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Abstract
High-quality pollen is a prerequisite for plant reproductive success. Pollen viability and sterility can be routinely assessed 
using common stains and manual microscope examination, but with low overall statistical power. Current automated methods 
are primarily directed towards the analysis of pollen sterility, and high throughput solutions for both pollen viability and 
sterility evaluation are needed that will be consistent with emerging biotechnological strategies for crop improvement. Our 
goal is to refine established labelling procedures for pollen, based on the combination of fluorescein (FDA) and propidium 
iodide (PI), and to develop automated solutions for accurately assessing pollen grain images and classifying them for quality. 
We used open-source software programs (CellProfiler, CellProfiler Analyst, Fiji and R) for analysis of images collected from 
10 pollen taxa labelled using FDA/PI. After correcting for image background noise, pollen grain images were examined for 
quality employing thresholding and segmentation. Supervised and unsupervised classification of per-object features was 
employed for the identification of viable, dead and sterile pollen. The combination of FDA and PI dyes was able to differenti-
ate between viable, dead and sterile pollen in all the analysed taxa. Automated image analysis and classification significantly 
increased the statistical power of the pollen viability assay, identifying more than 75,000 pollen grains with high accuracy 
(R2 = 0.99) when compared to classical manual counting. Overall, we provide a comprehensive set of methodologies as base-
line for the automated assessment of pollen viability using fluorescence microscopy, which can be combined with manual 
and mechanized imaging systems in fundamental and applied research on plant biology. We also supply the complete set of 
pollen images (the FDA/PI pollen dataset) to the scientific community for future research.
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Introduction

To complete the reproductive phase, angiosperms, conifers 
and gnetophytes develop pollen grains capable of germi-
nating on a receptive gynoecium and develop a specialized 
tube as a conduit to the female ovule through one of the 
fastest-growing cellular structures in the natural world (Bed-
inger 1992) and fertilize the egg cell. The competence to 
accomplish all the steps required for successful seed-set was 
defined together as pollen performance traits (Williams and 
Mazer 2016). Among the parameters of pollen performance, 

pollen viability is one of the fastest and easiest to assess, 
because it does not require waiting for seeds to set or pollen 
tubes to emerge. The importance of pollen viability itself 
for estimating success in plant reproduction has been stud-
ied in detail through estimates of pollen viability and was 
found to be strongly related to pre-zygotic success (Alonso 
et al. 2013; Arceo-Gómez and Ashman 2014). For exam-
ple, a higher quality cross pollen was able to improve both 
fruit set and fruit nutritional properties in almonds (Prunus 
dulcis) (Brittain et al. 2014; Klein et al. 2015). Moreover, 
studies on Mimulus guttatus showed how pollinators pre-
ferred outbred plants with a higher pollen viability com-
pared to inbred lines with lower quality pollen (Carr and 
Dudash, 1997; Carr et al. 2014; Yeamans et al. 2014). Both 
genetic and environmental factors can shape pollen viability. 
Inbreeding depression and natural hybridizations were also 
shown to negatively influence pollen viability (Bureš et al. 
2010; Eppley and Pannell 2009), whereas environmental 
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stress can impact male gametogenesis at different develop-
mental stages (De Storme and Geelen 2014). Water balance, 
in particular, plays an important role, with dehydration being 
associated with sharp viability reduction in some sensitive 
pollen species (Chichiriccò 2000; Fonseca and Westgate 
2005; Nepi et al. 2010). On the contrary, tightly controlled 
hydration is required for full metabolic activation and pol-
len tube emergence (Edlund et al. 2004). Various methods 
were developed to assess pollen viability, based on pollen 
sizes (Kelly et al. 2002) or on dielectric properties of cell 
membranes (Heidmann et al. 2016). Despite the introduction 
of new methodologies, most of the scientific community still 
relies on classical techniques that only require simple stain-
ing procedures (Shivanna and Tandon 2014) and a micro-
scope for manual counting. Consequently, due to the con-
siderable efforts required, in general, only a few hundreds 
of grains per replicate are counted at best. Image analysis 
software was used for the automation of the tests based on 
Alexander’s and aniline blue staining (Mudd and Arathi 
2012; Tello et al. 2018). Nevertheless, those stains are suited 
for identifying aborted or sterile grains and not for studying 
the state of well-developed pollen (Alexander, 1969; Kha-
tun and Flowers 1995). The double labelling technique that 
employs fluorescein diacetate (FDA) and propidium iodide 
(PI) has been used effectively to label dead and viable plant 
protoplasts (Huang et al. 1986) and sperm cells (Zhang et al. 
1992). Greissl (1989) was the first to suggest the use of FDA 
and PI to evaluate pollen quality. Being able to label both 
dead and viable pollen, this combination usually improves 
classification accuracy at low viability levels in comparison 
with FDA alone (Aronne et al. 2001). Fluorescein diacetate 
accumulates inside the cytoplasm of viable pollen grains 
with intact plasma membranes, upon hydrolysis to fluores-
cein by intracellular esterases through the fluorochromatic 
reaction (FCR) (Heslop-Harrison and Heslop-Harrison 
1970), whereas propidium iodide labels pollen wall follow-
ing its higher affinity for pectins (Rounds et al. 2011). The 
same technique was also used for the assessment of pollen 
sterility levels (Colombo et al. 2017). In our study, different 
approaches for the quantitative evaluation of pollen qual-
ity using the FDA/PI labelling were tested. The purpose of 
this work was (1) to assess pollen viability and sterility in 
various taxa by manually tagging viable, dead and sterile 
grains based on the FDA/PI combination, (2) to develop 
two alternative automated approaches for image processing 
and pollen counting using free open-source software, (3) 
to employ machine-learning techniques for the supervised 
and unsupervised classification of counted pollen into rel-
evant populations, (4) to compare the results of the auto-
mated approaches to the classical manual procedure and 
(5) to generate a publicly available dataset of single pollen 
images labelled with FDA/PI for future research in computer 
vision. In general, our work aims to supply plant biologists 

