using 
the mMLPK-F and wtmMLPK-R primers (Takada et al. 
2013). The PCR product was subjected to electrophoresis on 
a 1% agarose gel. For isolation of MLPK genomic sequences 
from the S29 haplotype, PCR amplification using a primer 
pair MLPKF and MLPKR was performed, and amplified 
fragments were cloned into pTAC2 vector (Biodynamics 
Laboratory Inc.). The nucleotide sequence was determined 
with a 3500 Genetic Analyzer using Big Dye Terminator 
version 3.1 Cycle Sequencing Kit (Applied Biosystems).

Sequence and multiple alignment analysis

Accession numbers of SRK sequences used in amino acid 
alignment analysis are listed in Supplementary Table S3. 
GENETYX version 13 software package (GENETYX 
Corp.) was used for the sequence comparison and alignment.

Results and discussion

The breakdown of SI with S8 haplotype in mm mutant back-
ground has been reported previously (Murase et al. 2004; 
Fukai et al. 2001). We tested the SC phenotype of S8S8, 
mm (S8/S8, mlpk/mlpk) homozygous plants, established 
by Murase et al. (2004). Self-pollination of 11 S8S8, mm 
homozygous plants showed SC phenotype, and the test cross 
between the stigma of 34 S8S8, mm homozygous plants and 
the pollen from S8S8, MM tester line resulted in compat-
ible pollination (Table 1, Fig. 1A). To analyze details of 
the genetic relationship between S haplotype diversity and 
MLPK function in the SI of Brassica, we established mm 
mutant lines possessing the different S-haplotype back-
grounds by crossing S8S8, mm homozygous SC plants with 
7 class-I and 4 class-II S haplotypes (Table 1, 2, Supplemen-
tary Table S1). Each S haplotype and MM homozygous plant 
was crossed with S8S8, mm plants. The mm plants in each S 
haplotype were selected from the F2 segregating popula-
tion. The obtained mm homozygous plants were test crossed 
with the pollen from S homozygous tester lines (Supplemen-
tary Table S1). The S12 and S24 haplotypes have the same 
SI recognition identity but originated from different loca-
tions (S12 from Japan, S24 from Turkey, Nou et al. 1993; 
Matsushita et al. 1996; Takada et al. 2017). In the class-I 
S haplotypes (S12, S24, S21, S25, S27, S35, S37, and S45) exam-
ined in this study, all individuals with the mm homozygous 
background showed compatibility phenotype on the stigma 

side, indicating that MLPK is essential for SI in these class-I 
haplotypes (Table 1, Fig. 1B-E). We observed fully germi-
nated and penetrated pollen tubes in each compatible cross 
(Fig. 1B-E).

Among 4 class-II S haplotypes (S29, S40, S44, and S60) 
reported in Kakizaki et al. (2003), S40, S44, and S60 haplo-
types with mm exhibited SC phenotype (compatibility with 
the pollen from plants possessing the same S haplotype) as 
in the class-I S-haplotypes (Table 2, Fig. 1F, G), indicating 
that the function of MLPK is required for SI recognition and 
reaction in these 3 class-II S haplotypes (S40, S44, and S60). 
However, the S29 haplotype with mm unexpectedly exhibited 
the SI reaction, which could not be explained by the current 
theory of Brassica self-incompatibility (Table 2, Fig. 1H, 
I). The stigma of 8 mlpk mutant plants with the S29 allele 
(S29S29, mm) showed SI phenotype and incompatibility with 
the pollen from S29S29 tester plants (Table 2, Fig. 1I). We 
could not distinguish the SI phenotype of S29S29, mm plants 
and the SI of wild type S29S29, MM plant. This result is the 
first detection of an MLPK-independent SI phenotype in the 
genus Brassica.

