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Abstract
Key message Arabidopsis embryos possess unique transcriptomes relative to other plant tissues including somatic 
embryos, and can be partitioned into four transcriptional phases with characteristic biological processes.
Abstract Cellular differentiation is associated with changes in transcript populations. Accurate quantification of transcriptomes 
during development can thus provide global insights into differentiation processes including the fundamental specification and 
differentiation events operating during plant embryogenesis. However, multiple technical challenges have limited the ability to 
obtain high-quality early embryonic transcriptomes, namely the low amount of RNA obtainable and contamination from surround-
ing endosperm and seed-coat tissues. We compared the performance of three low-input mRNA sequencing (mRNA-seq) library 
preparation kits on 0.1 to 5 nanograms (ng) of total RNA isolated from Arabidopsis thaliana (Arabidopsis) embryos and identified 
a low-cost method with superior performance. This mRNA-seq method was then used to profile the transcriptomes of Arabidopsis 
embryos across eight developmental stages. By comprehensively comparing embryonic and post-embryonic transcriptomes, we 
found that embryonic transcriptomes do not resemble any other plant tissue we analyzed. Moreover, transcriptome clustering 
analyses revealed the presence of four distinct phases of embryogenesis which are enriched in specific biological processes. We 
also compared zygotic embryo transcriptomes with publicly available somatic embryo transcriptomes. Strikingly, we found little 
resemblance between zygotic embryos and somatic embryos derived from late-staged zygotic embryos suggesting that somatic 
and zygotic embryo  transcriptomes are distinct from each other. In addition to the biological insights gained from our systematic 
characterization of the Arabidopsis embryonic transcriptome, we provide a data-rich resource for the community to explore.
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Introduction

Flowering plants begin their life as an embryo deeply 
embedded within a seed. In Arabidopsis thaliana (Arabi-
dopsis), a series of stereotypical cell divisions produces the 

fundamental body plan that already possesses precursors 
to the shoot and root meristem, as well as the epidermal, 
ground and vascular tissues arranged in concentric layers. 
Cellular differentiation includes, and is largely defined by, 
changes in the quantity of specific transcripts present in the 
cell. Therefore, understanding cellular differentiation during 
embryogenesis requires the ability to quantify embryonic 
transcriptomes. However, multiple technical challenges limit 
the ability to obtain high-quality embryo transcriptomes 
especially from the earliest stages when basic patterning 
processes are instrumental in defining the plant body plan. 
Due to the small size of early embryos and their enclosure 
within a seed, isolating RNA from embryos is prone to con-
tamination from the surrounding endosperm and maternal 
sporophytic RNA (Schon and Nodine 2017). Additionally, 
the protocol must be sensitive enough to detect even lowly 
abundant transcripts from the few nanograms or less of total 
input RNA that is typically obtainable from early embryos.
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Results

Comparison of low‑input mRNA‑seq library 
preparation methods

A variety of low-input mRNA sequencing (mRNA-seq) 
methods have been developed for tissue-specific and sin-
gle-cell sequencing [reviewed in (Chen et al. 2018)]. To 
determine the optimal mRNA-seq method for profiling 
transcriptomes from low-input total RNA isolated from 
Arabidopsis embryos, we compared the performance of 
three different mRNA-seq library construction protocols. 
We prepared mRNA-seq libraries from 5, 1, 0.5 or 0.1 ng 
of total RNA isolated from bent cotyledon staged embryos 

using either the Ovation Pico SL WTA System V2 (Ova-
tion; Nugen) or SMARTer Ultra Low Input RNA Kit 
for Sequencing-v3 (SMARTer; Clontech) commercially 
available kits, or the non-commercial Smart-seq2 method 
(Picelli et al. 2013).

We were able to detect between 13,453 and 16,315 
protein-coding genes with at least 1 transcript per million 
(TPM) from libraries constructed with Smart-seq2 across 
the dilution series of input RNA (Fig. 1a). This is compara-
ble to Ovation, which detected between 14,398 and 16,545 
genes across the same range of RNA input. In contrast, 
libraries generated with SMARTer had lower sensitivity 
compared with the other two methods and only detected 
6218 unique protein-coding genes from 100 pg of total 
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Fig. 1  Comparison of different low-input mRNA-seq methods. a 
Number of genes detected when using three different mRNA-seq 
library preparation methods from a dilution series of total RNA. 
b (Above) Read distribution along the length of all protein-coding 
transcripts for Smart-seq2, SMARTer and Ovation samples gener-
ated from 100  pg of total RNA. Relative read coverage depth was 
binned into 100 bins from the 5′ terminus to 3′ terminus of each tran-
script. (Below) Heatmaps of read coverage for the 1000 most highly 

expressed transcripts across the three methods. c Heatmap depicting 
pairwise Pearson correlation of gene expression values for all sam-
ples in the dilution series. d Correlation of the TPM of all detected 
ERCC RNA spike-in molecules with their relative input concentra-
tion. r represents Pearson correlation. Numbers in parentheses indi-
cate the percentage of ERCC spike-in oligos that were detectable in 
the given sample
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RNA. Moreover, Smart-seq2 outperformed both SMARTer 
and Ovation in detecting low-to-moderately abundant tran-
scripts (i.e., < 10 TPM) (Online Fig. S1). Methods that 
enable the sequencing of full-length transcripts provide a 
more accurate representation of the transcriptome. We then 
determined which method captured full-length transcript 
sequences by comparing the coverage of mRNA-seq reads 
along Araport11-annotated protein-coding genes (Cheng 
et al. 2017) (Fig. 1b). mRNA-seq libraries generated with 
Smart-seq2 produced the most uniform coverage along 
protein-coding genes, while SMARTer library mRNA-seq 
reads were most abundant in the middle of transcripts and 
Ovation library reads showed uneven coverage that varied 
from gene to gene.

