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Abstract
The induced size-Ramsey number r̂ kind(H) of a graph H is the smallest number of
edges a (host) graph G can have such that for any k-coloring of its edges, there
exists a monochromatic copy of H which is an induced subgraph of G. In 1995, in
their seminal paper, Haxell, Kohayakawa and Łuczak showed that for cycles, these
numbers are linear for any constant number of colours, i.e., r̂ kind(Cn) ≤ Cn for some
C = C(k). The constant C comes from the use of the regularity lemma, and has a
tower type dependence on k. In this paper we significantly improve these bounds,
showing that r̂ kind(Cn) ≤ O(k102)n when n is even, thus obtaining only a polynomial
dependence of C on k. We also prove r̂ kind(Cn) ≤ eO(k log k)n for odd n, which almost
matches the lower bound of e�(k)n. Finally, we show that the ordinary (non-induced)
size-Ramsey number satisfies r̂ k(Cn) = eO(k)n for odd n. This substantially improves
the best previous result of eO(k2)n, and is best possible, up to the implied constant in
the exponent. To achieve our results, we present a new host graph construction which,
roughly speaking, reduces our task to finding a cycle of approximate given length in
a graph with local sparsity.
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1 Introduction

The Ramsey number rk(H) of a graph is the smallest integer n such that every k-
coloring of the edges of Kn contains a monochromatic copy of H . The notion of
Ramsey numbers is one of the most central notions in combinatorics and it has been
studied extensively since Ramsey [29] showed their existence for every graph H .
Motivated by this definition, we say that a graph G is k-Ramsey for a graph H if any
k-coloringof the edges of (thehost graph)G, contains amonochromatic copyofH , and

wewriteG
k−→ H . Using this notation, we have that rk(H) = min{|V (G)| : G k−→ H}.

The notion of Ramsey numbers is measuring the minimality of the host graph in
terms of the number of vertices. Are there graphs G with significantly less edges
than the clique on rk(H) vertices that are k-Ramsey for H? This general question is
captured by the notion of size-Ramsey numbers introduced in 1978 by Erdős, Faudree,
Rousseau and Schelp [15]. The size-Ramsey number of a graph H is defined as

r̂ k = min{E(G)|G k−→ H}. In the last few decades, there has been extensive research
on this notion, see, e.g., [6].

One of the main goals is to understand which classes of graphs have size-Ramsey
numbers which are linear in their number of edges. Beck [2] showed that this is true
for paths, which was later extended to all bounded-degree trees by Friedman and
Pippenger [17]. It is also known that logarithmic subdivisions of bounded degree
graphs have linear size-Ramsey numbers [10], as well as bounded degree graphs with
bounded treewidth [3, 22]. Given all of the mentioned results, it might be tempting
to assume that all graphs of bounded degree have linear size-Ramsey numbers. In an
elegant paper of Rödl and Szemerédi [31], it was shown that this is not the case. Indeed,
they showed that there exist n-vertex cubic graphs which have size-Ramsey numbers
at least n logc n, for a small constant c > 0. This bound has only very recently been
improved to cnec

√
log n for some c > 0 by Tikhomirov [32]. For more results see [8]

and references therein.
A related studied notion is that of induced size-Ramsey numbers. Given a graph

H , the induced size-Ramsey number r̂ kind(H) is the smallest number of edges a graph
G can have such that any k-coloring of G contains a monochromatic copy of H
which is an induced subgraph of G. The existence of these numbers is an important
generalisation of Ramsey’s theorem, proved independently by Deuber [7], Erdős et
al. [14], and Rödl [30]. Naturally, this concept is much harder to understand for most
classes of target graphs H and much less precise bounds are known than for the
(non-induced) size-Ramsey number.

Indeed, already for bounded degree trees we know that the size-Ramsey number
is linear in their number of vertices, whereas for its induced counterpart we have no
good bounds while we have every reason to believe that the answer should also be
linear. Further, the best general upper bound on r̂2ind(H) for n-vertex graphs H is
obtained by Conlon [5], and is of the order 2O(n log n), while Erdős [28] conjectured
that r̂2ind(H) ≤ 2cn . In comparison, the bound for Ramsey numbers (and hence also
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for size-Ramsey numbers) is known to be exponential in the number of vertices of the
target graph. Further, it is known that the size-Ramsey number of n-vertex graphs with

degree bounded by a constant d, is between ne�(
√
log n) and O(n2− 1

d +ε), proven by
Tikhomirov [32], and by Kohayakawa [24], respectively. On the other hand, the best
upper bound on the induced size-Ramsey number of these graphs, proved by Fox and
Sudakov [16] is of the order nO(d log d), while the best lower bound is still the bound
for the (non-induced) Ramsey number of those graphs, which is often the state of the
art for such questions.

For paths it is known that �(k2)n ≤ r̂ k(Pn) ≤ O(k2 log k)n (see [12, 26] for the
lower bound and [11, 27] for the upper bound). In the induced case, by a recent result
of Draganić, Krivelevich and Glock [9], we have that r̂ kind(Pn) ≤ O(k3 log4 k)n. For
cycles, the discrepancy between the size-Ramsey and the induced size-Ramsey number
is significantly larger. Indeed, by a recent result of Javadi and Miralaei [20], which
improved another recent result by Javadi et al. [21],we have rk(Cn) = O(k120 log2 k)n
for even n, and rk(Cn) = O(216k

2+2 log k)n for odd n. On the other hand, the only
known upper bound on the induced size-Ramsey numbers of cycles was obtained
in the seminal paper of Haxell [18]. Their proof uses a technically very involved
argument relying on the use of the Sparse Regularity lemma and therefore shows that
rkind(Cn) ≤ Cn where C = C(k) has a tower type dependence on k.

In this paper, we prove the following theorem which quite significantly improves
the tower-type bounds of Haxell, Kohayakawa and Łuczak.

Theorem 1.1 For any integer k ≥ 1, there exists n0(k) such that for all n ≥ n0(k),
the following holds.

(a) If n is even, then r̂ kind(Cn) = O(k102)n.

(b) If n is odd, then r̂ kind(Cn) = eO(k log k)n.

While the focus of this paper is on induced size-Ramsey numbers of cycles, our
method can be also used to substantially improve the upper bound for the non-induced
case as well. Our next result gives an essentially tight estimate for the size-Ramsey
numbers of odd cycles.

Theorem 1.2 For any integer k ≥ 1, there exists n0(k) such that for all n ≥ n0(k),
we have r̂ k(Cn) = eO(k)n.

The best known lower bound for size-Ramsey numbers of even cycles comes from
the bound for paths, which is of the order �(k2)n [12, 27]. In the odd case, there is
a simple construction of a coloring which gives a lower bound of 2k−1n (see [20]),
showing that the second result in Theorem 1.1 is tight up to an O(log k) factor in
the exponent, while the bound in Theorem 1.2 is tight up to a constant factor in the
exponent.

We remark that, as in [18], our proofs can easily be adapted to provide monochro-
matic induced cycles of all (even) lengths between C log n and n for some constant C
depending only on k. We also note that our bound on the size-Ramsey number of even
cycles r̂ k(Cn) ≤ r̂ kind(Cn) = O(k102)n can be further improved significantly, using
the same methods, but we chose not to present that here.

We systematically ignore floor and ceiling signs whenever they are not crucial
for the argument. All logarithms are base e unless otherwise specified. We make no
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Fig. 1 Transforming an 8-cycle
in the auxiliary graph (thick red
edges) into a 21-cycle in the
original graph by using 5 paths
of length 3 and 3 paths of length
2

serious attempt to optimize the constants in our proofs.We use standard graph theoretic
notation throughout.Wedenote by δ(G) and�(G) theminimumandmaximumdegree
of a graphG and we use V (G) and E(G) to denote its vertex and edge set respectively.
We also denote v(G) = |V (G)| and e(G) = |E(G)|.

2 Proof Outline

The main idea behind our proof is the following: consider a binomial random graph
G ∼ G(N ,C/N ), where N = C ′n and C,C ′ are appropriately chosen large con-
stants. Let G be adversarially k-edge-colored. Then, it is easier to find an induced
monochromatic cycle of length in [0.9n, 1.1n], say, then of length precisely n. Our
host graph is constructed to take advantage of this.

In the rest of the outline we focus on the proof of the induced odd case
(Theorem 1.1b) and at the end we outline the changes needed for the other two
statements.

Given k, we find a fixed “gadget” graph F = F(k) which is k-induced-Ramsey for
a 5-cycle.We denote s = v(F).We construct an s-uniform N -vertex hypergraph H by
takingCN random hyperedges. We clean H so it does not have any short Berge cycles
(see Definition 4.1) so, in particular, it is linear. Then we construct our host graph � by
placing an isomorphic copy of F inside every hyperedge of H . By definition, inside
every copy of F , there is a monochromatic induced copy of C5. The main object we
work with will be an auxiliary k-edge-coloured graph G on the same vertex set as �.
For each placed copy of F in �, in G we put an edge between a single pair of vertices
which are at distance 2 in one of the induced monochromatic copies of C5 in the copy
of F , and colour this edge with the colour of that cycle.

Now, suppose we find a monochromatic, say red, cycle Q of length � ∈ [n/3, n/2]
in G. By definition, each edge of Q corresponds to an induced 5-cycle in �, where
the endpoints of the edge are at distance 2 in the cycle. For each of these 5-cycles, we
can choose either a path of length 2 or a path of length 3 in G to obtain a red cycle
Q′ of length exactly n in � (see Fig. 1). The main technical difficulty is in obtaining
certain properties of Q such that the resulting cycle Q′ is induced in �.
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Fig. 2 Building an induced cycle

More precisely, the following will be sufficient. Recall that every edge e ∈ E(G)

comes from a hyperedge in H whichwe denote by h(e).Suppose Q is a cycle inG with
edges e1, . . . , e� such that no hyperedge apart from h(e1), . . . , h(e�) in H intersects⋃

i∈[�] h(ei ) in more than one vertex. Further, suppose that each h(ei ) only intersects
h(ei−1) and h(ei+1) among the mentioned hyperedges. Then, it is not difficult to see
that the cycle Q′ obtained as above is induced in �. We will call such a cycle Q good.