To further improve the experiments in Table 1 with lim-
ited plant number, and to test the MLPK function in S-het-
erozygous plants, we selected mm mutant plants from lines 
heterozygous for S8 haplotype and 7 other S haplotypes (S24, 
S25 S45, S29, S40, S44 and S60) and checked the pollination 
phenotype (Table 3). The stigma-side dominant relationship 

Table 1   Pollination phenotype of mlpk mutants in different class-I S 
haplotypes

The number of plants showing incompatibility or compatibility phe-
notype is represented. I: Incompatible; C: Compatible

Genotype of parents Phenotype

Female Male n I C

S8S8MM self 6 6 0
S8S8mm self 11 0 11

S8S8 34 0 34
S12S12mm S12S12 4 0 6

S8S8 4 0 6
S24S24mm S24S24 1 0 1

S8S8 1 0 1
S25S25mm S25S25 2 0 2

S8S8 2 0 2
S21S21mm S21S21 4 0 4

S8S8 4 0 4
S27S27mm S27S27 5 0 5

S8S8 5 0 5
S37S37mm S37S37 2 0 2

S8S8 2 0 2
S45S45mm S45S45 3 0 3

S8S8 3 0 3
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♀S29S8, mm selfL♀S29S8, mm × ♂S29S29K

♀S29S29, MM × ♂S29S29♀S60S60, mm × ♂S60S60G H ♀S29/S29, mm × ♂S29/S29I

♀S21S21, mm × ♂S8S21C

♀S25S25, mm × ♂S25S25D ♀S27S27, mm × ♂S27S27E

J

A ♀S8S8, mm × ♂S8S8 B ♀S12S12, mm × ♂S12S12

♀S29S8, mm × ♂S8S8

♀S40S40, mm × ♂S40S40F

Fig. 1   Representative photographs of test crosses. Photographs were 
obtained by UV fluorescence microscopy (a-l). a Cross pollination 
of S8S8, mm stigma with S8S8 tester pollen (♀S8S8, mm × ♂S8S8). 
b ♀S12S12, mm × ♂S12S12, c ♀S21S21, mm × ♂S8S21, d ♀S25S25, 
mm × ♂S25S25, e ♀S27S27, mm × ♂S27S27, f ♀S40S40, mm × ♂S40S40, 

g ♀S60S60, mm × ♂S60S60, h ♀S29S29, MM × ♂S29S29, i) ♀S29S29, 
mm × ♂S29S29, j ♀S29S8, mm × ♂S8S8, k ♀S29S8, mm × ♂S29S29, (l) 
S29S8, mm self-pollination. MLPK genotype of pollen donors was MM 
in cross-pollinations and mm in self-pollinations. Scale bars show 
100 μm
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of all S-haplotype combinations used in this study have been 
reported as co-dominant, except S8S60 heterozygous plants 
(Hatakeyama et al. 1998b). The stigma-side co-dominant 
relationship of S8S60 heterozygous plants was determined 
in this study (data not shown). All the combinations except 
S8S29 exhibited compatible phenotype with the pollen from 
its own S haplotype (Table 3). When we checked the pol-
lination phenotype of 22 S8S29 heterozygous plants (S8S29, 
mm), all 22 plants showed compatibility with the pollen from 
S8S8 plants and incompatibility with the pollen from S29S29 
plants (Table 3, Fig. 1J-L). It is interesting that the SI signal 
in SRK29 appears to be retained although the SRK8-mediated 
signal transduction appears to have been lost by mlpk muta-
tion in the S8S29, mm plants.

Moreover, the complete genetic linkage between the S 
locus with S29 haplotype and the MLPK-independent SI 

phenotype suggests that the S29 haplotype does not require 
MLPK for the SP11/SRK-based SI signal transduction, 
rather than the existence of other genetic factor(s), which 
can complement the mlpk mutation, in the vicinity of S locus 
of the S29 haplotype (Table 2, 3). One of the three duplicated 
MLPK-like genes, A07p21240.2.BraZ1(B. rapa Z1 ver. 2, 
Istace et al. 2021), is located on chromosome A07 where 
the S-locus resides, but the two loci are far apart (Azibi et al 
2020). Therefore, it is unlikely that the A07p21240.2.BraZ1 
gene on chromosome A07 of the S29 haplotype has overlap-
ping functions with MLPK. It is commonly inferred that the 
MLPK dependence of the SI mechanism is associated with 
direct or indirect binding of MLPK to the SRK or SP11-
SRK complex, phosphorylation of MLPK by SRK, or both. 
Here, we isolated and sequenced the MLPK gene from the 
S29 haplotypes, and we could not find any difference at the 
nucleotide level between S29 and S8 haplotypes (data not 
shown, the MLPK sequence in the S8 haplotype has been 
reported in Murase et al. 2004). To clarify the specific amino 
acid sites of SRK29, especially in the intracellular region 
(considered to bind with MLPK), we compared amino acids 
sequences of SRK from class-II S haplotypes (Fig. 2, Sup-
plementary Fig. S1). The genetic diversity of SRK gene in 
class-II S haplotypes is reported to be lower than class-I S 
haplotypes (Hatakeyama et al 1998a). The result showed 
that only five amino acids are specific to SRK29, compared 
with three other SRKs (SRK40, SRK44, and SRK60, Fig. 2, 
Supplementary Fig. S1). Further biochemical and genetic 
experiments are needed, but these five amino acids may 
determine MLPK dependence in B. rapa.

