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Abstract
Let G := (G1,G2,G3) be a triple of graphs on the same vertex set V of size n. A
rainbow triangle in G is a triple of edges (e1, e2, e3) with ei ∈ Gi for each i and
{e1, e2, e3} forming a triangle in V . The triples G not containing rainbow triangles,
also known as Gallai colouring templates, are a widely studied class of objects in
extremal combinatorics. In the present work, we fully determine the set of edge den-
sities (α1, α2, α3) such that if |E(Gi )| > αi n2 for each i and n is sufficiently large,
then G must contain a rainbow triangle. This resolves a problem raised by Aharoni,
DeVos, de la Maza, Montejanos and Šámal, generalises several previous results on
extremal Gallai colouring templates, and proves a recent conjecture of Frankl, Győri,
He, Lv, Salia, Tompkins, Varga and Zhu.

Keywords Extremal graph theory · Rainbow triangles · Gallai colourings · Mantel’s
theorem

Mathematics Subject Classification 05C35 · 05D99

1 Introduction

Mantel’s Theorem from 1907 [21] is one of the foundational results in extremal graph
theory. It asserts that a triangle-free graph G on n vertices has at most � n2

4 � edges,
with equality if and only if G is (isomorphic to) the complete balanced bipartite
graph T2(n). While the proof of Mantel’s theorem is a simple combinatorial exercise,
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triangle-free graphs act as a kind of theoretical lodestone in extremal combinatorics:
many important extremal tools or problems are first developed or studied in the context
of triangle-free graphs. One may think, for example, of results on the independence
number of triangle-free graphs [23], the chromatic threshold phenomenon [2, 24], the
triangle removal lemma [22], and on random [8] and tripartite [6] versions of Mantel’s
theorem.

In this paper we will consider a rainbow variation on Mantel’s triangle-free theme,
which was first introduced by Gallai in 1967. Fix an n-set V and some integer r ≥ 2.

Definition 1.1 (Colouring templates, colourings) An r -colouring template on V is an
r -tupleG(r) = (G1,G2, . . . ,Gr ), where each of the Gi is a graph on V . Whenever r
is clear from context, we omit the superscript r and write G for G(r).

An r -coloured graph (H , c) is a graph H = (V (H), E(H)) together with an r -
colouring of its edges c : E(H) → {1, 2, . . . , r}. (Note that an r -coloured graph may
be identified with an r -colouring template where the colour classes Gi , 1 ≤ i ≤ r ,
are pairwise edge-disjoint.)

Definition 1.2 (Coloured and rainbow subgraphs) Given an r -coloured graph (H , c),
we say that an r -colouring template G(r) on a vertex set V contains a copy of (H , c)
as a subgraph if there is an injection f : V (H) → V such that for each edge
e = {x, y} ∈ E(H) we have { f (x), f (y)} ∈ Gc(e). Further, given a graph H , we
say that G contains a rainbow copy of H if G contains (H , c) for some r -colouring
c : E(H) → {1, 2, . . . , r} assigning distinct colours to distinct edges.

Gallai [16] initiated the study of r -colourings with no rainbow triangles, proving a
structure theorem that was subsequently re-discovered and extended by a number of
other researchers [7, 17]; in honour of his pioneering contributions to the area, r -
coloured graphs containing no rainbow triangle are known as Gallai colourings. We
accordingly refer to r -colouring templates not containing a rainbow copy of K3 as
Gallai colouring templates.

Gallai colourings have been extensively studied. For instance, there are connections
between Gallai colourings and information theory [19], and a considerable interest in
counting the number of Gallai colourings and characterising their typical structure
[4, 5, 12]. A large body of work has been dedicated to research on Gallai colourings
from a Ramsey-theoretic perspective, giving rise to ‘Gallai–Ramsey theory’—see the
dynamic survey [15] devoted to the area.

In this paper, we focus instead on Turán-style questions for Gallai colouring tem-
plates. One of the first results of this kind was obtained byKeevash, Saks, Sudakov and
Verstraëte [18], who determined the arithmetic mean of the size of the colour classes
G1,G2, . . .Gr required to guarantee the existence of a rainbow K3 in an r -colouring
template. As a special case of more general results on rainbow cliques, they proved
the following [18, Theorem 1.2]:

Theorem 1.3 (Keevash, Saks, Sudakov, Verstraëte) If G is a Gallai r-colouring
template on n vertices for n sufficiently large, then

1

r

r∑

i=1

|E(Gi )| ≤
{ 2

3

(n
2

)
if r = 3,⌊

n2
4

⌋
if r ≥ 4,
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and these upper bounds are best possible.