Let us now explain how to find an induced monochromatic cycle of length between
n/2 and n/3 in a k-edge-colored graph G ∼ G(N ,C/N ) with N = C ′n for some
large constantsC,C ′.Our real task is more involved as we require a stronger condition
on the found cycle as discussed above, and since we are not working with a binomial
random graph. However, most of the ideas can be described through the lens of this
simpler problem.

We now sketch how to find a monochromatic induced cycle of length between n/2
and n/3 in G ∼ G(N ,C/N ). The proof strategy is illustrated in Fig. 2. By standard
results, it is not difficult to clean G without losing many edges, so that it has no cycles
of length O(1). Further, we also know that it is locally sparse, that is, all setsU of size
|U | ≤ εN span at most 3

2 |U | edges, where ε > 0 is some constant depending on C .

We consider the subgraph corresponding to the densest colour class, say red and using
a result of Krivelevich [26], we find inside it a large expanding subgraph G ′. Draganić
[9] showed using a modified DFS algorithm that under the given assumptions, G ′
has a red induced path P of length 2n/5 and we adapt their argument to our setting.
Given such a red induced path of length 2n/5, from the endpoints we construct two
trees T1, T2 each of depth O(log N ) and with �(εN ) leaves. Moreover, we do it in
such a way that any path containing the initial endpoints is good, i.e. if there is a
red edge connecting two vertices in different trees, it closes a good cycle in G ′. Let
W = V (P) ∪ V (T1) ∪ V (T2) and remove from it a large constant number of the last
layers in T1 and T2, so that the resulting W is small enough compared to the leaf sets
of T1 and T2. Denote by R1 and R2 the vertices in the deleted layers in T1 and T2,
respectively. Finally, using the expanding properties of G ′, we may expand from the
sets R1 and R2, while avoiding vertices which are incident to W until the two balls
around R1 and R2 of large enough constant diameter intersect, and thus we close a
cycle of desired length. Using the girth assumption on our graph it is not difficult to
show that this cycle is induced.

Let us now comment on the differences in the proofs for the three different state-
ments. In the odd induced case, we can take F to be Alon’s celebrated construction
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of a dense pseudorandom triangle-free graph on e�(k log k) vertices. We will prove
that, every k-edge-colouring of that graph will contain an induced monochromaticC5.
However, when n is even, we can instead take F to be k-induced-Ramsey for a 6-cycle
with only O(k6) vertices by taking a sufficiently dense bipartiteC4-free graph. Again,
in each copy of F,we find a monochromatic induced 6-cycle and connect two vertices
at distance 2 on the cycle to form our auxiliary graph. The same argument as above
shows that given a monochromatic cycle of length � in the auxiliary graph G, we can
find a monochromatic cycle of any even length between 2� and 4� in �. Finally, for
the odd non-induced case, we can take F to be the complete graph on 2k + 1 vertices.
It is easy to see that any k-edge coloring of that graph has a monochromatic odd cycle.
For simplicity, we take the most common length L among those cycles, and for each
of these L-cycles, we connect two vertices at distance (L − 1)/2 on the cycle to form
the auxiliary graph. Then, a monochromatic good cycle of length between 2n/(L −1)
and 2n/(L + 1) in the auxiliary graph yields a monochromatic cycle of length n in
our host graph. This required extra precision in the length of the good cycle in the
auxiliary graph will only cost us a factor of 2O(k) in the number of copies of F we use
in our construction.

The rest of the paper is structured as follows. In Sect. 3, we provide constructions of
the small gadget graphs. In Sect. 4, we prove the properties of the random hypergraph
H mentioned above and present the construction of our host graph. In Sect. 5, we show
how to find the desired induced cycle in the host graph with the proof split into four
subsections corresponding to different stages of the proof. Finally, we end with some
concluding remarks in Sect. 6.

3 TheMulticolour Induced Size-Ramsey Numbers of Short Cycles

In this section we give upper bounds for the multicolour induced size-Ramsey number
of short cycles. The graphs providing these upper bounds will be used as the building
blocks of our host graph. For the proof of Theorem 1.2, we simply take the complete
graph on 2k +1 vertices, the reason for this choice being the following simple lemma.

Lemma 3.1 Any k-edge-colouring of the complete graph on 2k + 1 vertices contains
a monochromatic odd cycle.

Proof For the sake of contradiction, suppose there is a k-edge-colouring of K2k+1
with no monochromatic odd cycle. Hence, for each colour i ∈ [k], the graph induced
by colour i must be bipartite with a bipartition Ai ∪ Bi . Since there are more than 2k

vertices, by the pigeonhole principle there are two vertices x, y such that x ∈ Ai ⇐⇒
y ∈ Ai for each i ∈ [k]. Let j denote the colour of the edge xy. Then, xy is an edge of
colour j connecting two vertices which are in the same part of the bipartition A j ∪ Bj ,

a contradiction. �

3.1 The 6-Cycle

The goal of this subsection is to provide an upper bound for R̂k
ind(C6).More precisely,

we will prove the following.
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Lemma 3.2 There exists a positive constant C such that for any positive integer k,
there exists a graph F0(k) with (Ck)6 vertices and (Ck)9/6 edges such that any k-
edge-colouring contains a monochromatic 6-cycle forming an induced subgraph of
F0(k). In particular, R̂k

ind(C6) = O(k9).

The existence of a small host graph for the induced 6-cycle is a simple consequence
of the following two well-known results in extremal graph theory.

Theorem 3.3 (Bondy, Simonovits [4]) ex(n,C6) = O(n4/3).

Theorem 3.4 (Erdős, Rényi [13]) For all large enough n, there exists a bipartite C4-
free graph with n vertices and (1/4 + o(1))n3/2 edges.

Proof of Lemma 3.2 Clearly we may assume that k is large enough. Let n = (Ck)6

whereC is a large constant to be chosen later. Let F0(k) be a bipartiteC4-free graph on
n verticeswith at least n3/2/8 edges given byTheorem3.4.Note that F has girth at least
6 because it is bipartite and C4-free. Consider an arbitrary k-edge colouring of F0(k).
Then, there exists a colour, say red, which contains at least e(F0(k))/k ≥ (C/8)n4/3

edges. Taking C/8 to be larger than the implied constant in Theorem 3.3, we obtain
that there exists a red 6-cycle in F0(k). This cycle is necessarily induced since F0(k)
has girth at least 6, thus completing the proof. �

3.2 The 5-Cycle

The goal of this subsection is to prove an upper bound on R̂k
ind(C5) as follows.

Lemma 3.5 R̂k
ind(C5) = eO(k log k).

Following Alon, a graph F is said to be an (n, d, λ)-graph if F has n vertices, is
d-regular and all but the largest eigenvalue of F are at most λ in absolute value. As our
host graph exhibiting the upper bound for R̂k

ind(C5), we will use Alon’s celebrated
construction of a dense pseudorandom triangle-free graph.

Theorem 3.6 (Alon [1]) For every positive integer t not divisible by 3, there exists a
triangle-free (n, d, λ)-graph with n = 23t , d = (1/4+o(1))n2/3, λ = (9+o(1))n1/3.

In the proof we use the well known result about (n, d, λ)-graphs known as the
Expander Mixing Lemma. Given a graph G and two sets S, T ⊆ V (G), we denote
by eG(S, T ) the number of pairs (u, v) ∈ S × T such that uv ∈ E(G). Note that, by
definition, the edges inside S ∩ T are counted twice.

Lemma 3.7 (e.g. [25]) Let G be an (n, d, λ)-graph. Then, for any two subsets S, T ⊆
V (G),

|eG(S, T ) − d|S||T |
n

| ≤ λ
√|S||T |.

Proof of Lemma 3.5 We may assume that k is sufficiently large. Let F = F(k) be
a triangle-free (n, d, λ) graph, where (20k)48k ≤ n ≤ 64(20k)48k, d = (1/4 +
o(1))n2/3, λ = (9 + o(1))n1/3 whose existence is given by Theorem 3.6. We will
prove the following claim.
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Claim 3.8 Let U ⊆ V (F) satisfy |U | > n/(20k)k−1 and suppose that the edges of
F[U ] are coloured with t colours, where 1 ≤ t ≤ k. Then, U contains a monochro-
matic 5-cycle or there exists a set U ′ ⊆ U with |U ′| ≥ |U |/(20k) such that at most
t − 1 colours appear on the edges of F[U ′].

TheLemma follows easily from this claim. Indeed, note that since F is triangle-free,
every 5-cycle is induced. Now, consider an arbitrary k-edge-colouring of F . Assume
we have a set Ui ⊆ V (F), 0 ≤ i ≤ k − 1 such that |Ui | ≥ n/(20k)i and the edges
of F[Ui ] are coloured in k − i colours. By the claim, we either find a monochromatic
5-cycle inside F[Ui ], in which case we are done, or a subset Ui+1 ⊆ Ui of size at
least n/(20k)i+1 with at most k − i − 1 colours on the edges of F[Ui+1]. Starting
with U0 = V (F), we either find a monochromatic 5-cycle or after k steps we get
an independent set Uk ⊆ V (F) of size at least n/(20k)k . However, by Lemma 3.7,
e(Uk) ≥ (d|Uk |2/n − λ|Uk |)/2 > 0, since |Uk | ≥ n/(20k)k > nλ/d. Hence, Uk

cannot be an independent set, so we have found a monochromatic 5-cycle as required.