We also assessed the reproducibility of quantifying tran-
script levels from varying amounts of low-input total RNA 
for the three mRNA-seq methods. Transcript levels across 
the dilution series were most highly correlated with each 
other for libraries generated with the Smart-seq2 protocol 
(Fig. 1c). The increased reproducibility of Smart-seq2 com-
pared to the other two methods was most prevalent when 
starting with sub-nanogram levels of total RNA. To deter-
mine the accuracy and sensitivity of the three mRNA-seq 
library preparation methods, we introduced 92 synthetic 
poly(A) RNAs in specific molar ratios [i.e., ERCC spike-in 
mixes; LifeTech, (Baker et al. 2005)] to the samples before 
generating libraries with these methods. We compared the 
TPM levels detected for each ERCC spike-in with the rela-
tive amount added to each of the samples (Fig. 1d). Com-
pared with the SMARTer and Ovation methods, libraries 
generated with Smart-seq2 consistently produced ERCC 
spike-in values that were more highly correlated with their 
known input amounts across the dilution series. Moreover, 
libraries generated with Smart-seq2 detected a higher per-
centage of the ERCC spike-ins added to the samples further 
suggesting that Smart-seq2 was the most sensitive method. 
Altogether, our comparisons indicate that Smart-seq2 pro-
duces more sensitive, uniform, reproducible and accurate 
transcriptome profiles from Arabidopsis embryos especially 
when starting with sub-nanogram quantities of total RNA. 
Because the Smart-seq2 method is published, it also offers 
the advantage of being substantially less expensive com-
pared with the other two methods.

A developmental time series of Arabidopsis embryo 
transcriptomes

In order to profile transcriptome dynamics during Arabi-
dopsis embryogenesis, we generated Smart-seq2 libraries 
from total RNA collected from embryos spanning presump-
tive morphogenesis (pre-globular to late heart) and matura-
tion (early torpedo to mature green) phases. More specifi-
cally, RNA was extracted from 50 embryos at each of these 

8 different stages in biological triplicate (1200 embryos 
total; Fig. 2a). Embryos were staged based on their distinct 
morphologies as represented in Fig. 2a (see “Materials and 
methods”  for details regarding embryo isolations).

Sequencing of the 24 libraries on an Illumina sequenc-
ing platform yielded a total of over 792 million paired 50 
base reads. After adaptor trimming with Cutadapt (Martin 
2011), transcript abundances were quantified using Kallisto 
(Bray et al. 2016) and the Araport11 annotations (Cheng 
et al. 2017). In total, 624 million read pairs (78.8%) pseudo-
aligned concordantly to the Arabidopsis transcriptome 
(Online Tables S1 and S2). Over 15,000 genes were detected 
at > 1 TPM in every sample, with a gradual increase in the 
total number of expressed genes through the early heart 
stage. We defined a gene as being expressed in the embryo if 
it had a mean TPM value of > 1 in at least one developmen-
tal stage. Using this definition, we found that 21,433 genes 
(63.8% of all annotated genes) are expressed in developing 
embryos. Pearson correlations between biological replicates 
exceeded 0.97 in all pairwise comparisons, demonstrating 
that the results were highly reproducible (Online Table S3).

As previously shown, contamination by RNAs originating 
from the surrounding maternal seed coat and endosperm has 
been a frequent problem leading to erroneous conclusions 
when generating early embryonic transcriptomes (Schon 
and Nodine 2017). To determine whether significant RNA 
contamination exists in our datasets, we applied the tissue 
enrichment test (Schon and Nodine 2017) to each of the 24 
embryonic sequencing libraries. This test revealed a strong 
enrichment of genes specific to the embryo proper in all 
samples (Fig. 2b). Additionally, suspensor-specific genes 
were statistically enriched in pre-globular and globular 
embryos (adjusted p value < 0.001). In contrast, none of 
the five seed coat or endosperm tissues were enriched in 
any sample at any stage. Therefore, we concluded that the 
mRNA-seq time series generated in this study represents 
transcripts from whole embryos.

To further assess the quality of our mRNA-seq time 
series, we compared it to publicly available embryonic 
gene expression data. The datasets we used were the 
laser capture microdissection (LCM) microarray data 
(Belmonte et  al. 2013), an mRNA-seq time course of 
late-stage embryos (Schneider et al. 2016) and timed, 
reciprocal crosses of early embryonic stages (Nodine 
and Bartel 2012). Each of these datasets was high quality 
and contamination-free (Online Fig. S2). To enable com-
parisons of the mRNA-seq and microarray datasets, we 
linearized the mRNA-seq data via DESeq2’s variance sta-
bilizing transformation (VST) (Love et al. 2014) (Online 
Table S2). We then set a uniform baseline score of five for 
all datasets and performed a principal component analy-
sis (PCA) (Fig. 2c). This analysis showed that PC 1 and 
2, accounting together for about 62% of the variation, 
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stratified the transcriptomes according to their devel-
opmental stage. The samples followed an arch-like pat-
tern, with transcriptomes from similar embryonic stages, 
but produced by different researchers, grouped in close 
proximity. This demonstrates that despite different meth-
ods of tissue isolation and transcript measurement, the 
global temporal dynamics revealed in the current study 

are consistent with expectations established by previously 
published datasets.

Arabidopsis embryos have a unique transcriptome

To assess the broader developmental context of our 
embryo time series, we compared it to a large collection of 

Fig. 2  mRNA-seq time course 
of the Arabidopsis embryonic 
transcriptome. a Overview of 
the performed experiment. From 
each of the displayed stages, 
total RNA was isolated from 50 
embryos dissected from ovules 
in biological triplicate. Smart-
seq2 libraries were prepared for 
each sample, and the resulting 
libraries were sequenced on an 
Illumina instrument. b Results 
from the tissue enrichment test 
(Schon and Nodine 2017) on the 
obtained embryonic transcrip-
tomes revealed a significant 
enrichment for embryo proper 
and suspensor transcripts (in 
the early stages), but no sig-
nificant seed coat or endosperm 
contamination across all stages. 
c PCA displaying the embryo 
time series from this study in 
comparison with other embryo 
transcriptomics data (Nodine 
and Bartel 2012; Belmonte et al. 
2013; Schneider et al. 2016). 
The centroids for each stage are 
depicted as dots connected by a 
gray line
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transcriptomes from different Arabidopsis tissues (Klepik-
ova et al. 2015, 2016). These two datasets currently pro-
vide the most comprehensive mRNA-seq maps available in 
Arabidopsis and include 27 different tissues and 31 devel-
opmental time points for a total of 153 distinct samples. 
We also included leaf and floral bud Smart-seq2 data that 
we previously generated to control for differences between 
protocols and laboratory conditions (Lutzmayer et al. 2017; 
Schon et al. 2018). Together with the early and late embryo 
samples described above, we have 186 additional mRNA-seq 
libraries to compare with the 24 embryo time series samples 
produced in this study.