The lower bound constructions in Theorem 1.3 are the trivial ones: for r ≥ 4, one
takes G1 = G2 = . . . = Gr = T2(n), while for r = 3 one takes G1 = G2 = Kn

and lets G3 be the empty graph. Given that this latter construction features an empty
colour class, it is natural to ask how the bound in Theorem 1.3 changes in the r = 3
case if one requires all three of the colour classes G1, G2 and G3 to be large. This
question was first posed by Diwan and Mubayi in a 2006 manuscript [9]: what is the
least α > 0 such that for all n sufficiently large, every 3-colouring template G on an
n-set V with min{|E(Gi )| : 1 ≤ i ≤ 3} > αn2 contains a rainbow triangle? In other
words, how large do you need the smallest of the three colour classes to be in order to
guarantee the existence of a rainbow triangle?

Magnant [20, Theorem 5] answered this question in 2015 under the assumption
that the union of the colour classes Gi , 1 ≤ i ≤ 3, covers all pairs in V . This
assumption may seem natural, insofar as one seeks to make all colour classes large,
but it also introduces some very strong restrictions on the colouring template G.
Indeed, if {x, y} ∈ E(Gi ) ∩ E(G j ) and {x, z} ∈ E(Gi ) ∩ E(Gk) for some distinct
indices 1 ≤ i, j, k ≤ 3, then if the edge {y, z} belongs to any of the three colour
classes we have a rainbow triangle. Thus Magnant’s assumption rules out any vertex
being adjacent to two ‘bi-chromatic edges’ with distinct colour pairs. In a 2020 paper,
Aharoni, DeVos, de la Maza, Montejanos and Šámal [1, Theorem 1.2] did away with
Magnant’s technical assumption and answered the question of Diwan and Mubayi in

full. Let τ := 4−√
7

9 .

Theorem 1.4 (Aharoni, DeVos, de la Maza, Montejano and Šámal) For all n
sufficiently large, any n-vertex 3-colouring template G satisfying

min {|E(G1)|, |E(G2)|, |E(G3)|} >
1 + τ 2

4
n2

contains a rainbow triangle.

Moreover, the lower bound in Theorem 1.4 is tight up to a O(n) additive term, as can
be seen by considering the following family of constructions. Set [n] := {1, 2 . . . , n},
and write S(2) for the collection of unordered pairs of elements from a set S.

Construction 1.5 (F(a, b, c)-templates) Let a, b and c be non-negative integers with
a + b + c = n. Arbitrarily partition [n] as [n] = A 
 B 
 C, with |A| = a, |B| = b
and |C | = c. Define graphs F1, F2 and F3 on the vertex set [n] by setting

F1 := A(2) ∪ B(2), F2 := A(2) ∪ C (2), and F3 := [n](2) \ A(2).

Write F = F(a, b, c) for (any instance of) the n-vertex 3-colouring template
(F1, F2, F3).

See Fig. 1 for a picture of the 3-colouring template F(a, b, c). It is readily checked
that F is rainbow K3-free, and that setting b = c = �τn
 and a = n − 2�τn
 we have
that all three colour classes F1, F2 and F3 contain 1+τ 2

4 n2 + O(n) edges.
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C B

F (a, b, c) H (a, b, c)

Fig. 1 The Gallai colouring templates F (a, b, c) and H (a, b, c) with red (thin lines), green (thick lines)
and blue (doubled lines) representing edges in colours 1, 2 and 3 respectively. (Colur figure online)

The authors of [1] suggested themore general problem of determiningwhich triples
of edge densities (α1, α2, α3) force a rainbow triangle [1, Problem 1.3].

Definition 1.6 (Forcing triple) A triple (α1, α2, α3) ∈ [0, 1]3 is a forcing triple if for
all n sufficiently large, every n-vertex 3-colouring template G satisfying e(Gi ) >

min
(

αi
2 n

2,
(n
2

)− 1
)
for i ∈ {1, 2, 3} must contain a rainbow triangle.

In this terminology,1 the authors of [1] proposed the following generalisation of Diwan
and Mubayi’s question:

Problem 1.7 Determine the set of forcing triples.

Recently Frankl [13, Theorem 1.4] gave a new proof of Theorem 1.3 on the maxi-
mumarithmeticmean of the sizes of the colour classes in aGallai r -colouring template,
and raised the problem of maximising the geometric mean of the sizes of the colour
classes for such templates in the case2 r = 3. This can be viewed as a different way of
forcing all three colour classes G1, G2 and G3 to be (reasonably) large, and of moving
away from the extremal construction where two of the colour classes are complete and
the third is empty.

Frankl proved an upper bound of
⌊
n2
4

⌋
on this geometricmean under the assumption

that the colour classes were nested [13, Theorem 1.5]. This result is tight under the
nestedness assumption: a lower boundconstruction is obtainedby taking three identical
copies of T2(n) for the three colour classes.