Proof of Claim 3.8 Let F ′′ ⊆ F[U ] be the subgraph corresponding to themost frequent
colour in F[U ] and let F ′ be an induced subgraph of F ′′ with minimum degree at least

d ′ := δ(F ′) ≥ e(F ′′)
|U | ≥ e(F[U ])

k|U | ≥ d|U |2/n − λ|U |
2k|U | ≥ |U |

32kn1/3
,

where we used Lemma 3.7 and that |U | ≥ n/(20k)k−1 > n47/48. Let v ∈ V (F ′) be
arbitary, let A = NF ′(v) and B = NF ′(A) \ {v}, so A is the first and B the second
neighbourhood of v in F ′. Assume there is an edge xy ∈ F ′[B]. Then, by definition,
there exist vertices x ′, y′ in A such that xx ′, yy′ ∈ E(F ′). Since F ′ is triangle-free, we
have x ′ �= y′ and therefore, vx ′xyy′ forms a 5-cycle in F ′, that is, a monochromatic
5-cycle in F[U ]. Now, assume that eF ′ [B] = 0. This means that F[B] has at most
k − i − 1 colours on its edges, so we take U ′ = B. What is left to show is that
|B| ≥ |U |/(20k). Note that since F ′ is triangle-free, A is an independent set. Hence,∑

a∈A dF ′(a) = e(A, B) + |A|, implying that

e(A, B) ≥ |A|(d ′ − 1) ≥ d ′2/2 ≥ 1

2

(
n47/48

32kn1/3

)2

= n31/24

2(32k)2
.

On the other hand, by Lemma 3.7, e(A, B) ≤ d
n |A||B| + λ

√|A||B|. Note that
λ
√|A||B| ≤ λ

√
dn < 5n7/6 < 1

100e(A, B), for large enough k. Combining, we
have d

n |A||B| ≥ 99
100e(A, B) and, therefore,

|B| ≥ 99

100

n

d
(d ′ − 1) ≥ 1

2
4n1/3

|U |
32kn1/3

>
|U |
20k

,

as needed. �
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4 Host Graph

In order to construct our host graph, we will need a few basic definitions from
hypergraph theory. We start with the following definition of a cycle in a hypergraph.

Definition 4.1 (Berge cycle) Given a hypergraph H , a Berge cycle of length t ≥ 2
is an alternating sequence of distinct vertices and edges v0, e0, v1, e1, . . ., vt−1, et−1
such that vi ∈ ei−1, ei , where indices are modulo t .

The girth of a hypergraph is defined to be the length of its shortest Berge cycle. A
hypergraph is said to be linear if any two distinct hyperedges intersect in at most one
vertex.

Definition 4.2 (Intersection graph) Given a linear hypergraph H , we define its inter-
section graph I(H) whose vertex set is the set of hyperedges of H and where two
hyperedges are adjacent if they share a vertex in H . Additionally, each edge in I(H)

is labelled by the corresponding vertex in V (H).

Definition 4.3 (Sunflower cycle) Given a hypergraph H and its intersection graph
I = I(H), a sunflower cycle in I is a cycle in which all the edges are labelled with
the same vertex in V (H).

Let us explain the motivation for the above two definitions. As described in the
proof outline, our host graph construction begins by taking an s-uniform hypergraph
H on N vertices withCN random hyperedges, whereC = C(k). Its intersection graph
I(H) will be used to argue that a certain monochromatic cycle we find in the host
graph is induced. For our arguments, we require that I(H) has local sparsity properties
analogous to what is likely to hold in the binomial random graph G(N ,C/N ). More
precisely, in G(N ,C/N ), with high probability, there is no subgraph on at most αN
vertices with average degree at least say 8

3 ,where α > 0 depends only onC .However,
such a statement does not hold for I(H). Indeed, the set of hyperedges of H containing
a fixed vertex v forms a clique in I(H). Hence, it is not true that there are no subgraphs
of I(H) on a small set of vertices with average degree at least 8/3 as in the graph
case. However, it is true if we only consider subgraphs of I(H) which do not contain
sunflower cycles, i.e. subgraphs where from every clique in I(H) corresponding to a
set of hyperedges containing a fixed vertex we are only allowed to take a set of edges
spanning a forest. The following lemma proves this (see (P4)) as well as several other
simple properties of H (after small alterations) that we will use in our proof.

Lemma 4.4 Let s, g ≥ 4 be given positive integers, let C ≥ 1 and set α =
10−6C−3s−8. Then, for all large enough N , there is an s-uniform hypergraph H
on N vertices such that the following properties are satisfied:

(P1) e(H) ∈ [CN/2,CN ].
(P2) �(H) ≤ 8Cs.
(P3) H has girth larger than g (in particular, H is linear).
(P4) There is no subgraph I ′ ⊆ I(H) such that v(I ′) < αN , e(I ′) > 4

3v(I ′) and
there is no sunflower cycle in I ′.
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(P5) For any A ⊂ V (H)with |A| ≤ αN , there are at most 2|A| hyperedges in H which
intersect A in at least two vertices.

Proof Let m = CN . We construct an s-uniform hypergraph H0 on the vertex set
V = [N ] with edges B1, . . . , Bm which are independently chosen subsets of V of
size s, removing duplicate edges. For any Berge cycle of length at most g in H0, we
remove an arbitrary edge of the cycle. Additionally, we remove all edges incident to a
vertex of degree more than 8Cs. Let H denote the resulting hypergraph. Note that H
satisfies (P2) and (P3) deterministically. We will show that it satisfies the other three
properties with positive probability. We repeatedly use the following observation: for
any fixed T ⊆ V and i ∈ [m],

P[T ⊆ Bi ] =
(
N − |T |
s − |T |

)

/

(
N

s

)

≤
( s

N

)|T |
. (1)

In particular, for any v ∈ V , i ∈ [m], we have P[v ∈ Bi ] = s/N . Let us verify that H
satisfies (P1) with probability at least 3/4. Indeed, the expected number of hyperedges
removed while removing short Berge cycles is at most

g∑

�=2

N �m�
( s

N

)2� =
g∑

�=2

C�s2� < CN/32,

where we used that N is large enough. Indeed, the left hand side is derived by fixing
every possible sequence of � distinct vertices of H (each one of them corresponding
to an intersection vertex of two consecutive edges in a Berge cycle of length �) and �

indices in [m] (corresponding to the � edges of a Berge cycle), using (1) and applying
a union bound. Note that the term � = 2 also accounts for all pairs of edges which have
at least two vertices in common and, in particular, for duplicate edges. The expected
number of edges touching a vertex of degree more than 8Cs is at most

m∑

i=1

∑

v∈Bi
P[dH0(v) ≥ 8Cs + 1] ≤

m∑

i=1

s · P[Bin(m − 1, s/N ) ≥ 8Cs] ≤ ms2−7Cs

= (Cs)2−7Cs N ≤ N/32,

wherewe used standardChernoff bounds (see, e.g., Theorem2.1 in [19]). ByMarkov’s
inequality, with probability at least 7/8 we removed at most CN/4 edges to remove
short Berge cycles and with probability at least 7/8we removed at most N/4 < CN/4
edges incident to vertices of large degree. In that case, CN ≥ e(H) ≥ CN/2, so with
probability at least 3/4, H satisfies (P1).

Next, we show that (P4) holds with probability at least 3/4. For convenience,
we consider the sets Bi , i ∈ [m] to also be given a random ordering xi1, . . . , x

i
s of

their elements. Consider a set U of u ≤ αN indices in [m] and a graph F on the
vertex set U with 4

3u edges. The graph F will correspond to the subgraph I ′ from
the statement. We build an auxiliary graph F ′ on the vertex set V (F ′) = V (F) × [s].
For every edge vw ∈ E(F), choose arbitrary i, j ∈ [s] and add the edge (v, i)(w, j)
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to F ′. Note that given F, there are s2e(F) ways to construct the graph F ′. For each
v ∈ V (F), the set {v}×[s] represents the s elements of the ordered set Bv and an edge
(v, i)(w, j) ∈ E(F ′) corresponds to the event that xv

i and xw
j are equal. Assume there

is a subgraph I ′ ⊆ I(H) such that V (I ′) = U , e(I ′) ≥ 4
3u and I ′ has no sunflower

cycle. Then, one can choose the indices for each edge in F such that F ′ is a forest.
Indeed, a cycle in F ′ corresponds to a sunflower cycle in I ′. Suppose F ′ is a forest
and let C1,C2, . . . ,Ct be its connected components. For i ∈ [t], denote the event

Ai = {xv
j are equal for all (v, j) ∈ Ci }.

Note that P[Ai |A1 ∧ · · · ∧ Ai−1] ≤
(

1
N−s+1

)v(Ci )−1
. Indeed, conditioning on the

values of some elements of a set Bv, the next element of the set is chosen uniformly
at random among at least N − s + 1 remaining choices. Hence, we have

P[Ai ,∀i ∈ [t]] ≤
t∏

i=1

(N − s + 1)−(v(Ci )−1) = (N − s + 1)−e(F) <

(
2

N

)4u/3

,

where in the equality we used that F ′ is a forest and e(F ′) = e(F). By taking a union
bound over all choices ofU , F, F ′, we get that the probability that H violates (P4) is
at most

αN∑

u=1

(
m

u

)( (u
2

)

4u/3

)

s8u/3
(
2

N

)4u/3

≤
αN∑

u=1

(
eCN

u

)u (
3e

8
u

)4u/3

s8u/3
(
2

N

)4u/3

<

αN∑

u=1

(
10Cs8/3

)u ( u

N

)u/3

≤
αN∑

u=1

(
10Cs8/3

)u
αu/3 =

αN∑

u=1

10−u < 1/4,

as needed.
Finally, we verify that H satisfies (P5)with probability at least 3/4. Indeed, for a

fixed set A, the probability that |Bi ∩ A| ≥ 2 is at most
(|A|
2

) ( s
N

)2 ≤ s2
( |A|

N

)2
. Then,

(P5) fails with probability at most

αN∑

u=1

(
N

u

)(
m

2u

) ( su

N

)4u ≤
αN∑

u=1

(
eN

u

)u (
eCN

2u

)2u ( su

N

)4u

<

αN∑

u=1

( u

N

)u (
e2Cs2

)2u
<

αN∑

u=1

αu(10Cs2)2u <

αN∑

u=1

10−u < 1/4,
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where in the second to last inequality we used that α = 10−6C−3s−8. Hence, H
satisfies (P1)–(P5) with probability at least 1/4, implying the existence of the desired
hypergraph. �

We are now ready to present our construction of the host graph used to prove both
parts of Theorems 1.1, and 1.2. The construction differs for the three statements we
are proving mainly because of the use of different gadgets, but for all constructions we
use Lemma 4.4, just with different parameters. Let us remark that linear hypergraphs
were also used for constructing Ramsey graphs in [8], but in a different context.

