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Abstract
In the early embryo of vascular plants, the different cell types and stem cells of the seedling are specified as the embryo 
develops from a zygote towards maturity. How the key steps in cell and tissue specification are instructed by genome-wide 
transcriptional activity is poorly understood. Progress in defining transcriptional regulation at the genome-wide level in plant 
embryos has been hampered by difficulties associated with capturing cell-type-specific transcriptomes in this small and inac-
cessible structure. We recently adapted a two-component genetic nucleus labelling system called INTACT to isolate nuclei from 
distinct cell types at different stages of Arabidopsis thaliana embryogenesis. We have used these to generate a transcriptomic 
atlas of embryo development following microarray-based expression profiling. Here, we present a general description of the 
adapted INTACT procedure, including the two-component labelling system, seed isolation, nuclei preparation and purification, 
as well as transcriptomic profiling. We also compare nuclear and cellular transcriptomes from the early Arabidopsis embryo 
to assess nucleocytoplasmic differences and discuss how these differences can be used to infer regulation of gene activity.
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Introduction

With the advent of transcriptomics, plant research has gained 
important insights into the genetic regulatory mechanisms 
that underlie cell fate determination, pattern formation and 
cell–cell communication during plant development. This 
framework of developmental processes, crucial for the con-
tinuous formation of plant structures from stem cells, is first 
established in the early plant embryo (reviewed in Palovaara 

et al. 2016). As such, much effort has been made in recent 
years to adapt transcriptomic approaches to this tissue at a 
cellular resolution (e.g. Belmonte et al. 2013; Casson et al. 
2005; Slane et al. 2014). Recently, we adapted one such 
approach, INTACT (isolation of nuclei tagged in specific 
cell types), to isolate cell-type-specific nuclei from the early 
embryo of the flowering plant Arabidopsis thaliana for tran-
scriptomic profiling (Palovaara et al. 2017).

Enrichment methods to isolate nuclei or cells based on 
the expression of specific promoters are very powerful, as 
the selection of cells for transcriptomics does not require 
manual selection and cells are by definition united by the 
expression of at least one marker gene. For the embryo, 
however, there is an important difficulty: genes expressed 
in the tissue precursors of the embryo are usually also 
expressed in the corresponding tissue of the seed that the 
embryo resides in (Belmonte et al. 2013; Palovaara et al. 
2017). Thus, when using only expression of a marker gene 
as a selection step, transcriptomes of embryo cells would be 
overshadowed by the seed cells if entire seeds are used as 
starting material. Rather than using dissected embryos, we 
therefore resorted to a two-component genetic labelling sys-
tem, INTACT (Deal and Henikoff 2010). INTACT is based 
on the selective biotinylation of a unique target peptide 
(biotin ligase recognition—BLRP) by the BirA biotin ligase 
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enzyme (from Escherichia coli). The BLRP is integrated 
in a nuclear targeting fusion (NTF) protein, which in addi-
tion carries a green fluorescent protein (GFP) and a nuclear 
lamina localization domain. Only when BirA and NTF are 
co-expressed in the same cells, will the latter be biotinylated. 
Since streptavidin has a high affinity for biotin, biotin-tagged 
nuclei can next be isolated from crude nuclear preparations 
using streptavidin-coated beads. This circumvents the need 
for BirA and NTF promoter expression being exclusive to 
specific cells or tissues in the embryo. Consequently, speci-
ficity increases since more markers become available for use. 
We exploited this combinatorial logic by expressing BirA 
from an embryo-enriched promoter and driving NTF expres-
sion from a large range of cell-type-specific promoters. This 
allowed us to generate a transcriptome atlas of early Arabi-
dopsis embryo development using nuclei isolated from cell 
types necessary for root stem cell niche establishment (Pal-
ovaara et al. 2017). We identified shifts in cell-type-specific 
gene expression associated with the developmental stage of 
the embryo, and enrichment of transcription factors and bio-
logical processes important for cell fate determination. Our 
work provides a resource for further exploration into how 
gene activity shapes the formation of the first plant tissues.

Here, we present the INTACT-based approach used in 
Palovaara et al. (2017). We discuss two-component label-
ling and describe the adapted INTACT procedure, including 
generating microarray-based transcriptomes. In addition, we 
compare previously published nuclear and cellular transcrip-
tomes from the early Arabidopsis embryo to illustrate how 
INTACT-generated data can be used to investigate nucleocy-
toplasmic differences in a cell-type-specific manner.