Frankl conjectured that his upper bound on the geometric meanwas tight in general,
without the nestedness assumption on the colour classes [13, Conjecture 3]. This

1 In this paper we use the normalisation term n2/2 instead of the n2 term used in [1] asmost of our argument
will be written in terms of binomial coefficients

(n
2
)
.

2 For r ≥ 4, the AM–GM inequality together with Theorem 1.3 immediately implies the geometric mean

of the colour classes in a Gallai r -colouring template is at most � n24 � for all n sufficiently large, so the case
r = 3 is the only one for which this question is open.
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was subsequently disproved by Frankl, Győri, He, Lv, Salia, Tompkins, Varga and
Zhu, who provided a different construction, which they conjectured [14, Conjecture
2] maximises the geometric mean of the sizes of the colour classes in a Gallai 3-
colouring template. Their construction turns out to be a special case of a more general
construction that will play a key role in this paper, and which we define below. Write
(S, T )(2) for the collection of unordered pairs taking one vertex from each of S and
T .

Construction 1.8 (H(a, b, c)-templates) Let a, b and c be non-negative integers with
a + b + c = n. Arbitrarily partition [n] as [n] = A 
 B 
 C, with |A| = a, |B| = b
and |C | = c. Define graphs H1, H2 and H3 on the vertex set [n] by setting

H1 := A(2) ∪ (B ∪ C)(2) ∪ (A,C)(2) , H2 := A(2), and

H3 := (B ∪ C)(2) ∪ (A, B)(2) .

Write H = H(a, b, c) for (any instance of) the n-vertex 3-colouring template
(H1, H2, H3).

See Fig. 1 for a picture of the 3-colouring templateH(a, b, c). The special case c = 0,
b = n− a corresponds to the constuction provided by the authors of [14]. It is readily
checked that H is rainbow K3-free. Let υ denote the value of x ∈ [0, 1] maximising
the value of the function

h : x �→
(
x2 + (1 − x)2

)
x2
(
1 − x2

)
.

The value of υ may be computed explicitly, though the exact form is not pleasant.
Numerically, we have υ ≈ 0.7927 and h(υ) ≈ 0.1568. Setting a = �υn
, b = n − a
and c = 0, we have that

(
|E(H1)| · |E(H2)| · |E(H3)|

) 1
3 = (h(υ) + o(1))

1
3
n2

2
= (0.5392 + o(1))

n2

2
,

which is significantly larger than
⌊
n2
4

⌋
for all n sufficiently large. Thus, as noted by

the authors of [14], the Gallai 3-colouring template H for these values of a, b and c
provides a counterexample to the aforementioned conjecture of Frankl. However they
conjectured [14, Conjecture 2] that asymptotically one could not do better than the
H(�υn
, n − �υn
, 0) Gallai 3-colouring template:

Conjecture 1.9 (Frankl, Győri, He, Lv, Salia, Tompkins, Varga and Zhu) Let G be a
Gallai 3-colouring template on n vertices. Then

(
|E(G1)| · |E(G2)| · |E(G3)|

) 1
3 ≤ (h(υ) + o(1))

1
3

(
n

2

)
.

The authors of [14] proved their conjecture under the assumption that the union of the
colour classes covers the entire graph [14, Theorem 2]—the same assumption made
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earlier by Magnant, and which, as we remarked above, is both natural and highly
restrictive in terms of the possible structure of G.

1.1 Results

In the present work we fully resolve Problem 1.7. This asymptotically generalises
previous Turán-type results for Gallai 3-colouring templates (Theorem 1.3 and The-
orem 1.4), and settles Conjecture 1.9 in the affirmative. To state our result, we must
define three regions in [0, 1]2.
Definition 1.10 Let R1 denote the collection of (α1, α2) ∈ [0, 1]2 satisfying:

max

(
1 − α2,

1 + τ 2

2
, α2

)
≤ α1 ≤ 1 − 2

√
α2 + 2α2.

For (α1, α2) ∈ R1 there exists3 a unique pair (x, y) of non-negative real numbers such
that x ≥ 1

2 , x + y ≤ 1 and α1 = x2 + y2, α2 = x2 + (1− x − y)2; we refer to this pair
as the canonical representation of (α1, α2) ∈ R1. We defineR′

1 to be the collection of
(α1, α2) ∈ R1 whose canonical representation (x, y) satisfies 2x2+ (1− x− y)2 ≥ 1.