To prove Theorem 1.1, we can evidently assume that k is a large enough integer.

4.1 Host Graph construction

We first describe the structure of our host graph construction which is the same for
all three statements and then we give the parameters in each of the three cases. When
the argument changes depending on which statement we are proving, we let a equals
1, 2 or 3 depending on whether we are proving Theorems 1.1(a), (b) or 1.2, respec-
tively. Hence, we denote the host graphs used in the proofs of Theorem 1.1(a), (b)
and Theorem 1.2 by �1, �2 and �3, respectively. Similarly, for a ∈ [3], we denote
by Fa, sa,Ca, Ha, Ia,Ga, La the different objects appearing in our proofs, some of
which we define shortly. However, most of our arguments hold regardless of which
of the three statements we are proving. In such cases, we omit the subscript a from
�a,Ga , etc.

We let F be a certain small graph which does not depend on n and we let s = v(F).

We choose an appropriate parameter C and set g = (Cs)20 and N = 10100k2C6s14n.

Weapply Lemma 4.4 to obtain an s-uniform hypergraph H satisfying (P1)–(P5) for the
given parameters. Finally, we build a host graph� on the vertex set V (H) by arbitrarily
placing an isomorphic copy of F on each set of s vertices forming a hyperedge in H .

The parameters are chosen as follows.

• Parameters for Theorem 1.1(a) (induced even case, a = 1)
Let F1 be the k-induced-Ramsey graph for the 6-cycle provided by Lemma 3.2.
Recall that s1 = v(F1) = O(k6) and e(F1) = O(k9). Set C1 = 1020k and note
that e(�1) = O(C1Nk9) = O(k102)n, as required.

• Parameters for Theorem 1.1(b) (induced odd case, a = 2)
Let F2 be the k-induced-Ramsey graph for the 5-cycle provided by Lemma 3.5.
Recall that s2 = v(F2) = eO(k log k). As above, set C2 = 1020k and note that
e(�2) = eO(k log k)n.

• Parameters for Theorem 1.2 (non-induced case, a = 3)
Let F3 be the complete graph on s3 = 2k + 1 vertices. Set C3 = 1020 · k23k . We
have e(�3) = O(CN · 22k) = eO(k)n.

4.2 Auxiliary Graph

Given a k-edge-colouring of the host graph �a with a ∈ [3], we define an auxiliary
k-edge-coloured graph Ga on the same vertex set.
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• Auxiliary graph for Theorem 1.1 (induced case, a ∈ {1, 2})
Recall that in each copy of F that we placed in �a , there exists a monochromatic
induced cycle of length L1 = 6 in the even case a = 1, and of length L2 = 5
in the odd case a = 2. For each copy of Fa , choose one such cycle and choose a
single pair of vertices at distance two on the cycle. Place an edge in Ga joining
the two vertices and colour it by the colour of the corresponding cycle.

• Auxiliary graph for Theorem 1.2 (non-induced case, a = 3)
By Lemma 3.1, in each copy of F3 placed in �3, there is a monochromatic odd
cycle. For each copy of F3, choose one such cycle and let L3 denote the most
frequent length among these cycles in �3. For each of the chosen cycles of length
L3, choose a single pair of vertices at distance (L3 − 1)/2 on the cycle and join
them by an edge in G3 whose colour is the same as the colour of the cycle.

We use Ia = Ia(Ha) to denote the intersection graph of Ha . For an edge uv ∈ Ga,

we use h(uv) to denote the hyperedge in H containing u and v and we use h−1 to
denote the inverse function of h, so h−1(h(uv)) = uv.

5 Proof of Theorem 1.1 and Theorem 1.2

In this section we present the proofs of our theorems. The proofs are split into four
subsections. In the first subsection we define the relevant notions and reduce the
problem of finding a monochromatic (induced) cycle of length n in the host graph to
the problem of finding a good cycle (see Definition 5.5) of approximate length in the
auxiliary graph. The details (see Lemma 5.6) differ for the three different statements
we are proving. In the remaining three subsections, we give a unified proof of the
existence of the desired good cycle in the auxiliary graph. Each of these subsections
deals with a different stage of building the good cycle, as outlined in Sect. 2.

5.1 Setting Up

In this subsection we introduce some definitions which will be crucial for the proof.
Additionally we prove the following two lemmas. Lemma 5.2 gives us a large expand-
ing subgraph of G in one color as well as a subgraph with large minimum degree,
while Lemma 5.6 reduces our task of finding a (induced) cycle of length n in the
host graph to finding in the auxiliary graph a cycle of approximate length with some
additional properties.

First, we give the notion of expansion we need to state the first lemma.

Definition 5.1 Let G = (V , E) be a graph on n vertices, and let γ > 0. The graph G
is a γ -expander if |NG(U )| ≥ γ |U | for every vertex subset U ⊆ V with |U | ≤ n/2.

Lemma 5.2 Denote α = 10−6C−3s−8 and γ = 1
k2Cs

. There exists subgraphs G ′ ⊆
G ′

red ⊆ G with the following properties:

• All edges of G ′
red (and thus of G ′) are of the same color.

• |V (G ′
red)| ≥ |V (G ′)| ≥ αN .
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Fig. 3 Example of a good path. Edges of the path are represented by red segments and their corresponding
hyperedges by full-lined ovals. By the first property of a good path, these hyperedges intersect only in the
vertices on the path as depicted while by the second property, there is no other hyperedge intersecting the
union of these hyperedges in more than one vertex, i.e. the dashed hyperedge on the picture does not exist

• G ′
red is γ -expanding.

• δ(G ′) ≥ 1015L2.

Before stating Lemma 5.6, we introduce the necessary definitions. The first def-
inition describes paths in G which we will use later to guarantee the existence of
(induced) paths in the host graph.

Definition 5.3 Given a path P = (v1, v2, . . . , v�) in G, we say that P is good if the
following hold (see Fig. 3).

• For every two edges e, e′ in P , h(e) and h(e′) are disjoint unless e and e′ are
adjacent in P (in which case h(e) ∩ h(e′) = e ∩ e′).

• There is no hyperedge in H , besides the hyperedges h(vivi+1), which intersects
∪i∈[�−1]h(vivi+1) in more than one vertex.

Otherwise, we say P is bad.

Definition 5.4 (Good tree) A rooted tree inG is called good if its every path containing
the root is good, otherwise the tree is bad.

Definition 5.5 (Good cycle) A cycle Q in G is said to be good if there is a collection
P of good subpaths of Q such that every pair of edges of Q appears in a member of
P .

Lemma 5.6 Let Q be a monochromatic good cycle of length � in Ga. Then,

(1) If a = 1, then there is a monochromatic induced cycle in �a of length t for each
even t ∈ [2�, 4�].

(2) If a = 2, then there is a monochromatic induced cycle in �a of length t for each
t ∈ [2�, 3�].

(3) If a = 3, then there is a monochromatic cycle in �a of length t for each t ∈
[ L3−1

2 �, L3+1
2 �].

Proof Let Q = (v0, v1, . . . , v�−1) and suppose the desired cycle is of length t .
Throughout the proof we will consider the indices of vertices vi to be taken mod-
ulo �. Note that the hyperedges h(vivi+1) for 0 ≤ i < � are all distinct because
G contains exactly one edge for every hyperedge in H . Let us call the colour of Q
red. Recall that each edge vivi+1 ∈ E(Q) ⊆ E(G) corresponds to a pair of vertices
in a red cycle of length 6 when G = G1, of length 5 when G = G2, and length
L3 ≤ 2k + 1 when G = G3, their distance on the cycle being 2 in the first two cases,
while their distance is (L3 − 1)/2 in the third case. By choosing the appropriate path

123



Combinatorica

on the cycle for each pair vivi+1, in each of the three cases we obtain a red closed walk
Q′ = u0u1 . . . ut−1 of length t, where u0 = v0. It remains to show that Q′ is indeed
a cycle, that is, no vertices are repeated, and that it is induced in Ga when a ∈ {1, 2}.
Denote byUj ⊆ V (Q′) the set of vertices in �a forming the chosen paths between v j

and v j+1 and note that Uj ⊆ h(v jv j+1).

Suppose first that Q′ is not a cycle so there are indices 0 ≤ j < j ′ < t such that
u j = u j ′ . By definition, u j comes from a path between two vertices vi , vi+1, and
u j ′ from a path between two vertices vi ′ , vi ′+1, where i �= i ′, because we connected
consecutive vi ’s by paths. Furthemore, the edges vivi+1, vi ′vi ′+1 cannot be consecutive
on the cycle. Indeed, suppose, without loss of generality, that i ′ = i +1. However, the
corresponding hyperedges h(vivi+1), h(vi ′vi ′+1) intersect only in vi+1, which is an
endpoint of these paths, a contradiction. Finally, if the edges vivi+1, vi ′vi ′+1 are not
consecutive on Q, it implies that the hyperedges h1 = h(vivi+1) and h2 = h(vi ′vi ′+1)

are not disjoint. Since Q is a good cycle, there is a good subpath of Q containing h1
and h2, a contradiction. This shows that Q′ is indeed a red cycle and in particular,
completes the proof of 3).

Now, let a ∈ {1, 2} and for the sake of contradiction, assume there is an edge
xy ∈ E(�a) between two nonconsecutive vertices in Q′ and let f ∈ E(H) be the
unique hyperedge containing both x and y. If f = h(v jv j+1) for some 0 ≤ j ≤ �−1,
this is a contradiction since the 5 or 6-cycle we found in f is induced. Otherwise, f
is not equal to any h(v jv j+1). Let j �= j ′ be indices such that x ∈ Uj , y ∈ Uj ′ and
let P ∈ P be a good path containing v jv j+1, v j ′v j ′+1. Then f shows that P is not a
good path, a contradiction. �

Recall that L1 = 6, L2 = 5, so Lemma 5.6 says that for any a ∈ {1, 2, 3},
finding a good monochromatic cycle of length in [ La−1

2 n, La+1
2 n] yields the desired

monochromatic cycle in �a .