with automated solutions as a reliable alternative to manual 
counting allowing a statistically sound investigation of plant 
male reproductive performance.

Materials and methods

Plant material and sample preparation

Mature anthers from Solanum lycopersicum, Clivia miniata 
(20030012), Malus domestica (19980025), Magnolia stel-
lata, Actinidia deliciosa (20020032), Olea europea and fresh 
pollen from male flowers of Quercus suber were collected at 
the Botanical Garden of Turin (Italy). Fresh pollen was also 
collected from plants of Corylus avellana ‘Tonda di Giffoni’ 
(TG) grown in a private orchard located in Cunico (Pied-
mont, Italy) and from two distinct wild hazelnuts (wt) grow-
ing in the woods surrounding the same orchard. A common 
storage protocol was employed for both anthers and dehisced 
pollen: samples were dehydrated overnight in sealed boxes 
using silica gel and stored at − 18 °C. The analysis of sam-
ples occurred within three months from collection. Before 
the analysis, samples were thawed out and rehydrated for 
one hour inside Petri dishes with wet blotting paper at the 
bottom (Shivanna and Rangaswamy 1992). To ensure pollen 
release and collection avoiding damage, anthers were either 
mildly washed by hand or vortexed for very short times 
in Brewbaker and Kwack (BK) medium (Brewbaker and 
Kwack 1963) and filtered using 200 µm strains. Dehisced 
pollen was analysed immediately after rehydration without 
any additional step.

Labelling and imaging

Samples were labelled employing a revised FDA/PI label-
ling technique optimized for pollen grains. A small amount 
of rehydrated pollen was gently mixed in BK medium with 
the addition of PI (1 mg/ml in phosphate buffer saline) for 
a final concentration of 20 µg/ml and FDA (4 mg/ml in ace-
tone) for a final concentration of 8 µg/ml. After 5 min of 
incubation in the dark, pollen samples were centrifuged at 
7000 rpm for two minutes and the supernatant was removed 
and replaced with clean BK medium. The washing pro-
cedure was repeated two times to remove label leftovers. 
Finally, pollen was resuspended in a small volume of BK 
medium and laid on microscope slides for imaging. All solu-
tions were prepared immediately before use, and exposition 
to light was avoided as much as possible during washing, 
imaging and transitional steps. For acquiring the images, a 
Nikon Eclipse E400 epi-fluorescent microscope with B-2A 
filters and a Nikon Digital Sight DS-U1 camera system were 
used. Images were taken at a resolution of 640 × 480 pixels 
and 100 × magnification, from three microscope slides for 
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each taxon and pooled together for the following analysis. 
A minimum of 90 and a maximum of 151 per-taxon images 
were collected.