To compare the embryonic transcriptome to post-embry-
onic tissues, we built a pairwise correlation matrix of the 
210 samples mentioned above and included two RNA-seq 
collections generated on somatic embryos produced by two 
different protocols (Wickramasuriya and Dunwell 2015; 
Magnani et al. 2017; Online Table S3). This correlation 
matrix was used to hierarchically cluster all samples in a 
single dendrogram (Fig. 3a, all sample names shown in 
Online Table S1). Similar tissues largely grouped together, 
and a set of 15 general “tissue clusters” emerged, exclud-
ing samples derived from tissue culture. Embryo samples 
were partitioned into four clusters that were separated by 
developmental time: 1-cell/2-cell to globular stage embryos 
(referred to as pre-cotyledon), early heart through bent coty-
ledon (transition), green embryos 10 to 13 days after pollina-
tion (mature green), and post-green embryos 15 days after 
pollination or older clustered with dry seeds (post-mature 
green). These four groups will be referred to as embryonic 
“phases” below.

To gain insights into the global relationships between 
these tissue clusters, we performed t-distributed stochas-
tic neighbor embedding (t-SNE) (Fig. 3b; detailed version 
Online Fig. S4). Post-embryonic tissue clusters radiated out 
from the “shoot apical meristem” cluster, connected via a 
loose collection of intermediate tissues that were labeled 
“nascent tissue.” In contrast, embryos formed a distinct 
group from all post-embryonic tissues and were stratified 
by developmental time. In both hierarchical clustering and 
t-SNE analysis, a large gap separates all embryos collected 
at or before eight days after pollination (bent cotyledon 
stage) from mature green embryos and dry seeds. There-
fore, our analysis suggests that the Arabidopsis embryonic 
transcriptome undergoes radical global changes after both 
the globular and bent cotyledon stages.

To determine what specific transcript populations make 
the embryonic transcriptome unique, gene expression within 
all 15 tissue clusters was then compared to the global aver-
age. Transcripts that were at least fourfold significantly 
more abundant (ANOVA, Benjamini–Hochberg adjusted p 
value < 0.05) were considered enriched in that cluster if they 
were also significantly higher than their nearest neighbor 

on the dendrogram (Online Table S4). The inverse was also 
calculated to generate a list of genes depleted in a given 
tissue (Online Table S5). Roots had the highest number of 
genes enriched only in the given tissue and nowhere else 
(Fig. 3c). Of embryo phases, pre-cotyledon possessed the 
largest number of exclusively enriched genes at 363. This 
set includes well-known embryo markers such as LEC1, 
LEC2, PLT1, PLT2, WOX2, WOX8 and DRN (Meinke et al. 
1994; West et al. 1994; Haecker et al. 2004; Aida et al. 2004; 
Chandler et al. 2007; Galinha et al. 2007; Lau et al. 2012), 
and a much larger cohort of uncharacterized genes (Online 
Table S4). However, the most substantial difference between 
embryos and other plant tissue types appears to come from 
the genes specifically downregulated (Online Table S5). 
With the exception of mature pollen, all four phases of 
embryogenesis had a larger set of genes exclusively depleted 
from their transcriptomes than any post-embryonic tissue 
(Fig. 3c). Additionally, 38% of genes depleted in the pre-
cotyledon phase were also depleted in dry seeds. These 
genes are largely related to photosynthesis, including 13/13 
annotated subunits of photosystem I, 9/15 subunits of photo-
system II and 14/20 light-harvesting complex genes. These 
core components of photosynthesis are absent early in mor-
phogenesis, become abundant during the transition phase, 
but drop precipitously again in mature embryos (Online Fig. 
S4). This suggests that gene expression dynamics are tightly 
controlled during embryo development.

Model‑based clustering reveals co‑expressed 
groups, recapitulating specific biological functions

To examine temporal changes in gene expression, protein-
coding genes detected at ≥ 1 TPM in at least one embry-
onic stage of the Smart-seq2 time series were subjected to 
model-based clustering by Mclust [(Scrucca et al. 2016), 
see  “Materials and methods”]. Mclust classifies points 
according to a set of Gaussian mixture models and chooses 
the optimal model parameters to maximize the Bayesian 
information criterion (BIC). The mean TPM of 18,600 
genes were converted to z-scores, and based on analysis 
with Mclust, the optimal cluster number was 24 (Online 
Fig. S5). These 24 distinct covariance clusters, each com-
posed of 290-1669 genes, were organized into four groups: 
(A) highest during the pre-cotyledon phase, (B) decreas-
ing between transition and mature phases, (C) highest dur-
ing the transition phase and (D) highest during the mature 
phase (Fig. 4a; Online Table S6). To evaluate the accuracy 
of these covariance clusters, we examined the levels of 
92 synthetic poly(A) RNAs [ERCC RNA Spike-In Mix; 
LifeTech, (Baker et al. 2005)] that were added to the sam-
ples in specific amounts during RNA isolation. The con-
centrations of the oligos in the mix spanned six orders of 
magnitude, but the ratio of each oligo relative to the others 
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in the mix remained constant in all samples. Therefore, the 
ERCC spike-in RNAs represent a group of “covarying tran-
scripts” across the time series. Fifty-seven ERCC RNAs 
passed the detection threshold of 1 TPM, covering four 
orders of magnitude of abundance. All 57 detected spike-in 
transcripts were placed in cluster A6, demonstrating that 
BIC clustering successfully identifies groups of covarying 
genes over a large dynamic range of expression.