To prove Lemma 5.6, we start with some auxiliary results.

Lemma 5.7 Let P = (v1, v2, . . . , v�) be a path in G. If � ≤ g, then P is good.

Proof Denote hi = h(vivi+1), for 1 ≤ i ≤ � − 1. We prove the lemma by induction
on �. If � = 2, the statement follows from the fact that H is linear. Now consider
the case � = 3 and suppose there is some f ∈ E(H) other than h1, h2 containing
two vertices in h1 ∪ h2. If v2 ∈ f , then f intersects h1 or h2 in at least two vertices,
contradicting linearity of H . Else, let x ∈ f ∩ h1, y ∈ f ∩ h2 be such that x, y, v2 are
all distinct vertices. Then, x, h1, v2, h2, y, f is a Berge 3-cycle in H , contradicting
(P3), since the girth of H is larger than g ≥ 4.

Now, assume � ≥ 4 and P is not good. By the induction hypothesis the paths
P1 = (v1, . . . , v�−1) and P2 = (v2, . . . , v�) are good. We then also have that h�−1 ∩
h1 = ∅, as otherwise h�−1 intersects h1 and h�−2, which contradicts that P1 is good.
Hence, P satisfies the first point in the definition of a good path. So, there is some
f ∈ E(H) \ {h1, . . . , h�−1} intersecting ∪i∈[�−1]hi in at least two vertices. Recalling
that P1 and P2 are good, we have that f intersects h1 and h�−1 in some vertices x �= v2
and y �= v�−1. But now x, h1, v2, h2, . . . , v�−1, h�−1, y, f is a Berge cycle of length
� ≤ g in H , contradicting (P3). �
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Observation 5.8 Let P be a good path in G, let v be an endpoint of P, and let u be a
vertex outside of P. If P + uv is a bad path in G, then there is a hyperedge h ∈ V (H)

(different from h(vu)) and an edge e on P at distance at least 2 from v, such that both
{h, h(vu)}, {h, h(e)} ∈ E(I). We say that h ruins P + uv.

Proof Suppose P + uv is a bad path. By definition, since P is a good path, there are
only two cases:

• h(uv) intersects h(e) for some edge e ∈ P , different from the last edge in P ,
which contains v. But this is not possible, since then h(uv) intersects two hyper-
edges corresponding to edges on the path, which would imply that P is bad, a
contradiction.

• There is another hyperedge h ∈ E(H), which intersects h(e) and h(e′), for two
distinct edges e, e′ ∈ P + uv. One of those must be the edge uv, since otherwise
we again get a contradiction with P being good. The other one cannot be one of
the last two edges of P , since otherwise the path consisting of those two edges
and uv would not be a good path, a contradiction with Lemma 5.7.

�
We proceed to proving Lemma 5.2.Wewill need the following theorem byKrivele-

vich [26], which states that locally sparse graphs contain a large expanding subgraph.
For our application of this result, we will also require that the found subgraph has large
average degree. The theorem in [26] is not stated with the average degree condition,
but it can be easily extracted from its proof. For completeness, we include the proof
in the appendix.

Theorem 5.9 ([26]) Let c1 > c2 > 1, 0 < β < 1, � > 0. Let G = (V , E) be a graph
on n vertices, satisfying:

1. |E |
|V | ≥ c1 ;

2. every vertex subset U ⊂ V of size |U | ≤ βn spans fewer than c2|U | edges;
3. �(G) ≤ �.

Then G contains an induced subgraph G∗ = (V ∗, E∗) on at least βn vertices which
is a γ -expander, for γ = c1−c2

2�·
⌈
log2

1
β

⌉ , with |E∗|/|V ∗| ≥ c1+c2
2 .

Proof of Lemma 5.2 Let G ′ the graph obtained from G as follows. Consider the sub-
graph Gred of G consisting of the edges of the densest color class. In the induced case
(a ∈ {1, 2}), since G has at least CN

2 edges (one for each gadget), we get that Gred

has at least CN
2k ≥ 1019N edges. In the non-induced case (a = 3), since G has at

least CN
2·2k edges (one for each gadget which gives the most common monochromatic

cycle), we conclude that Gred has at least CN
2k2k

≥ 101922k N edges. Furthermore, by
the last property in Lemma 4.4, every set S ⊂ V (G) of size at most αN , spans at most
2|S| edges. Hence, the conditions of Theorem 5.9 are satisfied for the graph Gred with
β = α = 10−6C−3s−8, � = 8Cs ≥ �(H) ≥ �(Gred), c2 = 2 and c1 = 1019 in the
induced case (a ∈ {1, 2}), while c1 = 101922k in the non-induced case (a = 3). Note
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that

γ = c1 − c2
2� log2

1
β

≥ 1019 − 2

16Cs log2(106C3s8)
≥ 1

k2Cs
,

where in the last inequality we used log2(Cs) = log2(e
O(k log k)) = O(k log k). Thus

we obtain a subgraph G ′
red of Gred on at least αN vertices which is γ -expanding with

average degree d, where d ≥ 1018 in the induced case (a ∈ {1, 2}) and d ≥ 101822k

in the non-induced case (a = 3). Now let G ′ be a maximal subgraph of G ′
red with

minimum degree δ(G ′) ≥ d/2 > 1017 in the induced case (a ∈ {1, 2}) and δ(G ′) ≥
101722k in the non-induced case (a = 3), so in each case δ(G ′) ≥ 1015L2 as we have
that L1 = 6, L2 = 5 and L3 ≤ 2k +1. Note that G ′ has at least αN vertices. Indeed, if
that was not the case then we would have a subgraph of Gred on less than αN vertices
which contains at least |V (Gred)|d/4 > 2|V (Gred)| pairs of vertices which are in
an edge of H , a contradiction with the last property of Lemma 4.4. This finishes the
proof.

5.2 Finding a Long Good Path

Let G ′ ⊆ G ′
red be the subgraphs given by Lemma 5.2. Now everything is set up to

start building a good cycle in G ′. This section is dedicated to finding a long good
path in G ′, which is the statement of the following lemma. In this lemma L is one of
L1, L2 or L3, however, our arguments hold regardless of which of the three cases we
are proving and therefore we omit the subscript.

Lemma 5.10 There is a good path of length 2
L n in G ′.

To prove this lemma, we run a modification of the DFS graph search algorithm on
G ′, and by analyzing it we show the existence of the required path. We maintain four
sets P, S1, S2,U ⊆ V (G ′), together with a subgraph F ⊆ I containing no sunflower
cycle. In the beginning we set P = S1 = S2 = ∅, U = V (G ′), and we let F be the
empty graph. The vertices in P will always form a good path in P . As we explore the
vertices of G ′, we will either increase P , S1 or S2, while U shrinks. We add vertices
from P to S1 when they do not have neighbours in the unexplored vertices, while to S2
we will add vertices when we add new edges to the auxiliary graph F ⊆ I. The latter
case will be a consequence of the existence of hyperedges which ruin the goodness
of the current path. If S1 grows too large, we will show the existence of a small set of
vertices in G ′ spanning too many edges in G ′ ⊂ G, which will contradict the local
density condition of G. On the other hand, if S2 grows too large, then we will show
that the auxiliary graph F ⊆ I has too many edges, contradicting the local density
condition in I. As a consequence, this will imply that P is large enough at some point,
finishing the proof.

The vertices in P are kept in a stack. We run the following algorithm in rounds
until U = ∅:
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Fig. 4 Illustration of Step 4 of the algorithm. Figure a) on the right depicts the case when h2 is not already
in V (F) and then two vertices (h1 and h2) are added to V (F) and three edges ({h(vv′), h1}, {h1, h2} and
{h2, h(e)}) are added to E(F). Figure b) depicts the case when h2 is already in V (F) and then one vertex
(h1) is added to V (F) while two edges ({h(vv′), h1} and {h1, h2}) are added to E(F)

Start of Round

1. If P = ∅, remove an arbitrary vertex from U and push it to P. Let v be the last
vertex in P.

2. If v has no neighbours in U , pop v from P and add it to S1.
3. Else, let u be any neighbour of v in U , remove it from U and add it to P . If the

new path P is good, add1 h(uv) to the vertex set of F .
4. If P is not good, do the following. Let v′ be the vertex in P before v. Consider h1 :=

h(vu) as well as exactly one hyperedge h2 which ruins P because it intersects h1
and h(e) for some edge e on the path P (given by Observation 5.8). If h2 is not in
V (F), add it to V (F) and add the edge {h2, h(e)} to E(F). Add1 h1 to V (F) and
add edges {h1, h2} and {h1, h(vv′)} to E(F). Finally, for each vertex in the edge
h−1(h2) which is in U , remove it from U and add it to S2. Pop u from P and add
it to S2. (See Fig. 4 for an illustration.)

End of Round
We first show some simple invariants which are maintained during the execution

of our algorithm.

Claim 5.11 The following hold at the end of each round of ourmodifiedDFSalgorithm:

(A) The vertices in P form a good path in G.
(B) When a hyperedge h(xy) is added to V (F) then both x and y are not in U from

that point until the end of the algorithm.
(C) No vertex in S1 is adjacent to U.
(D) At each point of the algorithm F contains at least |S2|/3 vertices and at most

|P| + |S1| + 2|S2| vertices.
(E) At each point of the algorithm F contains at least 3

2 (v(F)−|P|− |S1|) edges and
no sunflower cycle.

Proof • Property (A) is trivially satisfied, since in Step 4 we remove the vertex
which made the path bad. Property (B) also holds since a hyperedge h(xy) can be
added to V (F) only in Steps 3 or 4 and in both cases both its endpoints end up in

1 We argue later why h(uv) is not already in V (F).
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P ∪ S1 ∪ S2. Furthermore, a vertex which is added to P ∪ S1 ∪ S2 at any point of
the algorithm, stays in that set throughout. Also (C) is easy to check, as a vertex
is added to S1 precisely when it has no neighbours to U , and since U can only
shrink, the claim holds.