Manual counting (MC) of pollen grains

Around 1500 pollen grains for each taxon were manually 
tagged on random images using the “Cell Counter” plugin 
included in the Fiji platform. Pollen with bright green or yel-
low fluorescence was classified as viable, while pollen with 
dim fluorescence was labelled as dead. Smaller, collapsed 
pollen mostly unable to retain fluorescein was considered 
as sterile (Fig. 1). The same evaluation scheme was used for 
the supervised and unsupervised classification procedure.

Automated image analysis and classification 
of pollen viability

For the automatic counting of pollen grains in the acquired 
images, two different approaches were developed using free 
open-source programs, CellProfiler (McQuin et al. 2018) 
and Fiji (Schindelin et al. 2009). Figure 2 shows the work-
flow followed for the analysis of images with the two soft-
ware programs.

CellProfiler analysis

The first strategy (Fig. 2a) utilized CellProfiler modules to 
split the parental RGB images into the three channels. For 
each image set, a Gaussian filter calculated the illumina-
tion functions for the red and green channels. The calculated 
illuminations were subtracted to the original grey images to 
reduce background unevenness. Additionally, a top-hat filter 
reduced extra background signal from the red, green and 

blue channels. New colour and grey images were obtained 
by merging the corrected RGB channels. The newly gener-
ated grey images were thresholded in three classes by the 
Otsu algorithm, and clumped objects were separated follow-
ing shape indentations. Objects either too small or too large 
and touching image borders were discarded. New colour 
images and object outlines were saved for further analysis. 
For each taxon, 374 features related to object position, size, 
shape, texture, colour intensity and intensity distribution 
were calculated and saved to a local SQLite database for 
data analysis. Intensity parameters were measured on the 
reconstructed grey images. A sample pipeline is provided 
for reproducibility in file S1.

Fiji analysis

A macro was programmed with the Fiji platform for the sec-
ond image analysis method (Fig. 2b). A sample file with the 
complete procedure can be found in file S2. The original 
pollen images belonging to the different plant taxa were pre-
processed enhancing the contrast by histogram equalization. 
Image background was corrected via the rolling ball algo-
rithm (Sternberg 1983) applied on the whole image stack. 
Subsequently, images were split into the three RGB chan-
nels and the blue channel was discarded. The signal in the 
red channel was optionally enhanced through multiplication 
and subtraction operations. In order to further reduce back-
ground signal, denoising was applied by way of non-local-
means (Buades et al. 2011). Different thresholding methods 
were applied depending on the pollen taxon for image seg-
mentation and object recognition. Pollen grains were sepa-
rated using an adjustable watershed algorithm, and pollen 
touching the image borders was discarded. Using “particle 
analyser” plugin, 33 features related to object position, size, 

Fig. 1   Collection of images for each pollen taxon included in the 
study. Two examples of viable, dead and sterile pollen grains can be 
found in the first, second and third rows, respectively. In O. europea 

and S. lycopersicum, sterile grains were not present. Image back-
ground was corrected using the CellProfiler pipeline
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shape and labelling intensity were calculated. The informa-
tion about labelling intensity was measured on the green 
channel images. A dimensional range was set in order to 
exclude overly large (i.e. pollen clumps) and small objects 
(i.e. debris). A final plot was shown after each analysis in 
order to assess the results before saving them to a local csv 
database.

Supervised classification

For the supervised classification (SC) of pollen viability, 
per-object features extracted with CellProfiler software were 
analysed with the companion CellProfiler Analyst, a free, 
user-friendly tool for supervised classification that requires 
no programming skills (Dao et al. 2016). Data were firstly 

explored using density plots and manual gating (Fig. S1a) 
for the identification of relevant populations (i.e. sterile, 
viable, dead pollen and debris). Features related to objects 
locations were removed from the analysis as not useful for 
the classification process. Moreover, using the “classifier” 
tool (Fig. S1b), image thumbnails of pollen grains and 
debris were randomly fetched and conferred to user-defined 
classes (viable, dead, sterile and debris) to build a balanced 
annotated dataset that was used for model training, with 40 
objects for each class. This was chosen as a minimum valid 
number considering the complexity of the classification and 
the number of classes and to make the training operation less 
time-consuming. Training was carried out on the annotated 
dataset using a random forest algorithm. Classification per-
formance on the training set was monitored by computing 

Fig. 2   Image processing, object identification and feature extraction procedures developed using a CellProfiler and b Fiji software. See main text 
for detailed description
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accuracy and Cohen’s Kappa statistics, while partial accu-
racy on the remaining data was verified by scoring sample 
images (Fig. S1d). Finally, the whole experiment was scored 
and per-class counts were computed.