To investigate whether temporal covariance of gene 
expression in the embryo is connected to biological function, 
we performed gene ontology (GO) enrichment analysis on 
each BIC cluster (Ashburner et al. 2000; The Gene Ontol-
ogy Consortium 2017). Compared to a background of all 
genes expressed during embryogenesis, all clusters showed 
an overrepresentation of at least one GO term (hypergeomet-
ric distribution p value < 0.05, Benjamini–Hochberg mul-
tiple testing correction; Online Table S6). A selection of 
the most strongly enriched terms in each cluster was exam-
ined in greater detail. For general insights on all clusters, 
enrichments and depletions for terms in the domain “cel-
lular_component” are shown (Fig. 4b). Clusters peaking in 
the globular or heart stage have a tendency to be enriched 
for “mitochondrion” annotations, while “chloroplast” GO 
terms were predominantly associated with clusters that peak 
later in the transition toward mature embryos. In contrast, 
“nucleus”-affiliated genes tend to be broadly expressed with 
a bias toward early expression, while genes with very early 
or very late expression tend to be associated with “extracel-
lular region” GO terms.

The strongest early expression clusters were both 
enriched for the biological process term “killing of cells 
of other organism” (Fig. 4c). All 67 genes associated with 
this term in clusters A1 and A2 are defensin-like genes, a 
large family of short cysteine-rich peptides that were first 
characterized for their role as antimicrobial peptides (Sil-
verstein et al. 2005), and a subset were later demonstrated 
to influence suspensor elongation during early embryogen-
esis (Costa et al. 2014). At the opposite end of the time 
series, cluster D6 is enriched in “seed oil body biogenesis” 

GO terms, represented by the oleosins OLE1, OLE2 and 
OLE4, as well as SEIPIN1 and OIL BODY-ASSOCIATED 
PROTEIN 1A, both of which regulate the formation of the 
lipid droplets that accumulate in mature seeds (López-
Ribera et al. 2014; Cai et al. 2015). Genes associated with 
“cell division” GO terms tend to be expressed through-
out the time series but are highest at the early heart stage 
(cluster B4, Fig. 4c). This cluster is also enriched for 
embryo lethal mutations as defined by the Seedgenes 
database (Meinke et al. 2008), with 55 Seedgenes mutants 
belonging to this cluster (p value < 2.3e−8, Online Fig. S6). 
This cluster is most strongly associated with the biological 
process “cell division” (GO:0051301, p value < 2.2e−14) 
and contains 13 cyclins, along with 48 other cell cycle 
associated genes. Even more strongly enriched for embryo 
lethal genes is cluster B6, which peaks early during the 
heart stage but is sustained throughout the transition 
phase. This cluster is one of a few associated with “chlo-
roplast organization,” and 28 of the 44 embryo lethal 
genes with this expression pattern were reported to arrest 
at the globular stage, including the gene ACCUMULA-
TION OF PHOTOSYSTEM ONE 2 (APO2, AT5G57930; 
(Meinke et al. 2008)). Indeed, a study focused on chloro-
plast-localized lethal genes concluded that embryo arrest 
at the globular stage was a common feature of chloroplast 
disruption (Bryant et al. 2011). Altogether this suggests 
that making functional chloroplasts is a key checkpoint 
during embryo development, required to move beyond the 
morphogenesis phase.

Identification of embryo‑specific marker transcripts

While forward genetic screens and functional studies have 
led to the identification of important developmental regula-
tors and embryonic markers (Haecker et al. 2004; Meinke 
et al. 2008; Rademacher et al. 2011; Lau et al. 2012), we 
hypothesized that we could define additional markers with 
the embryonic transcriptome datasets. To identify embry-
onic markers, we applied the tool MGFR (El Amrani et al. 
2015) on different embryonic samples belonging to the four 
developmental phases (i.e., pre-cotyledon, transition, mature 
green and post-mature green). We required that protein-
coding transcripts were > 5 TPM in at least one embryonic 
stage, and after initial marker identification, we also required 
that the marker transcript levels were at least fivefold higher 
compared to the other stages. This led to the identifica-
tion of 107 pre-cotyledon, 141 transition, 84 mature green 
and 460 post-mature green marker transcripts (792 total; 
Fig. 5a, b, Online Table S7). Because transcription factors 
are major determinants of cellular differentiation and have 
been utilized as embryonic markers, we investigated how 
many transcription factors are contained within this set of 

Fig. 3  Comparison of embryo transcriptome to other plant tissues. a 
Hierarchical clustering of 217 mRNA-seq libraries of various Arabi-
dopsis tissues. Dendrogram was produced by clustering Pearson cor-
relation of  log2(TPM + 1) using Ward’s criterion. b T-SNE comparing 
transcriptomes from different tissues and sources (Nodine and Bartel 
2012; Belmonte et al. 2013; Klepikova et al. 2015, 2016; Schneider 
et al. 2016; Lutzmayer et al. 2017; Schon et al. 2018). Tissue clusters 
are defined by the results in panel a. c Number of genes in each tissue 
group cluster that show either enriched or depleted expression across 
different tissues. Minimum fourfold change in tissue cluster versus 
all other samples, ANOVA p value < 0.05 with Benjamini–Hoch-
berg multiple testing correction. Gene expression was additionally 
required to be significantly higher than the neighboring set of samples 
on the hierarchical tree (ANOVA, BH-adjusted p value < 0.05)

◂
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Fig. 4  Covariance clustering 
of expressed genes across the 
embryo time series. a Average 
maximum-normalized expres-
sion values for all genes in each 
of the 24 clusters generated 
by Mclust. Numbers in each 
panel indicate the number of 
genes grouped in that cluster, 
and polygons represents ± 1 
standard deviation. b Heatmaps 
of gene ontology (GO) term 
enrichment (red) and depletion 
(blue) for all 24 clusters for the 
terms “extracellular region,” 
“nucleus,” “mitochondrion” and 
“chloroplast”. c Select GO term 
enrichments representative of 
the strongest enrichments across 
24 clusters