• For properties (D) and (E), we first prove that the hyperedge h1 = h(uv) from
Steps 3 and 4 was not contained in V (F) before the start of this round. Suppose
for contradiction that it was. First, if it was added to V (F) in some previous round,
then by (B), none of its vertices are in U from the point h1 was added to V (F).
Further, since we only add vertices to V (F) in at most one of the Steps 3 and 4,
then h1 could not have been added to V (F) earlier in the same round.

• Now, we show (D). For the lower bound, note that S2 only increases in Step 4,
where each time at most 3 vertices are added to S2 and at least one vertex h(uv)

is added to V (F). For the upper bound, notice that there are two ways in which
we add vertices to V (F). The first is when in Step 3 we add a vertex to P (which
either stays in P or is moved to S1). The second is when in Step 4 we add at most
two vertices to V (F), while at the same time we add at least one vertex to S2. This
finishes part (D) since V (F) never decreases and vertices which are put in S2 stay
in S2 throughout.

• To show the quantitative bound of (E), we prove that every time we reach Step 4
and P is bad, we either add one vertex and two edges to F , or we add two vertices
and three edges. This would be enough, as in that step we added all but at most
|P| + |S1| of the v(F) vertices to V (F). The remaining ones are added in Step 3.
Each time we enter Step 4 and P is not good, we distinguish two cases. In the first
case, h2 is already a vertex in F , hence to F we only add the vertex h1, together
with its two edges to h2 and h(vv′). In the second case, we also add h2 to F , and
together with it the edge (h2, h(e)), which completes the first part of the proof.

• What is left is to argue that F contains no sunflower cycle. Look at F at an arbitrary
point of the algorithm, and assume that it has no sunflower cycle; we now show
that after an additional round no sunflower cycle is created.
Trivially, when we add an isolated vertex to V (F) in Step 3, no sunflower cycle is
created. Now we consider Step 4, and suppose that the path P is not good when
we enter this step, as otherwise we are done. It is enough to show that the edges in
I touching the vertex h1 = h(uv) which are added to F have different labels, as
then no sunflower cycle can be closed by the new edges, which would complete
the proof.
Note that the label of (h(vv′), h(uv)) is v, so if (h(uv), h2) also had the label
v, then h2 also contains v and hence it intersects h(vv′). By Observation 5.8, h2
also intersects h(e) for some edge e of P at distance at least 2 from u. Hence h2
intersects the corresponding hyperedges of two distinct edges in P − u, which
contradicts the fact that P − u is good, so we are done.

�

Proof of Lemma 5.10 Recall that α = 10−6C−3s−8, N = 10100k2C6s14n and G ′ has
at least αN vertices. Suppose for the sake of contradiction that at each point of the
execution of the algorithm, P is always of size |P| ≤ 2n/L < αN/106, as otherwise
we have found the required good path. Since the algorithm terminates when U = ∅,
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and |P| ≤ 2n/L , at some point of the algorithm we have that either |S1| ≥ αN/100
or |S2| ≥ αN/3. We distinguish two cases depending on which of these two occurs
first.

Suppose |S1| ≥ αN/100 occurs first, and look at the moment when this happens.
Then we have |S2| < αN/3. By property (C), all edges in G ′ which touch S1 are
contained in G[P ∪ S1 ∪ S2]. Thus we have a subgraph of G on |P ∪ S1 ∪ S2| ≤ αN
vertices and at least δ(G ′)|S1|/2 ≥ 1016|S1| > 2|P ∪ S1 ∪ S2| edges, contradicting
(P5) from Lemma 4.4.

On the other hand, when |S2| ≥ αN/3 occurs first, we have that |S1| < αN/100.
In that case, by (D) we obtain a subgraph F of I with |S2|/3 ≤ v(F) ≤ |P| + |S1| +
2|S2| ≤ αN and using (E) it has at least 3

2 (v(F) − |P| − |S1|) ≥ 4
3 |v(F)| edges and

no sunflower cycle, thus contradicting (P4).

5.3 Growing the Initial Trees

Now that we have constructed a good path P of length 2n/L , we proceed with the
second stage of the proof. Our goal is to prove the following lemma.

Lemma 5.12 There exists a good tree T in G ′, consisting of a path P of length in[
2n
L+1 ,

2n
L

]
, and two trees T1 and T2 rooted at the endpoints of P, and of depth t ≤

log N. Furthermore, |T | ≤ αN/105 and |T1|, |T2| ≥ αN/1015. Lastly, the set Ri of
vertices at depth at least t − log104(C

6s6) in Ti contains all but at most n/2 vertices
of the tree Ti , for each i ∈ {1, 2}

To prove the lemma, we pick a vertex in the middle of P to be the root, and we show
how to attach (inside of G ′) two large trees to the endpoints of P so that the resulting
rooted tree is still good. Before we show the details of the algorithm which does this,
we first briefly outline the main ideas. Then we will give a more formal description of
the algorithm, followed with Claim 5.13 which collects several properties of it. After
that, we will be in good shape to prove Lemma 5.12 at the end of this subsection.

Starting with one endpoint of the path, we try to attach to it a set X1 of 104 leaves
so that the obtained tree T is also good. Then we look at the other endpoint of P and
try to add a set X2 of 104|X1| leaves to that vertex so that T + X2 is also a good tree.
Then we again try to add 104|X2| leaves adjacent to X1 in that obtained tree and so on.
We essentially try to make the tree larger (while preserving the goodness condition)
by alternatively adding new leaves to one of the “sides” of the tree, each time adding
a factor of 104 more leaves to the other side than in the previous turn. Now, either
we built a large good tree, in which case we are happy, or one of the following two
cases happens. First, if the current set of leaves X1 does not have at least 5× 104|X2|
neighbours, then we will remove both attached trees from the current good tree to
obtain a good path. Second, if X1 does have many neighbours, but less than 104|X2|
can be attached to give a good tree, we again remove both attached trees from the
current good tree to obtain a good path, and we start over.

Now, if any of those two scenarios happens too often, then we get the same type of
contradiction as in the previous section. In particular, if the first scenario happens too
often, it will be not hard to see that there exists a set S of vertices in G ′ which has a
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small external neighbourhood, which will give a contradiction with the local density
condition of G ⊇ G ′. If the second scenario happens too often, then the point is that
each of the at least 4 × 104|X2| leaves v which can be attached to X1 gives a bad
tree, hence in the hypergraph H we will have a hyperedge which ruins the path which
contains the root and v. Using this fact we will be able to build an auxiliary graph
F ⊆ I which has too many edges and contains no sunflower cycle. Indeed, roughly
speaking, for many vertices v which can be attached to X1 and give a bad tree, we
will add at least three edges for every two vertices which we add to F (analogously
to Fig. 4).

The technical details are slightly more delicate here than in the previous section, as
in the second scenario we have to carefully pick which vertices and edges from I are
chosen to be added to the auxiliary subgraph F ⊆ I, which is supposed to give the
required contradiction using the local density property of I. Let us also remark that the
alternating sizes of the leaf sets are important to reach the mentioned contradictions
regarding local density.

Let us now describe our algorithm in full detail. We perform the following
procedure.

Let v1 and v2 be the endpoints of P . Let S1 = ∅, S2 = ∅ andU = V (G ′) − V (P).
Let T1 be the tree consisting only of vertex v1, and we let X1 be the leaf set of T1,
so in the beginning let X1 = {v1}. Similarly T2 = v2 and X2 = {v2}. We always
denote T = T1 ∪ P ∪ T2. We want to extend T , and we proceed in rounds, until
|T | ≥ αN/109 or |S1| ≥ n/L2 or |S2| ≥ 100n occurs at the end of some round. We
do so by alternately increasing T1 and T2, in each round making the leaf set of one
of the trees by a factor of 104 larger than that of the other tree. In particular, at every
point of the algorithm we will maintain |X1||X2| ∈ {1, 104, 10−4}. We further let F be a
subgraph of I, consisting only of isolated vertices h(e) for each edge e induced by P
in G ′. The sets S1, S2 and the graph F will serve a similar purpose as in the previous
subsection. The difference is that now we do not have only one vertex which is in
some sense bad and is then discarded, but a large part of a leaf set X1 or X2 (of one
of the trees we consider) can be bad.

In the algorithm given below, the neighbourhood NB(A) is defined as the neigh-
bourhood of the vertex set A in the vertex set B, in the graph G ′. The algorithm is
carried out in rounds, as follows.

Start of Round
W.l.o.g. assume that |X1| ≤ |X2| (otherwise rename them, and rename T1 and T2

analogously).

1. If |NU (X1)| ≤ 5 · 104|X2|, then remove v1 from P , and add V (T1 ∪ T2) − v2 to
S1. Denote by u the vertex that was adjacent to v1 in P , and let X1 = {u} and let
T1 = u. Further, let X2 = {v2} and T2 = v2. Start the next round.

2. Else,we have |NU (X1)| > 5·104|X2|. To each vertex v in NU (X1) assign precisely
one edge vv′ which connects it to the leaf set X1 of the tree T1. Let v′′ be the ancestor
of v′ in T . Let B ⊆ NU (X1) be a set of 5 · 104|X2| of these vertices, with some
arbitrary ordering v1, v2, . . .

3. Do the following for each i = 1, . . . , 5 · 104|X2|. If vi /∈ B (i.e., was already
removed from B), continue to i + 1. Else, if T + v′

ivi is not good, let hi be a

123



Combinatorica

hyperedge which ruins it, and let ei be the edge in T on a path which contains the
root and v′

i , such that hi intersects h(ei ) (note that by Observation 5.8 we have
ei �= v′

iv
′′
i and ei �= viv

′
i ). For each j > i , remove all vertices v j from B which

are contained in the two-element set h−1(hi ).
4. If after the previous step there are at least 104|X2| vertices v in B for which T +vv′

is good, then update T1 by adding 104|X2| such edges vv′, and let X1 be the set
of those 104|X2| vertices which are leaves in the new tree T1. Remove from U all
vertices v which are added to X1.

5. Otherwise, there is a set B ′ of 104|X2| vertices v in B for which T +vv′ is not good
(for each such vertex we removed at most 2 vertices in B, and at most 104|X2|
vertices in B give a good tree, and we had |B| ≥ 5 · 104|X2|). Proceed as follows.