Feature selection and unsupervised clustering

The R environment (R Core Team 2019) was used for the 
unsupervised clustering (UC) of viability data collected by 
the Fiji workflow (code available in additional file S3). Pollen 
features were scaled, and the characteristics related to pollen 
positions on images were removed. To select the three most 

important features for the automated identification of viability 
clusters, a multi-step procedure was applied: (1) after checking 
for data normality, Spearman correlation distances between 
features were computed and grouped by hierarchical cluster-
ing (Fig. 3a, b), (2) principal component analysis (PCA) was 
applied to assess feature contribution to the first two princi-
pal components (Fig. 3c), (3) using package “randomForest” 
(Wiener 2002), a random forest was run in unsupervised mode 
for the calculation of the mean decrease in Gini importance 
(GI) as a measure of feature relevance (Fig. 3d). Furthermore, 
Manhattan distances among the three selected variables 
were used to determine the best number of clusters through 

Fig. 3   Example of analysis in the R environment of pollen features 
gathered by the Fiji workflow on C.avellana (TG) images. a, b Spear-
man correlation distances between pollen features grouped through 
hierarchical clustering. c Contribution of pollen features to the first 

two principal component of the variance. d Gini importance for pol-
len features computed by an unsupervised random forest. Colours in 
b–d correspond to clusters of correlation distances. For complete fea-
ture names and description, see Fiji manual
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the consensus between 26 indices calculated by the package 
“NbClust” using the k-means algorithm (Charrad et al. 2014). 
By using the identified number of clusters, hierarchical clus-
tering on Manhattan distances between pollen features was 
utilized to identify the populations of viable, dead and sterile 
pollen grains. The same procedure was repeated for each of 
the analysed pollen taxa.

Method comparison

To assess the ability of the Fiji macro and CellProfiler pipeline 
to correctly identify pollen grains on images, linear regressions 
(R2) and Bland–Altman analyses were performed between per-
image total pollen counts measured with manual and auto-
mated procedures. Bland–Altman plots were also used for 
measuring classification accuracy of viable, dead and sterile 
pollen for UC and SC methods compared against the MC 
results. The presence of proportional bias (when the values of 
the differences change in proportion to averages) in Bland–Alt-
man plots was estimated through linear regression and t test for 
slope significance (P ≤ 0.05) (Altman and Bland 1999). Het-
eroscedasticity (when the variance of the differences changes 
in proportion to averages) was accounted for the implementa-
tion of 95% V-shaped confidence limits (Ludbrook 2010). For 
every class of dead, viable and sterile pollen, the nonparamet-
ric Kruskal–Wallis test and the post hoc Wilcoxon signed-rank 
test (P ≤ 0.05) evaluated the presence of significant differences 
between mean percentages computed by the three methods 
within each pollen taxon. The entire analysis was performed 
in the R environment (R Core Team 2019).

Generating the pollen image dataset

Individual pollen images were generated using CellPro-
filer software by shrinking objects’ masks to their centers, 
expanding them by a defined number of pixels and applying 
the new masks to the corrected images. One of the hazelnut 
samples was considered redundant and excluded from the 
pollen dataset generation. Finally, the image dataset was 
cleaned from over segmented pollen grains and unwanted 
debris.

Results

Measuring pollen identification accuracy 
across automated counting methods

Overall, 15,340 pollen grains were counted on 304 images 
using the manual method. 76,120 and 75,329 pollen grains 
were counted on 1187 images by the CellProfiler pipeline 
and the Fiji macro, respectively (Table S1). Linear regression 
computed on per-image total pollen counts gave R2 values 

close to one for both Fiji macro and CellProfiler pipeline 
compared against MC (R2 = 0.99, Fig. 4a, b), underlining the 
close relationship between automated and manual methods. 
The Bland–Altman analysis (Fig. 4c, d) showed that both 
methods progressively underestimated pollen counts, while 
the average number of pollen grains on images increased 
(y = 0.02 + 0.3, P ≤ 0.0001  y= 0.03 − 0.1, P ≤ 0.0001, respec-
tively, for CellProfiler and Fiji procedures), albeit this trend 
was more pronounced for the Fiji macro. Moreover, the vari-
ance of differences between automated and manual values 
also increased at higher average counts, especially in the Fiji 
procedure. Deviations in counted pollen per taxon between 
manual and automated methods ranged from − 420 to + 15 
for the Fiji macro and from − 358 to 94 for the CellProfiler 
pipeline (Table S1).