INTACT on Arabidopsis embryos

INTACT was initially developed for use on roots from 
Arabidopsis (Deal and Henikoff 2010, 2011), a popular 
model plant to study cell specification processes due to 
its highly invariant cell division patterns and the ease to 
genetically manipulate. Compared to roots, Arabidopsis 
embryos are small, contain few cells and are surrounded by 
the endosperm and seed coat. This affects the final yield and 
purity of INTACT when performed according to the original 
protocol (Palovaara et al. 2017). Thus, it was necessary to 
adapt the INTACT protocol when isolating cell-type-specific 
nuclei from the early Arabidopsis embryo.

First, we generated a codon-optimized BirA fragment 
to facilitate translation in Arabidopsis, and a collection of 
“gold-standard” INTACT plant lines that mark the major 
cell and tissue types of the early embryo. In these lines, two 
separate constructs express the modified BirA (mBirA) from 
an embryo-enriched promoter (either pWOX2 or pSCR; Pal-
ovaara et al. 2017) and NTF from various cell-type-specific 
promoters (Fig. 1). Embryogenesis is a progressive process, 

with a defined start point (fertilization). However, embryos 
within the same silique can differ in exact stage, which 
makes it difficult to capture temporal dynamics in gene 
expression. Therefore, we performed manual pollination to 
better synchronize embryo development within each silique. 
Optimal time intervals were determined for 16-cell (72 h), 
early globular (81 h) and late globular (100 h) embryo 
stages. Function of the modified BirA, NTF biotinylation, 
specificity of INTACT markers, and cell-type- and stage-
specific nuclei isolation was experimentally verified. Sec-
ondly, we optimized several steps in the original INTACT 
protocol to improve the recovery efficiency (estimated to 
be 20–50%) and purity (86.2% ± 6.6%, n = 50) of isolated 
biotin-tagged nuclei. With these changes, we could isolate 
1000–5000 cell-type-specific nuclei from 100 to 200 siliques 
per biological replicate depending on the INTACT line used 
and embryonic stage.

The adapted INTACT procedure and the approach used to 
generate transcriptomic profiles are described below. In the-
ory, the procedure can be applied to any Arabidopsis embryo 
cell type, using our INTACT lines or other lines with a suit-
able cell-type-specific promoter, and can be combined with 
several downstream applications (Fig. 1). A detailed step-
by-step protocol will be published separately.

Adapted INTACT procedure

The workflow can be divided into three separate sections: 
isolation of seeds with embryos of a known developmental 
stage, crude preparation of nuclei and purification of biotin-
tagged nuclei. Recipes for buffers are presented in Supple-
mentary Table 1.

For seed isolation, a set number of flowers from an appro-
priate NTF/BirA transgenic plant line are emasculated based 
on expected yield of bead-bound nuclei. Manual pollination 
of the exposed stigmas is performed the next day in less than 
1 h to synchronize embryo development. We have consist-
ently performed these steps with multiple people to mini-
mize the time between the first and last pollination. Siliques 
are collected after a defined time interval at which they con-
tain seeds with embryos at the development stage of inter-
est. To avoid circadian rhythm effects, collection should be 
performed at the same time point of the day for each experi-
ment. Siliques are adhered to slides with double-sided tape 
and seeds are exposed by opening the silique with a needle. 
Slides are then transferred to a 120 × 120 mm square Petri 
dish and placed under a stereo microscope. Next, seeds are 
collected from siliques onto a 20-μm nylon net filter using 
a suctioning apparatus consisting of a Pasteur pipette, a 
25-mm filter holder and a vacuum pump. To avoid damage 
and dehydration of the seeds, a vacuum pressure at or under 
40 mbar is used and 1 × PBS (pH 7.0) is continuously added 
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to the Petri dish. Using this setup, it is possible to process 
siliques at a rate of 10 siliques per minute.