-log10 p-value
depleted0 >5 enriched0 >5

GO:0006412
translation

GO:0010344
seed oilbody biogenesis

GO:0006468
protein phosphorylation

GO:0015979
photosynthesis

GO:0009658
chloroplast organization

GO:0051301
cell division

GO:0003700
DNA-binding

transcription factor

GO:0031640
killing of cells of
other organism

GO:0005634
nucleus

GO:0005576
extracellular region

GO:0005739
mitochondrion

GO:0009507
chloroplast

348 290 414 627 1010

566

659 1155 778 1669 1190 1052

1174 1440

484 972 334 1350

480 298853 596 487 381

1 2 3 4 5 6

A

B

C

D

R
el

at
iv

e 
ab

un
da

nc
e

Developmental stage

1

0.5

0
1

0.5

0
1

0.5

0
1

0.5

0

A

B C



85Plant Reproduction (2019) 32:77–91 

1 3

phase-enriched markers. For this, we used the transcrip-
tion factor annotations available from PlantTFDB 4.0 (Jin 
et al. 2017). We identified 7 pre-cotyledon, 13 transition, 6 
mature green and 31 post-mature green marker transcrip-
tion factors highly enriched in their respective phases (57 
total; Fig. 5a, b). In addition to identifying known transcrip-
tion factor markers during morphogenesis such as WOX2, 
WOX8 and DRN, we also identified new markers including 
two storekeeper protein-related transcripts (AT1G11510 and 
AT4G00390), AT1G68320/MYB62 and AT2G36890/RAX2 
(Fig. 5c, Online Table S7). In addition to transcription 
factors, we also detected transcripts encoding a potential 
transcriptional co-activator (AT5G09240), a putative ubiq-
uitin E3 ligase (AT3G11600) and an ubiquitin-like pro-
tein (AT1G53930). To provide a more complete resource, 
we also performed this marker analysis on the individual 
embryo stages (Online Table S7).

Somatic and zygotic embryo transcriptomes are 
distinct from each other

Somatic embryos are widely thought to be suitable models 
for studying zygotic embryogenesis. However, it remains to 
be determined how similar somatic and zygotic embryos are 
to each other in terms of their transcript and protein popula-
tions. We hypothesized that transcripts upregulated during 
the onset or progression of somatic embryogenesis should 
resemble zygotic embryo phases if somatic and zygotic 
embryo transcriptional processes are similar.

Two studies performed RNA-seq on somatic embryos 
derived from late-staged zygotic embryos during either their 
initiation (Magnani et al. 2017) or developmental progres-
sion (Wickramasuriya and Dunwell 2015). Magnani et al. 
collected torpedo staged embryos and dedifferentiated them 
into calli by culturing in auxin-rich medium in the dark. To 

Fig. 5  Identification of 
developmental phase markers. 
Overview of the number of all 
(a) and transcription factor (b) 
marker genes identified for each 
developmental phase. c Marker 
gene transcript levels. (Top) 
Metaplots showing transcript 
levels for each marker group. 
Individual transcripts were 
normalized as TPM and scaled 
between 0 (not detected) and 
1 (highest transcript levels 
observed). Purple, yellow, green 
and rose are used to indicate 
pre-cotyledon, transition, 
mature green or post-mature 
green phase embryos, respec-
tively. Standard deviations 
for each set are indicated by 
the corresponding shading. 
(Bottom) A heatmap display-
ing row-scaled TPM values of 
marker genes identified (rows) 
across various embryonic stages 
(columns). Rows are sorted 
descendingly by their specific-
ity score. Phases are indicated 
by the colored bars on the left. 
Select transcription factors are 
labeled
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induce somatic embryogenesis, callus cultures were then 
moved to auxin-free media and further cultured in dark con-
ditions to induce somatic embryogenesis. LEC2 expression 
is one of the earliest markers of calli that are competent 
to undergo somatic embryogenesis (Su et al. 2009). Thus, 
Magnani et al. purified nuclei from LEC2 expressing calli 
cells (+LEC2) with INTACT (Deal and Henikoff 2010) to 
profile somatic embryo transcriptomes upon their initia-
tion. RNA-seq was then performed on the +LEC2 samples 
together with isolated−LEC2 samples from the calli which 
served as a negative control. In the Wickramasuriya study, 
direct somatic embryogenesis was performed on bent coty-
ledon embryos whereby embryos were cultured with auxin 
under long day conditions and somatic embryos that could 
be morphologically distinguished from the surrounding calli 
were harvested 5, 10 and 15 days after auxin treatment. We 
quantified transcript levels from these studies as described 
above (also see “Materials and methods”).

To assess whether transcriptomes of somatic embryos 
derived from late-stage zygotic embryos resemble those 
from early zygotic embryos, late zygotic embryos or another 
developmental phase, we first reanalyzed the published data 
to determine expressed protein-coding genes (> 1 TPM) 
that were upregulated > fourfold (i.e., upregulated DEGs). 
The data from Magnani and colleagues were analyzed with 
DESeq2 (Love et al. 2014), allowing a FDR of 5%. We 
detected 236 upregulated DEGs (Online Table S8) of which 
185 (78%) overlapped with those reported in this study. 
Because the data published by Wickramasuriya and Dun-
well do not include biological replicates, we regarded all 
expressed protein-coding genes with transcripts increased 
at least fourfold during somatic embryo development as sig-
nificantly upregulated (i.e., 112 upregulated DEGs; Online 
Table S8).