Supervised classification performance

Supervised classification performance using the random 
forest classifier considering all the plant taxa analysed in 
this study was characterized by an overall accuracy of 74% 
(95%, CI 0.7142–0.7646) and a Kappa Cohen’s statistic of 
65% (Fig. S1c).

Characterization of pollen features collected 
with the Fiji macro

The feature selection procedure carried out on the data 
obtained by the Fiji macro from the images of C. avellana TG 
pollen identified two main groups of features, whose recip-
rocal similarity was stressed by strong positive correlations 
(Fig. 2a). The first group was related to pollen colour intensity 
and the second was associated with pollen dimension (Fig. 2a). 
Within these groups, integrated density [area (µm2) × mean 
grey values] and average area (µm2) were ranked as the two 
most important features by the GI computation (Fig. 2d). 
Skewness, a coefficient describing asymmetries of pixel value 
distributions in the identified objects, was negatively correlated 
to the first two main groups of features (Fig. 2a) and to the 
first principal component of the variance (− 0.67, P ≤ 0.0001, 
Fig. 2d). Moreover, random forest ranked skewness in the third 
place in terms of importance, after intensity and dimension 
groups (Fig. 2d). Viable and dead pollen grains were mainly 
separated along the dimensional and colour intensity gradient 
(Fig. 5a), whereas skewness was determinant for classifying 
the population of sterile pollen (Fig. 5b, c). Integrated density, 
area and skewness were also necessary for the estimation of 
the best number of clusters. Similar results were obtained by 
the analysis on all the remaining pollen taxa (data not shown). 
Scatterplots and results of the hierarchical clustering of Man-
hattan distances among pollen features for all the analysed taxa 
are found in figure S2.
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Measuring classification performance of pollen 
viability and sterility across automated counting 
methods

Figure 6 shows the agreement between automated (UC 
and SC) and manual (MC) classification methods evalu-
ated through the Bland–Altman approach for viable, dead 
and sterile pollen grains. The analysis of proportional bias 
detected a slight but significant tendency to underestimate 

viable and sterile pollen grains at higher average counts 
both for UC (respectively, y = 0.02 ×  − 0.07, P ≤ 0.001 
and y = 0.07 ×  + 0.50, P ≤ 0.01) and SC (respectively, 
y = 0.03 ×  + 1.1, P ≤ 0.001 and y = 0.13 ×  − 0.09, 
P ≤ 0.0001). The error of automated classification was 
proportional to average counts, as heteroscedasticity was 
present for all the classes except for dead pollen in SC.

Fig. 4   Linear regression (R2) and Bland–Altman analyses to assess identification accuracy of pollen grains on images between a, c Fiji macro 
and manual counting (MC) and b, d CellProfiler pipeline and manual counting (MC)
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Fig. 5   Populations of viable, 
dead and sterile pollen grains 
of C. avellana (TG) identified 
by the unsupervised clustering 
of pollen features measured by 
the Fiji macro. Plotted are the 
three main variables result-
ing from the features selection 
procedure. a Pollen grain area 
(µm2) vs integrated density 
[area (µm2) × mean grey values] 
b Area (µm2) versus skewness, 
c skewness versus integrated 
density [area (µm2) × mean grey 
values]
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Pollen viability and sterility in the analysed plant taxa

The labelling procedure allowed the differentiation between 
viable and dead pollen in all the considered taxa (Fig. 1), 
whereas sterile pollen was detected in C. miniata, M. stel-
lata, Q. suber, M. domestica, C. avellana and A. deliciosa. 
Apart from the difference in labelling, the loss of viability 
was also accompanied by a decrease in overall pollen dimen-
sions (Fig. 5). Smaller and collapsed grains, labelled differ-
ently depending on the species, were characteristic of plant 
taxa affected by male sterility. Pollen viability and sterility 
greatly varied among the analysed plant taxa (Fig. 7). When 
comparing cross-method average values, good viability 

levels were found for C. miniata (58%), O. europea (62%), 
Q. suber (67%), S. lycopersicum (73%), C. avellana (wt1) 
(70%), A. deliciosa (82%) and C. avellana (wt2) (85%). On 
the contrary, M. domestica (77%) and M. stellata (90%) 
showed very high percentages of dead pollen. High sterility 
levels affected M. domestica (15%), C. miniata (17%), Q. 
suber (19%) and C. avellana (TG) (27%). An important dif-
ference was detected in hazelnut, where the cultivar Tonda 
di Giffoni showed a higher pollen sterility compared to the 
wild types.