• Add all vertices in T −V (P) to S2, and for each edge e ∈ E(T )\ E(P) add2 h(e)
to V (F).

For each vi ∈ B ′, following the order inherited from B do:

• Move vi from U to S2, and add h(viv
′
i ) to V (F) (later we argue why h(viv

′
i ) is

not already there).
• Add hi to V (F) (if it is not already there), and add both vertices in h−1(hi ) to S2
(note that one or both of them could already be in S2) and remove them fromU if
they are there.

• Add the edges {h(v′
ivi ), h(v′′

i v
′
i )} and {h(v′

ivi ), hi } to F , together with the edge
{hi , h(ei )} if hi was just added to V (F).

End of Round

Claim 5.13 The following hold at the end of each round of the above algorithm:

(A) T is a good tree in G.
(B) When a hyperedge h(xy) is added to V (F) then both x and y are not in U from

that point until the end of the algorithm.
(C) There is a subset S ⊆ S1 of size |S| ≥ |S1|/105 with |NU (S)| ≤ 5 · 108|S|
(D) At the end of each round, F contains at least |S2|/4 vertices and at most n+ 2|S2|

vertices.
(E) At each point of the algorithm F contains at least 1.45(v(F) − n) edges and no

sunflower cycle.
(F) The size of P is always at least |P| ≥ 2

L+1n.

Proof In the beginning we have |X1| = |X2| = |T1| = |T2| = 1, whereas afterwards
we have |X2| = 104|X1| and |T1 ∪ T2| <

∑∞
i=0 10

−4i |X2| < 1.1|X2|. Hence, it
always holds that |X2| ≥ 1

2 |T1 ∪ T2| and |X1| ≥ |T1 ∪ T2|/105. We proceed with
proving the individual claims.

• For (A), observe that we only possibly add edges to T in Step 4 if T stays good.
Indeed, by definition of a good tree, if T + vv′ is good for each vertex v that is

2 By property (B) below, it follows that each such h(e) is not already in V (F) since one of the endpoints
of e was in U at the start of the round.
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added, then for the new tree T obtained by adding all of these vertices, T is also
good. To see (B), note that vertices are added to V (F) only at the beginning of
the algorithm and in Step 5. In both cases, once a hyperedge h(xy) is added to
V (F), both x and y end up in P ∪ S1 ∪ S2 and stay in this set throughout. For (C),
notice that vertices are added to S1 only in Step 1 when the neighbourhood of X1
in U is at most 5 × 104|X2| ≤ 5 × 108|X1|, and then we add to S1 all vertices in
T1 ∪ T2 − v2. Since |X1| ≥ |T1 ∪ T2 − v2|/105 and throughout the algorithm U
only shrinks, the claim holds by taking S to be the union of the sets X1 which are
added to S1 during the algorithm.

• As in the proof in the previous subsection, for properties (D) and (E), we first prove
that every hyperedge h(v′

ivi ) from Step 5, added in any round, was not contained
in V (F) already. First, it was not added to V (F) in the very beginning, since then
v′
ivi would need to be part of the initial path, but since vi was in U when starting
the observed round, this is a contradiction.
Furthermore, h(viv

′
i )was not added to V (F) in a previous round, since in this case

both vi and v′
i would have been added to S2, which gives the same contradiction.

Finally, we show that h(viv
′
i ) could not have been added to V (F) in an earlier

stage of Step 5 of the same round. Indeed, viv′
i is certainly not equal to some v jv

′
j

with j < i , and also h j �= h(viv
′
i ) since in Step 3 we deleted vertices in h−1(h j )

from B which come later in the ordering.
• To show (D), recall that we add vertices to V (F) in one of the two following
cases. First, we add at most n hyperedges/vertices to V (F) at the beginning of the
algorithm, one for each edge on the initial path P .
Second, in Step 5, to V (F) we added at least |B ′| = 104|X2| vertices. On the
other hand, we added to S2 at most 3 vertices for each of those |B ′| vertices (one
for each h(v′

ivi ) and at most two for hi ), and at most one for each edge in T1 ∪ T2
where |T1 ∪ T2| ≤ 2|X2| < |B ′|/100. This implies that to V (F) we added at
least |S2|/4 vertices, which gives the required lower bound. For the upper bound,
note that every time we add h(viv

′
i ) (and possibly hi ) to V (F), we add vi to S2.

Furthermore, when for an edge e ∈ E(T )\E(P) the hyperedge h(e) is added to
V (F), exactly one vertex (contained in e) is added to S2. This gives the desired
upper bound, where the term n bounds the number of vertices added to V (F)

initially.
• For (E) first note that the number of vertices added to V (F) at Step (5) of the
algorithm is at least v(F) − n, as n bounds the number of vertices added to V (F)

in the beginning of the algorithm. Now, for each vi ∈ B ′, we either add just h(v′
ivi )

to V (F) and the two edges {h(v′
ivi ), h(v′′

i v
′
i )} to F , or we add both h(v′

ivi ) and
hi to V (F), but then we add all three edges {h(v′

ivi ), h(v′′
i v

′
i )},{h(v′

ivi ), hi } and{hi , h(ei )} to F . This means that for every two vertices added to V (F), we add
at least three edges to F , and in the observed case we added at least |B ′| vertices
to V (F). The total number of other vertices which are added to V (F) in Step 5
is |E(T ) \ E(P)| ≤ |T1 ∪ T2| which (as we already explained in (D)) is at most
|B ′|/100. Hence, if we added t vertices to V (F) in a round, we added at least
3
2 (t − t/100) ≥ 1.45t edges to F , which completes the proof of the first part of
(E).
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• Now, it is left to show that there are no sunflower cycles in F . Look at F at an
arbitrary point of the algorithm, and assume that it has no sunflower cycle; we now
show that after an additional round no sunflower cycle is created. Trivially, in the
beginning F consists only of isolated vertices, hence it has no sunflower cycles.
Now we consider Step 5, which is the only step where edges are added to F . All
we need to show is that the edges in I touching the vertex h(viv

′
i )which are added

to F have different labels, as well as that the two edges touching hi have different
labels if hi is also added to V (F) in this step, hence no sunflower cycle can be
closed by these new edges, which would complete the proof.
First we consider h(viv

′
i ). The label of (h(viv

′
i ), h(v′

iv
′′
i )) is v′

i , so if (h(viv
′
i ), hi )

also had the label v′
i , then hi also contains v′

i and hence it intersects h(v′
iv

′′
i ). Now,

hi also intersects h(e) for some edge ei on the path containing the root and v′
i , and

by Observation 5.8 we know that e �= v′
iv

′′
i , so hi intersects that path in at least

two vertices, a contradiction with the goodness of the tree T .
Now, let us argue that if hi is added to V (F), then the two edges added with it have
different labels. Let the label of (h(viv

′
i ), hi ) be x . First, note that x �= v′

i by the
same argument as in the previous passage. Now, if the label of the edge (hi , h(ei ))
is also x , then the hyperedges h(ei ) and h(viv

′
i ) intersect in x , which leads to a

contradiction as the only hyperedge on the path from v′
i to the root which h(viv

′
i )

intersects is h(v′
iv

′′
i ), and they only share vertex v′

i .• For (F), note that each time we remove a vertex from P , at least one vertex is added
to S1.
Then, if at some point P has less than 2n

L+1 vertices, then |S1| ≥ 2n
L − 2n

L+1 > n
L2 ,

hence our algorithm would have stopped earlier. �

Proof of Lemma 5.12 We will prove that the algorithm above terminates when |T | ≥
αN/109, giving a good tree T in G ′ consisting of a path P of length at least 2n

L+1 , and
two trees T1 and T2 rooted at its endpoints, and of depth t ≤ log N . Furthermore, we
will show that |T | ≤ αN/105 and |T1|, |T2| ≥ αN/1015. Lastly, we will show that
the vertices Ri at depth at least t − log104(C

6s6) contain all but at most n/2 vertices
of the tree Ti .

Recall that α = 10−6C−3s−8 and N = 10100k2C6s14n, while L1 = 6, L2 = 5
and L3 ≤ 2k + 1, and L is equal to one of those three depending on which statement
we prove (see definition of host graph in the end of Sect. 4). Also recall that δ(G ′) ≥
1015L2, by Lemma 5.2. Suppose that the algorithm terminates when |S1| ≥ n/L2 <

αN/1020 (which implies that at that point |S1| ≤ n/L2+αN/109 because right before
terminating, |S1| increased by at most |T | ≤ αN/109). We also have |S2| < 100n.
Since S1 was increased right before terminating in Step 1, at the end of the observed
round, P, S1, S2 and U cover the vertices of G ′. By (C) there is a set S ⊂ S1 with
|S| ≥ |S1|/105 with |NU (S)| ≤ 5 × 108|S| ≤ 5 × 1013|S1|. Since |P| + |S2| <

101n ≤ 101 L2|S1|, we get that G ′[P ∪ S1 ∪ S2 ∪ NU (S)] is a subgraph of G ′ on
at most 1014L2|S1| ≤ αN vertices, spanning at least δ(G ′)|S1|/2 > 2 · 1014L2|S1|
edges, a contradiction with the local density property of G ⊃ G ′ (P5).

Next, suppose that the algorithm terminates when |S2| ≥ 100n. But then, by (D)
and (E), F has at least 25n vertices, and at least 1.45(v(F) − n) > 4

3v(F) edges,
which is again a contradiction with the local density condition of I ⊃ F stated as
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(P4), because v(F) ≤ 300n + αN/2 < αN (in the last step before terminating the
number of vertices which are added to S2 is at most 108|T1 ∪ T2| < αN/2).