To prepare a crude nuclear extract, seeds are washed off 
the filter in 2-ml tubes containing 1 × PBS. The buffer is 
removed with a pipette, and a 4.8-mm stainless steel ball 
is added to each tube before flash-freezing them in liquid 
nitrogen. Seeds are homogenized in a mixer mill with pre-
cooled adaptor racks (30 Hertz for 2 × 30 s) and resuspended 
with 10 ml ice-cold nuclear purification buffer (NPB) and 
200 units of a RNase inhibitor in a 15-ml tube. The sus-
pension is filtered through a 40-μm cell strainer and centri-
fuged at 1200g at 4 °C for 7 min to pellet nuclei. Nuclei are 
resuspended with 1 ml of NBP and transferred to a 1.5-ml 
tube. Ten microlitres of washed M-280 streptavidin-coated 
Dynabeads is added to the nuclei and incubated for 30 min at 
4 °C with end-over-end rotation to bind beads to the nuclei.

Purification is performed by using a column system 
where the bead-bound nuclei are captured when they flow 
past a strong magnet. Columns are prepared by treating 
1-ml pipette tips with NPB containing 1% (w/v) Casein for 

20 min. Casein treatment prevents adhesion of non-bead-
bound nuclei to the tip wall. A tip is inserted into an Octo-
MACS separator magnet placed vertically in a 4 °C cold 
room and then rinsed with ice-cold NPB containing 0.1% 
(v/v) Triton X-100 (NPBt). A two-way stopcock is attached 
to the narrow end of the pipette tip to control liquid flow 
rate. The bead and nuclei mixture is diluted with 9 ml NPBt 
and drawn into a plastic 10-ml serological pipette with a 
Parafilm-wrapped tip. The 10-ml pipette is fastened to the 
top of the 1-ml tip, and the mixture is flowed past the magnet 
at a rate of 0.75 ml min−1. This allows for efficient capture of 
bead-bound nuclei to the tip wall. The 1-ml tip is removed 
when empty, and the inner tip wall is washed by drawing 
NPBt in and out without disturbing the attached beads. The 
bead-bound nuclei are rinsed with 1 ml NPBt and diluted 
with 9 ml NPBt for a second round of purification, which 
is necessary for achieving maximum purity. After washing 
and rinsing the tip a second time, the bead-bound nuclei 
are collected by centrifugation (1000g at 4 °C for 5 min) 
and resuspended in 25 μl NPB. This solution contains the 

Fig. 1   Schematic diagram of adapted INTACT procedure used to iso-
late cell-type-specific nuclei and generate microarray-based transcrip-
tomic profiles in the early Arabidopsis embryo. Microarray and other 
downstream applications that can be combined with the INTACT pro-

cedure are listed. This includes ChIP-Seq and PIP-Seq, which both 
require cross-linking of fresh tissue before INTACT purification of 
nuclei
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purified biotin-tagged nuclei, which can be directly used in 
downstream applications.

The purity of biotin-tagged nuclei is determined by 
the ratio of DAPI-stained (2 μg ml−1) bead-bound (bioti-
nylated) and unbound (non-biotinylated) nuclei. Recovery 
efficiency is estimated by the ratio of bead-bound nuclei to 
the expected number of biotin-tagged nuclei in the starting 
material.

Generating transcriptomic profiles

One downstream application of the purified biotin-tagged 
nuclei is to generate and compare whole-genome expression 
data from various cell types. In Palovaara et al. (2017), this 
was performed using a microarray-based approach.

RNA is obtained from bead-bound nuclei isolated from 
different cell types and embryonic stages following TRI-
zol-based RNA extraction, DNase I treatment and RNA 
purification and concentration (Palovaara et al. 2017). To 
increase RNA amounts, reduce technical variances and avoid 
batch-to-batch effects (Clément-Ziza et al. 2009; Morse 
et al. 2010), RNA from biological replicates was pooled 
to 3–4 samples and then simultaneously amplified with an 
oligo(dT)/random primer mixture using a kit designed for 
small RNA quantities (Ovation Pico WTA System V2). This 
resulted in the amplification of both nascent transcripts and 
mature messenger RNA (mRNA). After labelling, amplified 
cDNA was hybridized to Arabidopsis Gene 1.1 ST 24-Array 
plates, which covers 84.2% (28,501) of all annotated genes 
(TAIR10). Analysis of the plates was performed using the 
MADMAX pipeline (Lin et  al. 2011), with values nor-
malized by RMA (Irizarry et al. 2003), to determine gene 
expression and differentially expressed genes. Further anal-
yses were performed to determine dominant gene expres-
sion patterns by manual selection or hierarchical clustering 
(Orlando et al. 2009), biological significance of co-expressed 
genes (agriGO; Du et al. 2010; Tian et al. 2017) and enrich-
ment of transcription factors (AtTFDB; Palaniswamy et al. 
2006). Finally, a web-based tool was established at http://
www.alber​todb.org (ALBERTO) to display, compare and 
share the transcriptomic profiles.