Looking at the departures from the manual procedure, 
viable pollen percentages measured with UC were sig-
nificantly higher (P ≤ 0.05) in hazelnut TG and wt2. In 

Fig. 6   Bland–Altman plots for assessing classification accuracy 
between manual counting (MC) and unsupervised clustering (UC), 
on the left, and manual counting (MC) and supervised classifica-

tion (SC), on the right. Viable a, dead b and sterile c pollen grains 
counted for each image were analysed separately. Colours correspond 
to plant taxa



214	 Plant Reproduction (2020) 33:205–219

1 3

Fig. 7   For each taxon, comparison of the percentages of viable a, 
dead b and sterile c pollen computed by the manual counting (MC), 
Fiji macro and unsupervised clustering (UC), CellProfiler pipeline 
and supervised classification (SC). Coloured dots correspond to 
average values, the error bars in bold display the bootstrapped con-
fidence limits of the mean (95%), while the regular error bars display 

two standard deviations above and below mean values. Stars denote 
overall differences assessed using nonparametric Kruskal–Wallis test 
(**** P ≤ 0.0001, *** P ≤ 0.001, * P ≤ 0.05). Different letters mark 
significant pairwise differences based on the post hoc Wilcoxon 
signed-rank test (P ≤ 0.05). The grey scatterplot displays actual values
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addition, the SC method did not correctly differentiate 
among viable and dead pollen in Q. suber (P ≤ 0.05) 
(Fig. 7a, b).

The percentages of sterility were correctly detected 
by the two automated methods in hazelnut TG and C. 
miniata. In Q. suber, overall significant differences were 
found (P ≤ 0.05) but the pairwise comparison did not con-
firm the results (P ≥ 0.05). The biggest divergence was 
detected in M. stellata, where both UC and SC measured 
different amounts of sterile grains in comparison with the 
manual method (P ≤ 0.05) and in M. domestica, where 
sterility was underestimated by the UC method (P ≤ 0.05). 
Overall, as shown for wild type hazelnuts and A. deli-
ciosa, both automated classification methods were not 
able to detect sterile pollen when present at low levels 
(Fig. 7c).

The FDA/PI pollen image dataset

A total of 62,577 individual images were generated for 
pollen grains from eight plant species: Corylus avellana 
(19,563, 51 × 51 px), Actinidia deliciosa (10,312, 41 × 41 
px), Quercus suber (8372, 59 × 59 px), Solanum lycoper-
sicum (7097, 41 × 41 px), Olea europea (6567, 41 × 41 
px), Malus domestica (5504, 61 × 61 px), Magnolia stel-
lata (3055, 61 × 61 px), Clivia miniata (2107, 81 × 81 
px). Each image was tagged with the plant species name. 
Examples of the generated pollen images are shown in 
Fig. 8. The complete image dataset can be accessed at 
10.6084/m9.figshare.12758750.

Discussion

The combination of FDA and PI dyes was able to label dif-
ferently viable, dead and sterile pollen in all the analysed 
pollen taxa confirming the results obtained in other studies 
(Dupl’Áková et al. 2016; Greissl 1989; Regan and Moffatt 
1990; Singh et al. 2015). Classification procedures ensured a 
thorough exploration of data and identified correctly viable, 
dead and sterile pollen. Automated methods increased sig-
nificantly the statistical power of the pollen viability assay. 
Finally, a pollen image dataset was built to contribute to 
future research in computer vision applied to plant biology 
and reproduction.

Pollen quality evaluation via FDA and PI labelling

Labelling results (Figs. 1 and 8) demonstrated that a gen-
eral labelling procedure can be applied to different pollen 
taxa, though it has been suggested that specific media could 
improve FCR results in some plants (Nepi et al. 2010). Keep-
ing samples at room temperature and in the dark sufficiently 
prevented colour fading for the time needed to acquire the 
images. An overall beneficial effect of pollen pre-hydration 
was also noticed during experiments, as non-pre-hydrated 
samples after thawing were generally unable to retain viabil-
ity in liquid medium (data not shown). While pre-hydration 
treatment is advisable for stored pollen in order to prevent 
leakage of internal solutes in the medium and cell death, it 
can also be recommended for fresh samples as pollen viabil-
ity is often correlated to pollen water content (Chichiriccò 
2000; Shivanna 2003; Fonseca and Westgate 2005; Nepi 
et al. 2010). Nevertheless, some pollen types can be irrevers-
ibly damaged by excessive dehydration treatments and do 
not recover viability even after rehydration (Shivanna and 
Heslop-Harrison 1981; Lansac et al. 1994). The labelling 