To determine which tissues the upregulated DEGs from 
somatic embryos are predominantly expressed in, we per-
formed a tissue enrichment test [TissueEnrich; (Jain and 
Tuteja 2018)]. As a reference, we used the embryo time 
series described in this study together with the Klepikova 
expression data (Klepikova et al. 2015, 2016), and leaf 
and floral bud mRNA-seq datasets generated with Smart-
seq2 by our group (Lutzmayer et al. 2017; Schon et al. 
2018). To improve the ability to detect more tissue-spe-
cific gene expression patterns, the Klepikova data were 
manually curated to remove organs composed of tissues 
also sequenced at the same developmental stage (Online 
Table S8). Upon analyzing the tissue enrichments of the 
Wickramasuriya upregulated DEGs, we observed a sig-
nificant enrichment for nine non-embryonic tissues. Seven 
corresponded to shoot-derived tissues, and two were root 
tissues (Fig. 6a). Similarly, the tissue enrichment analysis of 
the Magnani DEGs also revealed no significant enrichment 
for embryonic tissues. However, the top two significantly 

enriched tissue types were root tissues (Fig. 6b). We also 
repeated the analysis with the list of DEGs included in the 
original publications, and although we observed a trend 
toward a significant enrichment of heart stage embryos 
(p = 0.06), no embryonic tissues passed the p < 0.05 thresh-
old (Online Fig. S7 and Online Table S8). In contrast, when 
the enrichment test was performed on upregulated DEGs 
from previously published early (Nodine and Bartel 2012) 
and late zygotic embryo datasets (Schneider et al. 2016), we 
detected a highly significant enrichment for the respective 
embryonic stages as expected (Online Fig. S7).

In order to further estimate which tissues resemble 
somatic embryos derived from late-staged zygotic embryos, 
we performed a correlation analysis in which we compared 
somatic embryo expression data against the mean expres-
sion of the previously identified tissue clusters (Fig. 6c). 
Although somatic embryos are well correlated with tran-
scripts characteristic of transition and mature phases at their 
earliest time point (r = 0.85), this similarity decreases over 
time. Moreover, as somatic embryos develop, they appear 
to more resemble calli, as well as specific tissues such as 
the shoot apical meristems and roots. We detected a very 
low correlation between the +LEC2   transcriptomes and all 
zygotic embryo stages. In fact, transcript abundances dur-
ing the pre-cotyledon phase had the second lowest correla-
tion of all 17 tissue clusters. When looking at a few select 
transcription factors (Lau et al. 2012) in more detail, we 
also observed conflicting trends. We found that transcripts 
encoding several key developmental regulators such WOX2, 
WOX8, LEC1 and LEC2 were lowly abundant in the somatic 
embryos (< 5 TPM), or not at all in the +LEC2   cells (< 1 
TPM), while others such as the PLETHORA family of tran-
scription factors (PLT1, PLT2, PLT3 and BBM) were highly 
abundant (> 30 TPM) (Online Fig. S8). Furthermore, we 
found a high correlation between both somatic embryo data-
sets and germinating seeds.

Discussion

A variety of low-input mRNA sequencing (mRNA-seq) 
methods have been developed for tissue-specific and sin-
gle-cell sequencing (Chen et al. 2018). Here, we performed 
a side-by-side comparison of three low-input mRNA-seq 
protocols on Arabidopsis embryos and evaluated their per-
formance. Our analysis showed that the substantially less-
expensive Smart-seq2 method using off-the-shelf reagents 
significantly outperformed two commercially available kits 
when applied to low-input plant embryo RNA. We used 
Smart-seq2 to profile the transcriptomes of eight stages 
spanning embryonic development. Our data are consistent 
with other published transcriptomes and bridge an impor-
tant gap previously missing in the field. While other studies 
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were able to profile either early or late Arabidopsis embryos, 
we obtained a more comprehensive time series, from the 
pre-globular to the mature green stages. Our analysis has 
shown that these transcriptomes are of high quality and 
have no significant contamination from maternal tissues. 
Moreover, because the embryonic transcriptomes presented 
here were generated with Smart-seq2 technology and deeply 
sequenced, they also have an increased number of detectable 
genes with more uniform coverage along the transcripts, and 
a larger dynamic range relative to other early embryonic 
datasets.

We observed that embryos have a unique transcriptome 
compared to other Arabidopsis tissue types. We speculate 

that this is due to the unique differentiation processes 
occurring during embryogenesis. This is supported by the 
results of our model-based clustering analysis, which indi-
cates that different biological processes are enriched during 
the four different phases of embryogenesis. For example, 
model-based clustering correctly (1) co-clustered all ERCC 
spike-in controls, (2) identified a functional enrichment of 
mitochondria-related transcripts in the pre-cotyledon stages 
(Gao et al. 2018), and (3) also correctly detected timing of 
chlorophyll accumulation (Kim et al. 2002).

Analysis of the embryonic transcriptomes produced in 
this and other studies indicates that Arabidopsis embryonic 
development can be partitioned into either pre-cotyledon, 
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Fig. 6  Somatic embryogenesis has limited resemblance to zygotic 
embryogenesis. Tissue-specific gene enrichment (Jain and Tuteja 
2018) of DEGs from somatic embryos (Wickramasuriya and Dunwell 
2015) (a) and calli expressing LEC2 (+LEC2) (Magnani et al. 2017) 
(b). DEGs were tested for enrichment against the embryo time series 
produced in this study and the Klepikova atlas (Klepikova et al. 2015, 

2016). A significance level of p = 0.05 is indicated by the dotted line. 
c Correlation analysis of the somatic embryo and +LEC2 transcrip-
tomes against the tissue clusters established in Fig. 3. For a detailed 
overview which samples contribute to each cluster, see Online 
Table S1
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transition, mature green or post-mature green phases, each 
of which are characterized by distinct biological processes. 
Based on these results, we propose that embryos progress 
through these four distinct phases of development prior to 
the onset of germination. We were also able to establish 
a set of stringently defined temporal markers. In addition 
to several known important developmental regulators, this 
set of stage-specific markers contains many uncharacterized 
candidates for follow-up gene expression and mutagenesis 
studies.

Although somatic embryos are often thought to be a 
suitable model to study gene-regulatory processes occur-
ring during zygotic embryogenesis, we observed signifi-
cant differences between the transcriptomes of zygotic and 
somatic embryos. Based on our analysis, this appears to be 
at least partially due to the culturing conditions used to gen-
erate somatic embryos. For example, we observed a signifi-
cant enrichment for green tissues in the DEG set from the 
Wickramasuriya et al. study where somatic embryos were 
cultured in long day light conditions, and a predominant 
enrichment of non-green tissues in the DEGs from Magnani 
et al. where somatic embryos were cultured in the dark. Fur-
thermore, we detected a strong correlation of both somatic 
embryos and +LEC2 cells with germinating seeds, which 
tentatively suggest that somatic embryogenesis may more 
closely resemble processes occurring during germination 
rather than embryogenesis. However, we could not detect 
the expression of several select transcription factors in the 
somatic embryo datasets including LEC2 transcripts which 
were < 1 TPM in the +LEC2 cells. Therefore, our analysis 
suggests that zygotic and somatic embryos are transcription-
ally distinct. However, the field would benefit from further 
transcriptome comparisons between zygotic embryos and 
additional datasets of somatic embryos derived from either 
late-staged zygotic embryos or explants from mutants or 
stress-treated tissues (Mozgová et al. 2017; Kadokura et al. 
2018).