In addition to our work, there are other publications 
concerning nuclear transcriptomics where RNA isolation, 
amplification methods and sequencing technologies differ 
(e.g. Deal and Henikoff 2010; Reynoso et al. 2018a, b; Slane 
et al. 2014; Zhang et al. 2008). For example, in Reynoso 
et al. (2018b) they demonstrate a method to remove riboso-
mal RNA (rRNA) from RNA isolated from INTACT-puri-
fied nuclei to produce a sample optimal for RNA-Seq. The 
preferred amplification method of nuclear RNA is oligo(dT)/
random primer-based since it amplifies mRNA transcripts at 
different stages of processing. However, the highly abundant 
rRNAs are also amplified, which has a negative impact on 

sequencing coverage. In theory, this method could be com-
bined with our approach to generate high-quality RNA-Seq 
data.

Comparing nuclear and cellular transcriptomes

INTACT relies on profiling RNA not yet exported to the 
cytosol, which raises the question if nuclear RNA is rep-
resentative for the transcriptomic output of a cell. Several 
studies, including our own, have established that nuclear 
RNA is a reasonable proxy for steady-state transcript levels 
regardless of the experimental approach (Deal and Henikoff 
2010; Lake et al. 2017; Palovaara et al. 2017; Slane et al. 
2015; Zhang et al. 2008). However, there are differences 
between nuclear and total transcriptomes, which suggest 
selective compartmentalization of RNA in the nucleus and 
the cytosol. This may impact cell fate during development 
since post-transcriptional regulation, critical for protein 
translation and expression level, typically takes place in the 
cytoplasm. Despite this, relatively few studies have inves-
tigated the differences between nuclear, cytosolic and total 
transcriptomes in detail, especially in plants (see e.g. Bar-
thelson et al. 2007; Chen and van Steensel 2017; Djebali 
et al. 2012; Bahar Halpern et al. 2015; Reynoso et al. 2018a; 
Solnestam et al. 2012). Until recently, the primary reason for 
this has been the lack of technologies that facilitate such a 
comparison, particularly at the tissue or cellular level.

In Palovaara et al. (2017), we used INTACT and manual 
isolation to generate microarray-based nuclear and cellular 
RNA transcriptomes from whole Arabidopsis embryos at 
16-cell stage to assess the reliability of nuclear RNA. Here, 
we perform a more comprehensive analysis of the data set to 
evaluate notable distinctions between the two RNA popula-
tions. When compared, a total of 3011 genes were signifi-
cantly enriched in one or the other population, with 2180 
genes being enriched in the cellular RNA and 831 genes 
being enriched in the nuclear RNA (Fig. 2, Supplementary 
Table 2a, b). Gene ontology (GO) enrichment analysis of 
the cellular population included “ribonucleoprotein com-
plex biogenesis”, “ribosome biogenesis”, “translation” and 
“RNA processing”, among others (Fig. 2, Supplementary 
Table 2c). Ribonucleoprotein complexes consist of a diverse 
set of RNA-binding proteins (RBPs) that interact with RNAs 
to regulate post-transcriptional expression by influenc-
ing RNA biogenesis, stability, translation and subcellular 
localization (reviewed in Dreyfuss et al. 2002). In contrast, 
the nuclear population included “transmembrane transport”, 
“cell wall organization”, “signalling”, and terms associated 
with responses to various stimuli (Fig. 2, Supplementary 
Table 2c).