Fig. 8   Examples of unscaled images of the FDA/PI pollen dataset
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technique was also effective at identifying anomalous and 
smaller pollen grains that were apparently void of the cyto-
plasm in some plant species (Figs. 1 and 8). This is par-
ticularly relevant as sterile pollen could be misclassified as 
generic dead pollen by researchers. Instead, they are results 
of different biological processes acting either during pollen 
development, yielding malformed pollen, or during and after 
pollen dehiscence, affecting the viability of pollen with a 
regular morphology.

Some hazelnut cultivars, including TG, are affected by 
reciprocal chromosome translocations, a condition that leads 
to the production of abundant sterile pollen (Salesses and 
Bonnet 1988; Marinoni et al. 2018). As expected, a consid-
erable amount of shrunken pollen was present in hazelnut 
TG cultivar, whereas wild type pollen was well-developed 
and viable for the most part, suggesting the presence of a 
regular genetic background (Fig. 7). In our investigation, 
pollen sterility also characterized C. miniata and M. domes-
tica (Fig. 7). Different levels of pollen sterility also charac-
terized M. domestica “McIntosh” diploids and mixoploids 
and C. miniata subjected to drought and flood conditions 
(Yamburov et al. 2014; Podwyszyńska et al. 2016). Unfor-
tunately, the genotype of the old apple tree that is conserved 
at the botanical garden of Turin could not be traced.

Automation of the FDA/PI assay

One of the main issues in FDA-based assays is the high 
background fluorescence caused by the leakage of fluores-
cein from dead pollen grains, especially in conditions of 
low overall viability (Shivanna 2003). This phenomenon 
reduces the assay sensitivity and increases uncertainties 
in counting made either by humans (Aronne et al. 2001) 
or by computers (Novara et al. 2017). The image analysis 
workflows implemented here effectively reduced unwanted 
fluorescence through image pre-processing operations for 
illumination correction and background subtraction (Figs. 1 
and 8). CellProfiler in particular showed higher versatility 
by the inclusion of multiple modules to handle these kinds 
of issues. In the comparison between manual and automated 
methods, the presence of proportional bias can be interpreted 
as an increasing tendency to underestimate total counts at 
higher pollen loads. Besides, heteroscedasticity means that 
method uncertainty is more pronounced when pollen count 
increases. These drawbacks were notable in both automated 
methods (Figs. 4 and 6). Some uncertainty can be expected 
even when counts are made by eye especially when objects 
get crowded on images (Aronne et al. 2001). On the other 
hand, the trend towards underestimation can be explained 
by the difficulty at identifying pollen within clumps that was 
handled by removing all the objects above a certain dimen-
sional threshold in both Fiji macro and CellProfiler pipeline. 
Other authors also recorded a similar drop in performance 

of automated counting methods associated with clumped 
pollen (Go et al. 2019; Mudd and Arathi 2012). To reduce 
proportional bias, Tello et al. (2018) also implemented an 
approach based on dimensional and shape characteristics of 
identified grains. Separating overlapping objects is a com-
plicated task, but capabilities in computer vision are steadily 
improving and possible solutions are starting to appear in the 
literature (Gallardo-Caballero et al. 2019; Cohen et al. 2017; 
Molnar et al. 2016).

Previous efforts on the automation of pollen viability 
assays identified different pollen conditions at the image 
analysis level. Tello et al. (2018) cleverly built a solution 
based on the separate counting of total and well-developed 
pollen on the red and green channels, respectively. Sterile 
grains were found by simple subtraction. This was allowed 
because Alexander’s method stains sterile and well-devel-
oped pollen strictly in a selective way, with no cross-channel 
colour contamination (Alexander 1969). A separate counting 
of aborted and well-developed pollen on images was also 
built for aniline blue staining (Mudd and Arathi 2012).

Following another approach, we classified data obtained 
through the analysis of FDA/PI fluorescent images using 
supervised and unsupervised methods. A similar classifi-
cation performance of MC and UC was recorded for via-
ble, dead and sterile pollen (Fig. 6). Moreover, by analys-
ing whole image samples, automated methods generally 
improved confidence concerning average values of sterile, 
dead and viable pollen (Fig. 7).