Materials and methods

Plant material and growth

Col-0 seeds were grown in a climate-controlled growth 
chamber set at 20–22 °C temperature with a 16-h light/8-h 
dark cycle.

RNA extraction, cDNA library preparation 
and next‑generation sequencing

Embryos were dissected as described in Nodine and Bartel 
(2010) except that embryos were dissected and washed 3 × in 
10% RNAlater (Thermo Fisher). More specifically, single 

embryos were hand-dissected from seeds immersed in 10% 
RNAlater with tungsten needles (Fine Science Tools), and 
transferred with glass capillaries (Sutter Instruments) to 
depression slides (VWR) containing 200 µl of 10% RNAlater. 
Transfer to fresh 10% RNAlater with different glass capillar-
ies was repeated 2 × for a total of three washes, and then, each 
embryo was deposited in a LoBind Eppendorf tube contain-
ing 30 µl of 100% RNAlater. After every five embryo dissec-
tions, 10% RNAlater was replaced with fresh buffer. For each 
biological replicate, this process was repeated 50 ×. RNA 
was isolated from each pool of 50 embryos per sample col-
lected in 30 µl of 100% RNAlater by adding 500 µl of TRIzol 
(Life Tech) followed by brief vortexing (2 × for 2 s each) and 
incubating at 60 ˚C for 30 min. Sterile nuclease-free pestles 
were used to crush bent cotyledon and mature green staged 
embryos (50 ×) within a 1.5-ml tube. Crushing was not nec-
essary for earlier stages. ERCC spike-ins (LifeTech) were 
added during the TRIzol preparation before the addition of 
100 µl of chloroform, and then, samples were vortexed briefly 
(2 × for two seconds each) and incubated at room temperature 
for three minutes. After centrifugation at 12,000g for 15 min 
at 4 °C, the aqueous phase was transferred to a new LoBind 
tube. To precipitate the RNA, an equal volume of isopro-
panol and 1.5 µl of GlycoBlue (Thermo Fisher) was added 
followed by a − 20 °C incubation for 15–18 h and centrifuga-
tion at > 20,000 g for 30 min at 4 °C. After removal of the 
supernatant, the pellet was washed by adding 500 µl of 75% 
ethanol, vortexing briefly and then centrifuged at > 20,000 g 
for 15 min at 4 °C. The 75% ethanol wash step was repeated 
1 ×. As much ethanol as possible was removed followed by 
the drying of the pellet by letting the Eppendorf tube sit on 
ice with lid open for 10 min. Precipitated RNA was then 
resuspended with 5–12 µl of nuclease-free water, stored at 
− 80 °C, and 1 µl was used for mRNA-seq library construc-
tion. mRNA-seq libraries were prepared with SMARTer 
Ultra Low Input RNA Kit for sequencing—v3 (Clontech) or 
Ovation PicoSL WTA System V2 (Nugen) according to the 
manufacturer’s recommendations. Smart-seq2 libraries were 
generated according to (Picelli et al. 2013). To control for 
library quality, length distributions of both amplified cDNA 
and final libraries were inspected using an Agilent DNA HS 
Bioanalyzer Chip. Libraries were diluted and sequenced 
with paired-end 50 base mode on an Illumina HiSeq 2500 
machine.

Pseudo‑alignment and mRNA‑seq quantification

The pseudo-aligner Kallisto was used for quantification of 
all mRNA-seq datasets [v0.44.0, (Bray et al. 2016)]. An 
index was generated for all transcripts in the Ensembl build 
of the TAIR10 annotation set (release version 40, ftp://
ftp.ensem blgen omes.org/pub/plant s/relea se-40/gff3/arabi 
dopsi s_thali ana/Arabi dopsi s_thali ana.TAIR1 0.40.gff3.gz), 

ftp://ftp.ensemblgenomes.org/pub/plants/release-40/gff3/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.40.gff3.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-40/gff3/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.40.gff3.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-40/gff3/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.40.gff3.gz
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including all 92 ERCC RNA spike-in sequences (https ://
www-s.nist.gov/srmor s/certi ficat es/docum ents/SRM23 74_
putat ive_T7_produ cts_NoPol yA_v1.fasta ). First, a FASTA 
file containing each transcript model was built by running 
bedtools getfasta [v2.17.0, (Quinlan and Hall 2010)] with 
a BED12 formatted file generated from the TAIR10 GFF3 
above and the TAIR10 genome (ftp://ftp.ensem blgen omes.
org/pub/plant s/relea se-40/fasta /arabi dopsi s_thali ana/dna/
Arabi dopsi s_thali ana.TAIR1 0.dna.tople vel.fa.gz). Then, 
kallisto index was run on the transcript FASTA file to gen-
erate an index file.

Before quantification, the appropriate adapter sequences 
for each mRNA-seq library were trimmed from the FASTQ 
files using Cutadapt with a minimum match length of five 
nucleotides [v1.9.1, (Martin 2011)]. Cutadapt was also used 
to trim all oligo-A or oligo-T sequences that were at least 
five nucleotides long from the ends of reads. All reads longer 
than 18 nucleotides after trimming were used as input for 
kallisto quant. kallisto quant was run on paired-end samples 
using default settings. For single-end samples, the arguments 
–fragment-length 200 –sd 100 were used. Gene-level tran-
scripts per million (TPM) were estimated by combining the 
TPM of all isoforms of protein-coding genes. Gene IDs map-
ping to mitochondria and chloroplast genomes, as well as 
the 270 kilobase mitochondrial insertion on chromosome 2 
(Stupar et al. 2001), were discarded. Last, abundances were 
renormalized to a sum of 1 million for each sample.