RNA processing and maturation is a unidirectional pro-
cess. Pre-mRNAs are spliced in the nucleus, capped and 
poly-adenylated, and exported to the cytosol for translation. 

http://www.albertodb.org
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Differences in nuclear/cytosolic abundance ratios between 
mRNAs may therefore derive from selective nuclear export, 
from stabilization or degradation, among others. A simple 
explanation for enrichment of a transcript in nuclear RNA 
pools would be that the mature mRNA is unstable and would 
quickly disappear from the cytosolic pool. Conversely, if an 
mRNA is exceptionally stable in the cytosol, its cytosolic 
levels will tend to be enriched. To determine if mRNA (in)
stability could be a dominant cause of the observed enrich-
ment, we investigated mRNA decay rates among cytosol- or 
nucleus-enriched transcripts using a mRNA decay data set 
from 5-day-old seedlings (Sorenson et al. 2018). We found 
that the cellular population had longer median mRNA half-
life (142 min) compared to the nuclear population (92 min), 
with no apparent correlation to UTR lengths or coding 
region length (Supplementary Table 2c). This was espe-
cially evident when only transcription factors were analysed 
(101 vs. 41 min). This suggests that transcript enrichment 
in the cellular population may indeed reflect a relatively 
low decay rate. Earlier analyses have shown that high-flux 
RNAs associate with rapid signalling response pathways, 

including communication, hormone response and biotic/
abiotic stress-related response (Narsai et al. 2007; Sorenson 
et al. 2018). Together, this demonstrates genome-wide dif-
ferences between nuclear and cellular RNA that yield dis-
tinct functional characteristics.

Given that different nuclear/cytoplasm mRNA partition-
ing and different mRNA stabilities may well translate to 
altered tissue specificities in the growing embryo, we next 
addressed the behaviour of cellular- and nuclear-enriched 
transcripts in relation to the atlas data set published in Pal-
ovaara et al. (2017). This revealed that median expression for 
genes enriched in the nuclear population was notably higher 
when compared to genes enriched in the cellular popula-
tion in the atlas (18 vs. 10 signal intensity) (Supplementary 
Table 2d). This may therefore reflect a comparatively high 
transcription rate of this set of genes. Furthermore, when 
performing correlation and hierarchical clustering analy-
sis, the atlas samples clustered according to developmental 
stage for nuclear but not for cellular-enriched genes (Fig. 3, 
Supplementary Table 2d), even though both sets of genes 
generally clustered according to cell type (Supplementary 
Fig. 1). Thus, cytoplasmically enriched transcripts do not 
appear to reflect the stage of the embryo as defined by stage 
of isolation. Increased mRNA stability is a likely cause for 
this observation.

The stage-specific clustering seen for the nuclear-
enriched transcripts appears to be the result of rapidly 
changing expression levels between developmental stages: 
overall gene expression decreased from one stage (16-
cell, early globular) to the next (late globular) as revealed 
by the expression heat map in Fig. 3b and a lower median 
expression value (21 vs. 14 signal intensity; Supplementary 
Table 2d). This, together with the low overall expression of 
the cellular-enriched genes in the atlas, supports the conclu-
sion that RNAs with shorter half-lives and higher transcrip-
tion rates are more common in the nuclear than the cellular 
RNA population. A list of “nuclear” or “cellular” genes that 
were enriched in the various cell types of the atlas is pre-
sented in Supplementary Table 2e.

To further refine the data set, we combined it with tran-
scriptomic data from Belmonte et al. (2013) where they 
isolated the embryo proper and suspensor from globular 
embryos of Arabidopsis using laser capture microdissection 
(Supplementary Table 2f). This revealed tissue-specific pat-
terns of GO terms and transcription factors enriched in the 
nuclear and cellular RNA (Fig. 3, Supplementary Table 2 g, 
h). All mentioned GO terms enriched in the cellular popula-
tion were also enriched in the embryo proper, which sup-
ports previous data indicating that RBRs are tissue specific 
in plants (Marondedze et al. 2016). Many transcription fac-
tors crucial for cell specification in the early embryo, such 
as WOX2, HAN, ARF5/MP, ATML1, PHB and REV, were 
similarly enriched, while WOX8, WOX9, WRKY2 and LEC1 

Fig. 2   Microarray-based comparison of whole embryo nuclear 
(INTACT; nEMB) and cellular (manual isolation; cEMB) RNA at 
16-cell stage. Enriched genes (fold change > 2, q < 0.05) and selected 
enriched biological GO terms (p ≤ 0.001) and transcription factors are 
presented. Note that only transcription factors that do not show tissue-
specific enrichment, or are not present in the Belmonte et al. (2013) 
data set (see Fig. 4) are shown
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were enriched in the suspensor (Lotan et al. 1998; Palovaara 
et al. 2016) (Fig. 4a). In the nuclear population, “cell wall 
organization”, “cell morphogenesis” and comparable GO 
terms were enriched in the embryo proper (Fig. 4b), suggest-
ing that genes associated with these processes are actively 
and highly transcribed at this stage of development.