CellProfiler Analyst (Dao et al. 2016) simplified the 
process of data exploration and supervised classification 
through an easy-to-use graphical interface (Fig. S1). Super-
vised classification requires the a priori knowledge of rel-
evant phenotypes among the detected objects (Smith et al. 
2018). Therefore, if no previous knowledge on the sample 
is available, under-represented populations are likely to be 
ignored. This was the case in our study where supervised 
classification was unable to detect sterile pollen when pre-
sent in very small quantities (Fig. 7). To address this prob-
lem, other classification tools that implement data mining 
approaches for the discovery of rare populations could be 
used (Smith et al. 2018). The number of objects chosen as 
baseline for the training process was enough to guarantee 
an overall acceptable level of classification accuracy (Fig. 
S1 C). Increasing the training effort would easily help in 
significantly reducing the recorded uncertainties.

Clustering is a method for data exploration that does not 
require previous annotation and that can help in looking for 
relevant populations. An unsupervised method for the deter-
mination of pollen viability was recorded just once in the 
literature, where rice pollen was classified through k-means 
clustering with a fixed number of clusters (Go et al. 2019). 
We implemented a feature extraction procedure to simplify 
the automatic definition of the best number of clusters and 
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to apply a fully automated hierarchical clustering based on 
Manhattan distances (File S3). This procedure allowed not 
only to explore data but also to automatically find relevant 
classes for most of the considered taxa (Fig. S2). Integrated 
density, area and skewness were crucial for the separation 
of viable, dead and sterile pollen populations (Fig. 5). Simi-
lar to the results of the supervised method, unsupervised 
clustering was unable to detect very low amounts of sterile 
pollen grains (Fig. 7). Clustering algorithms are usually opti-
mized to identify either main clusters or rare cases; there-
fore, the sequential application of multiple algorithms might 
be beneficial (Weber and Robinson 2016).

Fluorescence variation among single images or image 
batches due to heterogeneous experimental conditions can 
introduce classification errors in supervised and unsuper-
vised techniques. Automated image acquisition systems can 
contribute to improving reproducibility and lowering the 
amount of time required for the analysis. In addition, nor-
malization techniques can be applied to images and to object 
features to reduce signal unevenness and classification errors 
(Kothari et al. 2014). The Fiji macro implemented a basic 
image normalization method through histogram equaliza-
tion (Štruc and Pavešić 2017) for enhancing pollen recogni-
tion and clustering reproducibility. Future works could try 
to apply algorithms for feature normalization (Kothari et al. 
2014) in order to further refine classification performance.

As a final recommendation, for the overall better per-
formance, the ease of use and good versatility  which 
were shown in this study, it could be supported the adoption 
of CellProfiler/CellProfiler Analyst (or other classification 
tools) as the software of choice for the automated evalua-
tion of pollen viability employing the FDA/PI labelling. The 
training set for the supervised classification process should 
be at least made of 40 objects for each class. Random forest 
usually offers a good balance between computing time and 
classification accuracy, nevertheless other models should 
be considered and tested for specific needs (Kuhn 2008; 
Gallardo-Caballero et al. 2019).

The image dataset

The availability of a large number of labelled images is a 
prerequisite for the employment of advanced image analysis 
methods based on deep learning, which are able to discover 
object features from images and classify them in an inte-
grated and highly effective approach (Tsaftaris et al. 2016; 
Zhao et al. 2019). With this study, we also provide the first 
image dataset on pollen quality in fluorescent microscopy. 
With 62,577 images, it is the largest palynological database 
ever built, albeit limited to eight plant species. Available 
image databases contain pollen grains imaged in bright-field 
microscopy and do not exceed 13,500 entities (Duller et al. 
1997; Ranzato et al. 2007; Gonçalves et al. 2016; Battiato 

et al. 2020). Future work will concentrate on the annotation 
of the viability class (viable, dead and sterile pollen) in order 
to provide a fully annotated dataset for the identification and 
classification of pollen grains labelled with FDA and PI.

Conclusions

The proposed methods and the publicly available dataset 
open new opportunities in pollen viability evaluation, both 
quantitatively and qualitatively, and provide a foundation 
for an automated and low-cost tool to deepen knowledge of 
pollen biology and ecology with promising applications in 
agriculture and plant breeding.
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