Hence, the algorithm terminates when |T | ≥ αN/109. By construction, T1 and T2
are of depth at most log104(αN ) < log N . Additionally, we have that the bound on
the ratio of the sizes of the trees T1 and T2 is max{ |T1||T2| ,

|T2||T1| } ≤ 2 · 104, which gives
the lower bound on the sizes of the trees, since T = T1 + P + T2 and |P| ≤ n. Since
|T | increases in each round by at most a factor of 104, |T | ≤ αN/105 holds. Finally,
by (F), P is of length at least 2n

L+1 , which finishes the proof.
Now, R1 is the set of vertices in X which are added to T1 in the last 2 log104(C

6s6)
rounds of the algorithm. Recall that each Ti grows by factor roughly 104 every other
round. It follows that |V (T1) − R1| ≤ 2|T1|

C6s6
≤ 1090k2n/C3 ≤ n/2, where we used

that α = 10−6C−3s−8, N = 10100k2C6s14n, C ≥ 1020k and k is large enough. R2 is
defined analogously for the tree T2, and again we have |V (T2) − R2| ≤ n/2. �

5.4 Enlarging the Trees and Finishing the Proof

In this section we complete the proofs of Theorems 1.1 and 1.2. Recall that the tree T
from Lemma 5.12 lives inside G ′, and G ′ is a subgraph of a γ -expanding graph G ′

red ,
with γ = 1

k2Cs
. Recall again that α = 10−6C−3s−8 and N = 10100k2C6s14n.

For a subset S ⊆ V (I), denote by NI(S) all the vertices in the graph G which are
contained in a hyperedge h which has distance at most 2 to S in I. Note that for every
S ⊆ I, in the graph G we always have |NI(S)| ≤ 2(8Cs)2s3|S|, since the maximum
degree of H is at most 8Cs and the size of each hyperedge is s. Let S be the set of
hyperedges h(e)where e ∈ T − R1 − R2. Then |S| = |V (T1)− R1|+ |V (T2)− R2|+
|P| ≤ n/2 + n/2 + n = 2n.

We now use the expanding properties of G ′
red to find a short path between the sets

R1 and R2 and thus we close a cycle together with a subpath of T . Crucially, we make
sure that this path avoids NI(S) which, together with the fact that H has large girth,
guarantees that the cycle we find is good. The formal proof follows.

Let Xt := Rt for t ∈ {1, 2}. Since G ′
red is a γ -expander we can do the following.

For each t ∈ {1, 2}, repeat the following as long as |Xt | ≤ |V (G ′
red)|/2. Let

Xt := Xt ∪ NG ′
red

(Xt ) \ NI(S).

Since at each step Xt increases by at least γ |Xt |−2(8Cs)2s3|S| ≥ γαN/(2 ·1015)−
256C2s5n ≥ γαN/1016, after at most 1016

γα
steps, both X1 and X2 contain more than

half of the vertices of G ′
red . Thus, they intersect at some point of this procedure.

Let x be one of the vertices in X1 ∩ X2, at the time of the procedure when we first
have X1 ∩ X2 �= ∅. Hence, we obtain a cycle Q in G ′

red which passes through T1
and T2 (and its root), and contains vertex x , and has length between 2n

L+1 ≤ |P| and
2n
L + 2 log N + 21016

γα
≤ 2n

L−1 , where in the upper bound the first term is a bound on
the length of P , the second bounds the sum of the depths of T1 and T2, and the third is
the number of steps needed to reach x from R1 and R2. This in turn will give rise to a
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red (induced) cycle of length n in the host graph �. To prove this, we use Lemma 5.6,
so we first show the existence of a collection of good paths contained in Q, so that
every pair of edges in Q is contained in one such path.

Let P1 be the path Q ∩ (X1 ∪ T \ R2), and let us argue that this path is a good path.
Since T is a good tree, Q ∩ T is a good path. Furthermore, since the path Q ∩ X1 is
of length at most 1016

γα
+ log104(C

6s6) < g where g = (Cs)20 is the girth of H , by
Lemma 5.7 it is also a good path. To finish, we observe that any pair of edges e, e′
where e has a vertex in X1 − R1, and e′ has a vertex in T − R2 is such that e and
e′ are at distance more than 2 in I. Indeed, by construction vertices in X1 − R1 are
outside of NI(S) and so h(e) and h(e′) do not intersect and there is no hyperedge in
H intersecting both h(e) and h(e′).

The path P2 defined as Q ∩ (X2 ∪ T \ R1) is analogously good. Furthermore the
path P3 = Q ∩ (X1 ∪ X2) is good by Lemma 5.7, as we only performed at most
1016
γα

steps to reach the final X1 and X2, so Q ∩ (X1 ∪ X2) is of length at most

2 1016
γα

+ 2 log104(C
6s6) < g.

Note that P1, P2 and P3 cover every pair of edges in Q, so Q is a good cycle. This
completes the proof of Theorems 1.1 and 1.2 by Lemma 5.6, recalling that Q is of
length between 2n

L+1 and 2n
L−1 .

6 Concluding Remarks

In this paper we have shown that the induced size-Ramsey number of even cycles
satisfies r̂ kind(Cn) ≤ O(k102)n, while for odd cycles we have r̂ kind(Cn) ≤ eO(k log k)n.
Both of the results improve upon the previous best known bound [18] which had
a tower type dependence on k. Using the same method, we prove essentially tight
bounds for the size-Ramsey number of odd cycles, namely r̂ k(Cn) ≤ eO(k). Being
more careful with the argument, we could derive a more precise bound also in the even
case for (non-induced) size-Ramsey numbers, though we certainly cannot come very
close to the best known lower bound, which is of order k2n [12, 26].

As an interesting open problem, we conjecture that an exponential bound in k is
also sufficient in the induced case.

Conjecture 6.1 r̂ kind(Cn) ≤ eO(k)n for odd n.

In order to show this, it would be sufficient to prove that there is a graph with eO(k)

edges which contains an induced monochromatic odd cycle of length at least 5 in any
k-coloring of its edges. Indeed, then we could use this graph as the gadget graph, and
get the desired bound with the same proof. We conjecture that such a gadget graph
exists.

Conjecture 6.2 For every integer k, there is a graph G with eO(k) edges which, for
any k-coloring of its edges, contains a monochromatic odd cycle of length at least 5
as an induced subgraph.

Determining whether the multicolor Ramsey number of a fixed odd cycle, say C3,
is exponential in the number of colors is a notoriously hard open problem. However,
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Conjecture 6.2 could be substantially easier since it requires us tofind amonochromatic
cycle of any odd length and can be viewed as an induced analogue of the simple
Lemma 3.1.

Appendix

Theorem 5.9[26] Let c1 > c2 > 1, 0 < β < 1, � > 0. Let G = (V , E) be a graph
on n vertices, satisfying:

1. |E |
|V | ≥ c1 ;

2. every vertex subset U ⊂ V of size |U | ≤ βn spans fewer than c2|U | edges;
3. �(G) ≤ �.

Then G contains an induced subgraph G∗ = (V ∗, E∗) on at least βn vertices which
is a γ -expander, for γ = c1−c2

2�·
⌈
log2

1
β

⌉ , with |E∗|/|V ∗| ≥ c1+c2
2 .

Proof Set δ = c1−c2
2�log2 1

β
� and di = c1 − iδ, for i ≥ 0. The proof proceeds in several

iterations. We start with i = 0, G0 = G. Suppose we are at iteration i ≥ 0 and that
the graph Gi satisfies |E(Gi )|/|V (Gi )| ≥ di , which holds for i = 0 by assumption.
Let Hi = (Ui , Fi ) be an inclusion-wise minimal induced subgraph of Gi for which
|Fi |/|Ui | ≥ di (which exists since Gi satisfies this condition). Note that every subset
W ⊆ Ui touches at least di |W | edges as otherwise we could remove W from Ui to
obtain a subgraph with average degree at least 2di contradicting the minimality of Hi .

If

there exists W ⊆ Ui , βn ≤ |W | ≤ |Ui |/2, s.t. W spans at least di+1|W | edges in Hi ,

(2)

then we updateGi+1 = G[W ], i := i+1, otherwise we halt the process. Observe that
if we proceed to the next iteration as described above, then |V (Gi+1)| ≤ |V (Gi )|/2
and |E(Gi+1)|/|V (Gi+1)| ≥ di+1. Hence, if we reach iteration i = �log2(1/β)�,
we arrive at a subgraph Gi of size at most βn satisfying |E(Gi )|/|V (Gi )| ≥ di =
c1+c2

2 , contradicting the second assumption. Therefore, the process stops at some
i ≤ �log2(1/β)� − 1, implying that (2) is not satisfied for Hi = (Ui , Fi ). Since
|E(Hi )|/|V (Hi )| ≥ di ≥ (c1 + c2)/2, we have that |V (Hi )| ≥ βn by the second
assumption.

Finally, we verify that Hi is a γ -expander so we can take G∗ = Hi . Indeed, let
W ⊆ Ui , βn ≤ |W | ≤ |Ui |/2. Recall that Hi does not satisfy (2), so W spans at
most di+1|W | edges, yet by our choice of Hi , W touches at least di |W | edges in
Hi . Thus, (W ,Ui\W ) ≥ (di − di+1)|W | = δ|W |. Now, suppose |W | ≤ βn. By our
second assumption, |W | spans at most c2|W | edges in Hi , but touches at least di |W | ≥( c1+c2

2 + δ
) ≥ (c2+δ)|W | edges in Hi .Again,we conclude that e(W ,Ui\W ) ≥ δ|W |.

Recalling themaximumdegree condition, we see that |NHi (W )| ≥ e(W ,Ui\W )/� ≥
δ
�

|W | = γ |W |, implying that Hi is a γ -expander, as required. �
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10. Draganić, N., Krivelevich, M., Nenadov, R.: Rolling backwards can move you forward: on embedding
problems in sparse expanders. Trans. Am. Math. Soc. 375(7), 5195–216 (2022)

11. Dudek, A., Prałat, P.: An alternative proof of the linearity of the size-Ramsey number of paths. Comb.
Probab. Comput. 24(3), 551–555 (2015)

12. Dudek, A., Prałat, P.: On some multicolor Ramsey properties of random graphs. SIAM J. Discret.
Math. 31(3), 2079–2092 (2017)

13. Erdős, P., Rényi, A.: On a problem in the theory of graphs A Magyar Tudományos Akadémia.
Matematikai Kutató Intézetének Közleményei 7, 623–641 (1962)
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