Remark 1.11 We can in principle compute the canonical pair (x, y) explicitly from
(α1, α2): setting y = √α1 − x2, we need x to be a solution in [ 12 ,

√
α1] to the equation

α1 − α2 = (1 − x)
(
x + 2

√
α1 − x2 − 1

)
(1.1)

while satisfying x +√α1 − x2 ≤ 1. Now, (1.1) can be rewritten as a quartic equation

(
α1 − α2 + (1 − x)2

)2 = 4(1 − x)2(α1 − x2),

whose solutions can be computed explicitly via radicals in terms of α1 and α2. Further,
as we show in Proposition 2.3, for (α1, α2) ∈ R1, there exists a unique such solution
x� = x�(α1, α2) in the interval [ 12 , 1], and that setting y� = √

α1 − (x�)2 we have
x� ≤ √

α1 and x� + y� ≤ 1, yielding the canonical pair (x�, y�). The boundary
between R′

1 and R1 \ R′
1 then corresponds to the solutions (α1, α2) ∈ R1 to the

equation

2(x�(α1, α2))
2 + (1 − x�(α1, α2) −

√
α1 − (x�(α1, α2))2)

2 = 1.

Definition 1.12 Let R2 denote the collection of (α1, α2) ∈ [0, 1]2 satisfying
α1 ≥ max

(
2 − 2

√
α2, 1 − 2

√
α2 + 2α2

)
.

Note that for all pairs (α1, α2) ∈ R1 ∪ R2 we have 1
4 ≤ α2 ≤ α1 and 1

2 < α1. See
Fig. 2 for a picture of the regions R′

1 and R2.

3 The existence of this pair is proved in Proposition 2.3.
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Fig. 2 The regionsR′
1 (upper

part, in green) and R2 (lower
part, in blue) in the (α1, α2)

plane. The left-most point of R′
1

is ( 1+τ2

2 , 1+τ2

2 ), the left-most

point ofR2 is (2 − √
2, 1

2 ), and
the extreme points along the
vertical line α1 = 1 are (1, 1

4 )

and (1, 1). (Colur figure online)

Before stating our main result, we record a useful observation of Aharoni et al. [1].
Suppose that there exists an N -vertex Gallai colouring template G with no rainbow
triangle satisfying e(Gi ) = αi

2 N 2 + εi N 2 for each i ∈ {1, 2, 3}, where the εi are
strictly positive real numbers. Write G(k) for the balanced blow-up of G obtained by
replacing each vertex v of G by a set of k vertices Xv and for each i replacing each
edge uv ∈ E(Gi ) by a complete balanced bipartite graph between Xu and Xv . Then
for any C > 0 and all k sufficiently large, we have

e(G(k)i ) = 1

2
αi (kN )2 + εi (kN )2 > αi

(
kN

2

)
+ CkN .

Since G(k) is rainbow triangle-free, this implies the existence of Gallai colouring
templates J on n > N vertices with e(Ji ) > αi

(n
2

) + Cn for each i ∈ {1, 2, 3}. In
particular, it is enough to resolve Problem 1.7 up to additive linear terms and with the
normalisation factor n2 replaced by the more conventional factor

(n
2

)
.

With this observation in place, we can now state our main result: for any pair of
densities 1 ≥ α1 ≥ α2 ≥ 0, we determine the least α3 ≤ α2 such that (α1, α2, α3) is a
forcing triple. We note that the case α1 = 1 is trivial: consider an n-vertex 3-colouring
template G with |G1| = (n

2

)
and |Gi | > αi

(n
2

)
for i ∈ {2, 3}. If any vertex in G is

adjacent to an edge in both G2 and G3, then we have a rainbow triangle. Further, at
least

√
αi n + O(n) vertices must be adjacent to an edge of Gi for i ∈ {2, 3}. If G

is a Gallai colouring, we must thus have α3 ≤ (1 − √
α2)

2 + o(1), and this is best
possible since one could take G2 and G3 to be disjoint cliques. Thus we only need in
the following to concern ourselves with the case where 1 > α1.

Theorem 1.13 There exists a constant C > 0 such that for any (α1, α2) ∈ [0, 1)2 with
α1 ≥ α2, the following hold.
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(a) If (α1, α2) ∈ R′
1, then letting (x, y) be its canonical representation and setting

α3 := 1 − x2, we have that:

(i) α2 ≥ α3;
(ii) for any n ∈ N, if G is an n-vertex 3-colouring template with |E(Gi )| ≥

αi
(n
2

)+ Cn for all i ∈ [3], then G contains a rainbow triangle;
(iii) for any n ∈ N, setting a = �xn�, b = �yn� and c = n − a − b, the n-vertex

3-colouring template F(a, b, c) satisfies |E(Fi )| ≥ αi
(n
2

) − Cn and contains
no rainbow triangle.

(b) If (α1, α2) ∈ R2, then setting α3 := 2 − α1 − 2
√

α2 + α2, we have that:

(i) α2 ≥ α3;
(ii) for any n ