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Abstract
AfamilyF ⊂ P(n) is r -wise k-intersecting if |A1∩· · ·∩Ar | ≥ k for any A1, . . . , Ar ∈
F . It is easily seen that if F is r -wise k-intersecting for r ≥ 2, k ≥ 1 then |F | ≤
2n−1. The problem of determining the maximum size of a family F that is both r1-
wise k1-intersecting and r2-wise k2-intersecting was raised in 2019 by Frankl and
Kupavskii (Combinatorica 39:1255–1266, 2019). They proved the surprising result
that, for (r1, k1) = (3, 1) and (r2, k2) = (2, 32) then thismaximum is atmost 2n−2, and
conjectured the same holds if k2 is replaced by 3. In this paper we shall not only prove
this conjecture but we shall also determine the exact maximum for (r1, k1) = (3, 1)
and (r2, k2) = (2, 3) for all n.

Keywords Intersecting families · Intersection properties · Frankl-Kupavskii
conjecture

1 Introduction

We say that a familyF ⊂ P(n) is r -wise k-intersecting if any r sets inF have common
intersection of size at least k. (If r is omitted it is assumed to be 2, and if k is omitted it
is assumed to be 1.) We define the collections of families Ak(n) and Bk(n) to consist
of all 3-wise k-intersecting families in P(n) and all k-intersecting families in P(n)

respectively. We also define, for a family F ⊂ P(n), the function w(F) = |F |
2n .

Frankl and Kupavskii [1] started the investigation of the function Wk1,k2(n) =
max{w(F) : F ∈ Ak1(n)∩Bk2(n)}. This is the maximum proportion ofP(n) that can
be occupied by a family that is both 3-wise k1-intersecting and (2-wise) k2-intersecting.
Equivalently, Wk1,k2(n) = max{w(F ∩ G) : F ∈ Ak1(n),G ∈ Bk2(n)}. We shall con-
centrate on themost important case, k1 = 1, k2 = 3. Frankl andKupavskii conjectured
the following:
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Conjecture 1 If F ⊂ P(n) is both 3-wise intersecting and 3-intersecting, then |F | ≤
2n−2. Equivalently, W1,3(n) ≤ 1

4 for all n.

If F is r -wise k-intersecting then so is the up-set generated by F . Thus, we may
assume throughout this paper that F is an up-set. Also, applying left-compressions to
F preserves the property of being r -wise k-intersecting so we may also assume that,
except where otherwise stated, F is left-compressed.

Also, for a family F ⊂ P(n), and for k ≥ 1, we denote by F × {0, 1}k the family
{A ⊂ P(n + k) : A ∩ [n] ∈ F}. (This arises from considering subsets of [n] as
binary sequences of length n). We observe that w(F × {0, 1}k) = w(F) and thus that
Wk1,k2(n) is non-decreasing for all k1 and k2.

We note that max{w(F) : F ∈ A1(n)} = 1
2 (achieved by, for instance, letting

F consist of all subsets of [n] containing 1), and for every fixed k2 ≥ 3 we have
max{w(F) : F ∈ Bk2(n)} tends to 1

2 as n → ∞. The Harris–Kleitman inequality thus
tells us that

lim inf
n→∞ W1,k2(n) ≥ 1

4
.

In view of this trivial inequality, the result of Frankl and Kupavskii thatW1,32(n) ≤
1
4 for all n is surprising. In this paper we shall prove considerably more, namely that
W1,3(n) < 1

4 for all n. Moreover, we shall determine the exact value ofW1,3(n) for all
n, and find the unique left-compressed families F with w(F) = W1,3(n). We write
W (n) for W1,3(n).

For small values of n, the families of maximum size can be found by simply tak-
ing the maximum 3-intersecting families (as in [3]), since these will also be 3-wise
intersecting. For n = 3, this is {123} and W (3) = 1

8 . Likewise, for n = 4, we get
{123, 1234} and W (4) = 1

8 . For n = 5, we can take all sets of size at least 4 and
W (5) = 3

16 . Likewise, for n = 6, we can take all sets whose intersection with [5] has
size at least 4 and W (6) = 3

16 . Our main result will thus consider n ≥ 7.
For odd n ≥ 7, we define the following family:

Fn = {A ⊂ [n] : 1 ∈ A, |A| ≥ n + 3

2
} ∪ {A ⊂ [n] : 1 /∈ A, |A| ≥ n − 2}.

We have that Fn is 3-intersecting and 3-wise intersecting. We also have that

w(Fn) = 1

4
+ 2−n

(
−1

2

(
n − 1
n−1
2

)
+ n

)
.

We note that lim
n→∞ w(Fn) = 1

4 , and w(Fn) ≤ 1
4 for all n ≥ 7. Also, for n ≥ 11, we

have w(Fn+2) > w(Fn). However, we have w(F7) > w(F9) > w(F11), and indeed
w(F7) > w(Fn) for odd n, 9 ≤ n ≤ 71. We shall prove the following theorem.

Theorem 1 For n ≥ 7, the following hold.
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If 7 ≤ n ≤ 72, W (n) = w(F7), and the unique left-compressed family F attaining
w(F) = W (n) is F = F7 × {0, 1}n−7.

If n ≥ 73 is odd,W (n) = w(Fn), and the unique left-compressed familyF attaining
w(F) = W (n) is F = Fn

If n ≥ 74 is even, W (n) = w(Fn−1), and the unique left-compressed family F
attaining w(F) = W (n) is F = Fn−1 × {0, 1}.

Since w(Fn) ≤ 1
4 for all n ≥ 7, Theorem 1 completes the proof of Conjecture 1.

2 Determining the Values ofW(n)

The proof of Theorem 1 is loosely inspired by the proof of the Ahlswede-Khachatrian
Theorem [2].We assume thatF is a left-compressed up-set.We also say that a family of
subsets of [n] is trivial if every element contains 1 and almost-trivial if every element
of size ≤ n − 3 contains 1. (We use triviality in the sense of [1].) The main idea
is to consider the generating set of minimal elements of the up-set F , and attempt
to transform this into a generating set for a family of subsets of [n − 1], without
reducing the value of w. Lemmas 1 and 2 will show that this is always possible unless
F is almost-trivial, and Lemma 3 will establish the upper bound for w(F) if it is
almost-trivial.

For A 
= B ⊂ [n] and |A| = |B| = r , we write A ≺ B if, for all 1 ≤ i ≤ |A|, the
i th element of A is at most the i th element of B. This is equivalent to saying that A can
be obtained from B by left-compressions so any left-compressed family containing B
must contain A.

For any up-set F , we let its generating set G = G(F) be the family of all minimal
elements of F , and we say that G generates F . We have that G is an antichain and
F = {A ⊂ [n] : ∃B ∈ G, B ⊂ A}. Also, for F left-compressed, G has the property
that if A ≺ B and B ∈ G then ∃C ∈ G with C ⊂ A (as A ≺ B implies A ∈ F). If a
generating set G has this property, we say it is a left-compressed generating set (and
in fact it then generates a left-compressed family).

For G a left-compressed generating set for F and E ∈ G, we define

D(E) = {A ⊂ [n] : A ∩ [max(E)] = E}.

For distinct E , the families D(E) must be disjoint, since if A ∈ D(E) ∩D(E ′) for
E 
= E ′ ∈ G, we may assume w.l.o.g. that max(E) ≤ max(E ′) in which case we get
E ⊂ E ′, contradicting the fact that G is an antichain. Also, since every element of
D(E) is a superset of E , we have that D(E) ⊂ F for all E ∈ G.

For A ∈ F , let E ∈ G such that E ⊂ A, with |E |minimal. Let E ′ consist of the first
|E | elements of A. Then E ′ ≺ E and E ′ ⊂ A. If E ′ /∈ G then there a set C ∈ G with
C ⊂ E ′ and |C | < |E ′| = |E |. Since C ⊂ E ′, we have that C ⊂ A, contradicting
minimality of |E |. Thus E ′ ∈ G and in fact A ∈ D(E ′).

We have that the familiesD(E) are all subfamilies ofF and are disjoint for distinct
E , and that every set in F is inD(E) for some E ∈ G. Thus F is the disjoint union of
the D(E) for E ∈ G.
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We thus have

|F | =
∑
E∈G

|D(E)|.

For a given E ∈ G, we have |D(E)| = 2n−max(E) so we obtain

w(F) =
∑
E∈G

2−max(E).

Now, we split G into two parts: G(n) = {A ∈ G : n ∈ A} and G(n) = G\G(n). If
G(n) is empty, we may consider G(n) as a generating set for a family F ′ ⊂ P(n − 1),
for which F = F ′ × {0, 1}. In this case, w(F) = w(F ′).

We thus aim to transformF into a family in which G(n) is empty, and wemay do so
by two means. The first is to simply remove some element A of G(n), which decreases
w(F) by 2−n . The second is to replace an element A ∈ G(n) with A′ = A\{n}, and
possibly remove some other elements of G that are supersets of A′. This does not
remove any elements of F but it does add A\{n} (which was not previously in F as
otherwise A would not be minimal) so it increases w(F) by at least 2−n . (In fact, this
has the effect of adding A\{n} toF but leaving it otherwise unchanged, so it increases
w(F) by precisely 2−n). We refer to this operation as shortening A.

If every element of G(n) is either removed or shortened, the resulting family will
be of the form F ′ × {0, 1} for some family F ′ ⊂ P(n − 1), so we seek to remove
or shorten every element of G(n). However, shortening may cause a violation of the
intersection properties (as if A is in G(n), B and C are in G, and A′ = A\{n}, it does
not follow that |A′ ∩ B| ≥ 3 or that A′ ∩ B ∩ C 
= φ) so we must avoid this situation
when shortening.

Suppose that some A ∈ G(n) cannot be shortened. Then there are two cases:

Case 1: ∃B ∈ G such that |A′ ∩ B| < 3.
Case 2: ∃B,C ∈ G such that A′ ∩ B ∩ C = φ.

We consider Case 1 first. We have A′ ∩ B = (A ∩ B)\n so the only way this can
occur is if |A ∩ B| = 3 and n ∈ A ∩ B. Suppose there was some i /∈ A ∪ B. Then
we consider A∗ = A\{n} ∪ {i}. Since A∗ ≺ A, we have A∗ ∈ F but |A∗ ∩ B| = 2,
contradicting thatF is 3-intersecting. Thus A∪B = [n]. We will refer to a pair (A, B)

of sets in G(n) with A ∪ B = [n] and |A ∩ B| = 3 as a sharp pair. If i < j < n and
A ∩ B = {i, j, n}, we say (A, B) is an (i, j)-sharp pair.

We now consider Case 2. Again, we have A′ ∩ B ∩ C = (A ∩ B ∩ C)\{n} so we
require A ∩ B ∩ C = {n}. Suppose there was some i in at most one of A, B, and
C . Then either i /∈ B or i /∈ C , and w.l.o.g. we can assume the former. We consider
B∗ = B\{n}∪ {i}, and again B∗ ≺ B so B∗ ∈ F , and A∩ B∗ ∩C = φ, contradicting
that F is 3-wise intersecting. Thus every i appears in exactly two of A, B, and C ,
except for i = n which appears in all three. We will refer to a triple (A, B,C) of sets
in G(n) with every element other than n appearing in exactly two of A, B, and C as a
sharp triple.
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We have thus shown that A can be shortened unless it is part of a sharp pair or a
sharp triple, so for w(F) maximum we may assume that every element of G(n) is in
at least one sharp pair or triple. In fact, shortening and removing some elements will
preserve the intersection properties provided that in every sharp pair or triple in which
at least one element is shortened, we also have at least one element removed.

We have the following two lemmas, which together imply that either w(F) ≤
W (n − 1) or F is almost-trivial. This is helpful as it is much easier to analyse the
maximum size of an almost-trivial family.

Lemma 1 If there is no (i, n−1)-sharp pair in G(n) for some i < n−1 then w(F) ≤
W (n − 1).

Proof Assume there is no (i, n−1)-sharp pair. We consider the sharp pairs and triples
in G(n). Every sharp triple contains exactly two sets containing n − 1 and one not
containing n − 1. In a sharp pair (A, B), we know that (A, B) is not (i, n − 1)-sharp
so n − 1 is not in A ∩ B. Thus exactly one of A and B contains n − 1 and one does
not.

We can now partition G(n) into G(n − 1, n) and G(n − 1, n), with G(n − 1, n)

consisting of those sets in G(n) containing n−1 and G(n − 1, n) those not containing
n−1. Then we may shorten all elements of whichever of G(n−1, n) and G(n − 1, n)

is larger (or either if they are of the same size) and remove all elements of the other,
producing a generating setG′ for a familyF ′. Since every sharp pair and triple contains
both an element of G(n − 1, n) and an element of G(n − 1, n), this will preserve the
intersection properties regardless ofwhich is shortened andwhich is removed. Because
shortening a set increases w(F) by 2−n and removing a set decreases w(F) by 2−n ,
we have

w(F ′) = w(F) + 2−n
∣∣|G(n − 1, n)| − |G(n − 1, n)|∣∣ .

In particular,w(F ′) ≥ w(F). Also, since every element ofG(n)was either removed
or shortened, no element of G′ contains n, soG′ also generates a familyF ′′ ⊂ P(n−1)
with F ′ = F ′′ × {0, 1}. Thus w(F ′) ≤ W (n − 1) so w(F) ≤ W (n − 1). ��
Lemma 2 If there is an (i, n − 1)-sharp pair in G(n) for some i < n − 1 then F is
almost-trivial.

Proof We have that there is an (i, n − 1)-sharp pair, for some i < n − 1. Let this
sharp pair be (A, B). Suppose there was C ∈ F with |C | ≤ n − 3 and 1 /∈ C . Then
there is also some other j /∈ C with 1 < j ≤ n − 1, so if n ∈ C we can take a
compression to obtain C ′ = C jn(C) which does not contain n (and is in F since it is
left-compressed), so wemay assumew.l.o.g. n /∈ C . There is still a (possibly different)
j /∈ C with 1 < j ≤ n−1, since |C | ≤ n−3. We now take A′ = C j(n−1)(C1i (A)) and
B ′ = C j(n−1)(C1i (B)). SinceF is left-compressed, both A′ and B ′ are inF . However,
A′ ∩ B ′ = {1, j, n} so A′ ∩ B ′ ∩ C ′ = φ, contradicting that F is 3-wise intersecting.
Thus there is no such C , so F is almost-trivial. ��

The next lemma concerns the maximum size of an almost-trivial family.
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Lemma 3 Let F be almost-trivial.
If n is odd, then w(F) ≤ w(Fn) with equality iff F = Fn.
If n is even, then w(F) < w(Fn−1).

Proof First, the only elements of F that could possibly fail to contain 1 are those of
size at least n−2, and there are at most n of them. Thus we may remove them to form
a trivial familyF ′ withw(F ′) ≥ w(F)−n2−n . We may remove 1 from each set inF ′
to form a family F ′′ of subsets of [2, n], with |F ′| = |F ′′|. Since F ′ is 3-intersecting,
F ′′ is 2-intersecting.

As proven in [3], if n is odd, say n = 2l + 1, then |F ′′| ≤ 2n−2 − 1
2

(n−1
l

)
with

equality iff F ′′ = [2, n](≥l+1). In this case we get precisely that w(F) ≤ w(Fn), and
the equality case we get is precisely Fn .

Also, from [3], if n is even, say n = 2l + 2, then |F ′′| ≤ 2n−2 − (n−2
l

)
. In this case

we get that w(F) ≤ 1
4 + 2−n(−(n−2

l

) + n) = w(Fn−1) − (n − 2)2−n . The equality
case we obtain is F = (Fn−1 × {0, 1})\{A ⊂ [n] : 1, n /∈ A, |A| = n − 3}. Thus,
as F is simply Fn−1 × {0, 1} with some elements (namely, all sets of size n − 3 not
containing 1 or n) excluded, we have w(F) < w(Fn−1). ��

We can now prove Theorem 1 by induction. For n = 7, we know that F is 3-
intersecting so, again from [3], the 3-intersecting family of subsets of [7] of maximum
size is in fact F7, and this is unique. Since F7 is also 3-wise intersecting, it is the
unique maximum family so W (7) = w(F7).

Assume Theorem 1 holds for n− 1. By Lemmas 1 and 2, either w(F) ≤ W (n− 1)
orF is almost-trivial. If n is even, then by Lemma 3, ifF is almost-trivial thenw(F) <

w(Fn−1), so F is not optimal. Thus the former case must hold so W (n) = W (n − 1).
If n is odd, thenwemust have eitherw(F) ≤ W (n−1) orw(F) ≤ w(Fn). Thuswe

have W (n) = max(W (n − 1), w(Fn)). Since we assume Theorem 1 holds for n − 1,
we have that W (n) = W (n − 1) for n ≤ 71, since W (n − 1) = w(F7) ≥ w(Fn).
However, for n ≥ 73, we instead have W (n) = w(Fn), and in this case the unique
maximum left-compressed up-set is Fn . Thus, by induction, we have that the value
of W (n) is precisely as stated in Theorem 1 for all n ≥ 7. This suffices to prove
Conjecture 1.

3 Uniqueness of Left-Compressed Families in Theorem 1

It remains to demonstrate uniqueness of the left-compressed families F satisfying
w(F) = W (n) in the cases n ≤ 72 or n even. In this case, we know that F cannot be
almost-trivial so must not have an (i, n − 1)-sharp pair. We can then partition G(n)

into G(n − 1, n) and G(n − 1, n) as in the proof of Lemma 1, and may shorten one
of these and remove the other. If |G(n − 1, n)| 
= |G(n − 1, n)| then doing so will
strictly increase w, which is impossible since F is maximum. Thus |G(n − 1, n)| =
|G(n − 1, n)| and so we may shorten either one of G(n − 1, n) and G(n − 1, n) and
remove the other without changing the value of w.

If we shorten |G(n − 1, n)|, we remove fromF those elements of G containing both
n and n−1, and add elements A\{n} for all A ∈ G containing n but not n−1. Suppose
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that shortening produces the family F ′ and we have A ∈ F ′, B /∈ F ′ with B ≺ A.
Since F is left-compressed, either B has been removed from F or A has been added.
If B was removed, since B ≺ A, we must have that A contains n and n − 1 and thus
was not added. If A ∈ G it would also have been removed, so A /∈ G. Then there is an
A′ ⊂ A ∈ F with |A′| < |A|, and a corresponding subset B ′ ⊂ B consisting of the
initial |A′| elements of B. Since B ≺ A, we have B ′ ≺ A′ so B ′ ∈ F , contradicting
B ∈ G. Otherwise, if A was added, we must have A′ = A ∪ {n} ∈ G and n − 1 /∈ A.
Then we have B ′ = B ∪ {n} ≺ A′ so B ′ ∈ F . If B ′ /∈ G then there is a proper
subset B ′′ ⊂ B ′ in F with |B ′′| = |A|, and then B ≺ B ′′ contradicting B /∈ F ′. Thus
B ′ ∈ G, in which case we must have n − 1 /∈ B ′ so B ′ is also shortened, once again
contradicting B /∈ F ′. Thus, there can be no such A and B, so F ′ is left-compressed.

In this case, by the inductive hypothesis, we conclude thatF ′ is an extension of the
unique maximum left-compressed family for n − 1.

In the case n ≤ 72, the family F ′ must be an extension of F7, i.e. F ′ = F7 ×
{0, 1}n−7. Thus for every A ⊂ [7] with |A| = 5, exactly one of A and A ∪ {n} is in
G, and these are the only elements of G(n − 1, n). If n ≥ 9, for every B ⊂ [7] with
|B| = 3 we can choose A1, A2 ⊂ [7] with |A1| = |A2| = 5 and A1 ∩ A2 = B. If both
correspond to sets in G(n − 1, n) containing n, we can perform a left-compression to
one of them to replace the n by n − 1, to get two sets in F whose intersection is B.
Then, for any C ∈ F , if |C ∩ [7]| ≤ 4, then we can choose B ⊂ [7] with |B| = 3 and
B ∩C = φ, contradicting that F is 3-wise intersecting. Thus, for all C ∈ F , we have
|C ∩[7]| ≥ 5 so we haveF ⊂ F7×{0, 1}n−7. Thus this is the unique left-compressed
familyF withw(F) = W (n). For n = 8, again from [3] we have that this is the unique
left-compressed extremal family for 3-intersection, and this is also 3-wise intersecting
and thus is again the unique left-compressed family F with w(F) = W (n).

The final remaining case is n ≥ 74 even. Again, as before,F ′ must be an extension
of the unique maximum left-compressed family for n−1. By the inductive hypothesis,
F ′ is an extension of Fn−1. Thus, for A ⊂ [n − 1] with |A| = n+2

2 and 1 ∈ A, either
A or A ∪ {n} is in G, and if A ∪ {n} is in G it is in G(n − 1, n). In particular, if
n − 1 ∈ A then A ∪ {n} cannot be in G(n − 1, n) so A must be in G. Now suppose
there was some B ∈ G(n − 1, n) with |B| ≤ n+2

2 . Then we can choose A ⊂ [n − 1]
with |A| = n+2

2 and 1, n − 1 ∈ A such that |A ∩ B| = 2 (if 1 ∈ B we must have
A ∩ B = {1, n − 1}, otherwise it contains n − 1 and some other element). Thus every
element B of G(n − 1, n) has |B| ≥ n+4

2 . If 1 ∈ B then B\{n} contains 1 and has
size at least n+2

2 so it is a superset of a set in G, contradicting B ∈ G. Thus, for all
B ∈ G(n − 1, n), we must also have that 1 /∈ B.

However, we can take two different subsets of [n− 1] of size n+2
2 containing 1 and

n − 1, which are thus both in G, and whose intersection is precisely {1, n − 2, n − 1},
so every set in F must intersect this set. For B ∈ G(n − 1, n), if |B| ≤ n − 3, we
can perform left-compressions to obtain some B ′ ∈ F with 1, n − 2, n − 1 /∈ B ′,
thus contradicting that F is 3-wise intersecting. Hence, for all B ∈ G(n − 1, n), we
have |B| ≥ n − 2. But we also have in F ′ all sets that do not contain 1 and have
size n − 3, and all such B are supersets of some such set. However, the only set that
could have arisen in this manner from shortening a set in G(n − 1, n) is [2, n − 2]
(since sets in G(n − 1, n) must exclude n − 1) and so any B may only be a superset
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of this set and no other set of size n − 3 not containing 1. This is impossible as all
such B contain n − 1. Thus there are no such B so G(n − 1, n) is empty, and since
|G(n − 1, n)| = |G(n − 1, n)| we have G(n − 1, n) is also empty and so F = F ′,
completing the proof of Theorem 1.

4 Concluding Remarks and Open Problems

In [1], Frankl andKupavskii definemonotone properties�1 and�2 to be incompatible
if

lim inf
n→∞

(
max

F1⊂P(n) has �1

w(F1)

) (
max

F2⊂P(n) has �2

w(F2)

)

= lim inf
n→∞

(
max

F⊂P(n) has �1,�2

w(F)

)
.

By theHarris–Kleitman inequality, the latter is always at least the former, so�1 and
�2 are incompatible if equality holds in the limit as n → ∞ in the Harris–Kleitman
inequality.

Conjecture 1 is equivalent to the properties of being 3-wise intersecting and 3-
intersecting being incompatible. In [1], Frankl and Kupavskii further conjecture the
following.

Conjecture 2 For every integer s ≥ 1 there exists an integer t0(s) such that for all t ≥
t0(s), the properties of being 3-wise s-intersecting and t-intersecting are incompatible.

The s = 1 case of this conjecture was proved by Frankl and Kupavskii [1], and
Theorem 1 implies that t0(1) = 3. However, this conjecture remains open for all other
values of s.

We may attempt to analyse the behaviour of Wk1,k2(n) for k2 > k1 > 1 to attempt
to prove this conjecture for k1 = s > 1. However, the methods in this paper are
not sufficient to do so, as the proof of the analogue of Lemma 1 fails for k1 > 1. In
this case, the analogue of a sharp triple is a triple A, B,C of sets in G(n) in which
|A ∩ B ∩ C | = k1 and all elements of [n] are contained in at least two of A, B, and
C . Unlike in the case k1 = 1, if k1 > 1 it is possible for all three of these to contain
n − 1, in which case it is not possible to shorten G(n − 1, n) and remove G(n − 1, n).
Likewise, if k2 > k1 + 2, the proof of the analogue of Lemma 2 also fails.
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