Table 2   Pollination phenotype of mlpk mutants in different class-II S 
haplotypes

The number of plants showing incompatibility or compatibility phe-
notype is represented. I: Incompatible; C: Compatible

Genotype of parents Phenotype

Female Male n I C

S29S29mm S29S29 8 8 0
S8S8 8 0 8

S40S40mm S40S40 6 0 6
S44S44mm S44S44 7 0 7
S60S60mm S60S60 4 0 4

Table 3   Analysis of MLPK 
dependence and stigma-side 
dominance relationship

The number of plants showing incompatibility or compatibility phenotype is represented. I: Incompatible; 
C: Compatible. Class:  Class of tested S: Haplotype. Stigma-side dominance relationship is co-dominant in 
all combinations (Hatakeyama et al. 1998b; *, The dominance relationship of S8S60 combination was deter-
mined in this study

Genotype of parents Stigma-side dominance 
relationship

Phenotype

Class Female Male n I C

I S8S24mm S24S24 S8 = S24 6 0 6
S8S8 6 0 6

I S8S25mm S25S25 S8 = S25 6 0 6
S8S8 6 0 6

I S8S45mm S45S45 S8 = S45 6 0 6
S8S8 6 0 6

II S8S29mm S29S29 S8 = S29 22 22 0
S8S8 22 0 22

II S8S40mm S40S40 S8 = S40 6 0 6
S8S8 6 0 6

II S8S44mm S44S44 S8 = S44 9 0 9
S8S8 9 0 9

II S8S60mm S60S60 S8 = S60* 6 0 6
S8S8 6 0 6
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In this study, we revealed that all S-haplotypes except 
the S29 haplotype have a MLPK-dependent SI system. Fur-
thermore, we also showed that the S29 haplotype does not 
require MLPK for the SI system. Because there have been 
reports that MLPK is a co-factor for SRK kinase function, 
it is likely that SRK alone transduces the phosphorylation 
signal to the downstream target of SI response in the S29 
haplotype (Murase et al. 2004; Kakita et al. 2007; Chen et al. 
2019). The S29 haplotype of B. rapa has been characterized 
as the most recessive in the pollen-side dominance relation-
ship (Hatakeyama et al. 1998b; Kakizaki et al. 2003). It is 
interesting to consider whether there is any relationship 
between the dominance relationship and the discovery of the 
MLPK-independent SI system in B. rapa. Two hypotheses 
can be proposed: one is that the S29 haplotype is the ancestral 
S haplotype in Brassica, which does not need MLPK, as in 
Arabidopsis, and the other is that the S29 haplotype has lost 
its MLPK dependence after it had previously been acquired. 
In either case, this study reveals that the SI signaling path-
way does not require MLPK in the S29 haplotype of B. rapa, 
raising the further question of why many S haplotypes in B. 
rapa need MLPK. After the Arabidopsis-Brassica diversifi-
cation and the significant reduction in the number of ancient 
S haplotypes, the S haplotype of Brassica is thought to have 
rapidly increased in diversity in a very limited time (Kusaba 
et al. 2001; Edh et al. 2009). It is interesting to consider that 
the acquisition of MLPK, as the intracellular co-receptor 
with SRK in the SI signaling pathway, contributed to this 
rapid spread of the S haplotype.
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