From these results, we propose that selective nucleocy-
toplasmic enrichment of RNAs, through nuclear retention 
and post-transcriptional regulation, is a tissue- or even a 
cell-type-specific characteristic that directly impacts cell 
fates in the early plant embryo. Indeed, it is already known 
that microRNAs are involved in the establishment and 
maintenance of the shoot apical meristem in the Arabidop-
sis embryo (Palovaara et al. 2016; Takanashi et al. 2018) 
and that targeted RNA degradation influences embryonic 

stem cell fate in mammals (Li et al. 2015; Lou et al. 2014, 
2016). However, to confirm our hypothesis, future work 
should compare the nuclear to the cytosolic RNA at a cel-
lular resolution in wild-type embryos and embryos defective 
in post-transcriptional regulation. This could be achieved 
by using INTACT and another method, TRAP (translating 
ribosome affinity purification), to target the same tissue or 
cell type. TRAP allows for the isolation of actively trans-
lated transcripts after affinity purification of tagged ribo-
somal protein (Mustroph et al. 2009). Such a study would 
generate a comparative read-out of pre-processed (nuclear) 
and translated (cytosolic) mRNA, revealing the levels of 
regulation that direct gene expression in an individual cell. 
This read-out includes transcript sequence (size, codons, 
UTR regions) and isoforms, both of which can influence 
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Fig. 3   Enriched cEMB (a) and nEMB (b) genes in cell types of the 
atlas data set presented in Palovaara et al. (2017). At top, heat map of 
Pearson’s correlation coefficients (r) in pairwise comparisons using 
log2-values where low correlation is in yellow and high correlation 
is in red. Samples are sorted according to the amount of correlation 
(low to high: left to right, top to bottom), which in b show a pattern 
specific to developmental stages (white rectangles). At bottom, hier-
archical clustering and expression heat map of the 50% most vari-

able genes where values are log-transformed, rows are centred, and 
both rows and columns are clustered using correlation distance and 
average linkage (Metsalu and Vilo 2015). Abbreviations: c cellular, 
n nuclear, EMB whole embryo, 16C 16-cell stage, EG early globu-
lar stage, LG late globular stage, ILT inner lower tier, VSC vascular 
tissue precursors, GSC ground tissue precursors, SUS suspensor, QC 
quiescent centre precursor
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post-transcriptional regulation (e.g. Chen 2010; Hartmann 
et al. 2018; Theil et al. 2018), if RNA-Seq is used as the 
primary sequencing platform.

Outlook

INTACT is a versatile tool that has been used for transcrip-
tomic, epigenomic and proteomic studies of tissue- and cell-
type-specific nuclei in plants and animals (Amin et al. 2014; 
Foley et al. 2017; Henry et al. 2012; Moreno-Romero et al. 
2017; Park et al. 2016; Reynoso et al. 2018a; Ron et al. 2014; 
Steiner et al. 2012). In fact, a recent publication showed that 
several of these -omics studies can be performed on the same 
pool of INTACT-isolated nuclei (Mo et al. 2015). Here, we 
have presented how INTACT can be used to provide a snap-
shot of the nuclear transcriptome at a cellular resolution in 
the early Arabidopsis embryo. This has provided valuable 
information regarding mRNA synthesis. However, to fully 

explore the transcriptional networks that govern cell fate in 
the plant embryo we need to capture the full dynamics of the 
mRNA life cycle, especially at the cellular resolution. There-
fore, the next logical step is to use INTACT in conjunction 
with a method such as TRAP and other -omics approaches 
to evaluate multiple levels of mRNA regulation. This would 
be a powerful addition to current research in plant embryos, 
where focus is on how cell fates are reprogrammed to estab-
lish the first tissues of the plant.
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Fig. 4   Refinement of enriched cEMB and nEMB data sets based on 
globular stage embryo proper (EP) and suspensor (SUS) transcrip-
tomic data from Belmonte et  al. (2013). Fold change > 1.5 denotes 
enriched genes in the Belmonte et  al. (2013) data set. Overlapping 

genes and selected enriched biological GO terms (p ≤ 0.001) and tran-
scription factors are presented. Abbreviations: c cellular, n nuclear, 
EMB whole embryo
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priate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made.
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