Quality control and tissue enrichment testing

Seed tissue enrichment tests were performed with the previ-
ously published tissue enrichment test (Schon and Nodine 
2017) using default parameters and gene-level TPM tables 
described above as input. For comparison of mRNA-seq data 
to microarray data from (Belmonte et al. 2013), a table of 
raw mRNA-seq read counts mapping to each gene was com-
bined with the mean-centered signal intensity scores from 
the Series Matrix File for GEO series GSE11262. Genes 
not represented on the Ath1 array by a single unambiguous 
prober were discarded. The samples in this table were nor-
malized with the variance stabilizing transformation func-
tion of the R library DEseq2 (Love et al. 2014). Values from 
this table were reduced by five, and all negative values were 
set to zero in order to set a uniform baseline between sam-
ples. Principal component analysis (PCA) was performed 
with the R function prcomp(center = T, scale = F).

To identify transcripts enriched or depleted in a cluster 
of tissue samples, a hierarchical tree of all samples was first 
established. Pearson correlation of  log2(TPM + 1) was cal-
culated between all pairs of samples, and hierarchical clus-
tering was performed on this correlation matrix with the 
R library pheatmap, using clustering_method = ‘ward.D’. 
An ANOVA model was built with the R function aov() to 

compare each tissue cluster to its nearest neighbor and to 
the out-group of all other samples. Any transcript whose 
levels were significantly higher than in the neighboring 
cluster (ANOVA p value < 0.05, Benjamini–Hochberg mul-
tiple testing correction), as well as significantly higher than 
the global levels with a minimum fold change of 4 and 
ANOVA adjusted p value < 0.05, was considered enriched 
for that tissue. In contrast, a transcript was considered 
depleted for that tissue if it was significantly lower  than 
both the global average and the neighboring cluster. If a 
transcript was enriched in one tissue and no other tissues, it 
was considered “exclusively enriched” in that tissue. Like-
wise, exclusively depleted transcripts were not significantly 
depleted in any other tissue cluster.

Identification of marker genes

For the identification of phase-specific markers, we imported 
the TPM values from this study and previously published 
data (Nodine and Bartel 2012; Schneider et al. 2016) into R 
(v3.5.1). We then applied the MGFR (v1.6) tool (El Amrani 
et al. 2015) with default settings using these TPM values 
and treating different samples from the same developmen-
tal phase (pre-cotyledon, transition, mature green and post-
mature green) as independent replicates. The resulting gene 
list was then subsetted for markers with a score lower than 
0.2, which corresponds to a fivefold increase in marker 
expression compared to its background (the respective other 
stages). The heatmap in Fig. 5c was generated with the Com-
plexHeatmap package (Gu et al. 2016).

Model‑based clustering

The R library Mclust (Scrucca et al. 2016) was used to 
partition expressed genes into covariance clusters. First, 
a mean TPM value was calculated across the three bio-
logical replicates of each stage in the Smart-seq2 embryo 
time series. These mean TPM values were converted 
to z-scores, or (xi − x ̄)/s, where xi is the TPM value for 
a gene in a stage, x ̄ is the mean of TPM values across 
all stages in the time series and s is the standard devia-
tion of TPM across all stages. The z-scores for all genes 
with a mean TPM of at least 1 in ≥ 1 stage were analyzed 
with the function mclustBIC(modelNames = “VVV”, 
G = seq (2,50,by = 2)) to calculate the Bayesian informa-
tion content (BIC) for models with 2 to 50 components.
(Online Fig. S5). The first stepwise increase in the number 
of components that decreased BIC was chosen as the opti-
mal number of components (24). Then, the function Mclust 
was run with the settings data = 24, modelNames = “VVV”, 
prior = priorControl().

https://www-s.nist.gov/srmors/certificates/documents/SRM2374_putative_T7_products_NoPolyA_v1.fasta
https://www-s.nist.gov/srmors/certificates/documents/SRM2374_putative_T7_products_NoPolyA_v1.fasta
https://www-s.nist.gov/srmors/certificates/documents/SRM2374_putative_T7_products_NoPolyA_v1.fasta
ftp://ftp.ensemblgenomes.org/pub/plants/release-40/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-40/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-40/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
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Somatic embryo differentially expressed gene 
testing

First, Kallisto output files from either the Wickramasuriya 
and Dunwell or the Magnani et al. datasets were imported 
into R (v3.5.1) with the tximport package (v1.8) (Soneson 
et al. 2015). The count data were then subsetted for nuclear 
protein-coding genes (see genes column in Online Table S2) 
and variance stabilized via DESeq2 (v1.20) (Love et al. 
2014). Identification of differentially expressed genes in the 
Wickramasuriya and Dunwell study was performed similar 
as in the original publication (Wickramasuriya and Dunwell 
2015). We calculated the VST fold changes between the 5- 
and 10-day samples, and the 10- and 15-day samples, respec-
tively. All genes with transcripts > 1 TPM at one stage and 
VST fold changes > 2 were kept as DEGs. For the Magnani 
et al. data, we used DESeq2’s (v1.20) pairwise Wald test 
(Love et al. 2014) to detect DEGs between the callus and the 
+LEC2 callus nuclei purified with INTACT (Magnani et al. 
2017). DEGs were then further subsetted as described above 
(transcripts > 1 TPM, VST fold change > 2).

Somatic embryo tissue enrichment testing

The TPM expression values of all samples were imported 
to R (v3.5.1) and then subsetted for our embryo time series 
and the Klepikova expression data. To avoid obfuscation of 
more specific gene expression patterns, the Klepikova data 
were manually curated to remove composite tissues that had 
more specific subtissues sequenced at the same developmen-
tal stage (Online Table S8). We then used these data to train 
the R package TissueEnrich (v1.0.6) (Jain and Tuteja 2018) 
with default parameters, and then  tested in which tissues 
DEGs are predominantly enriched/overexpressed.
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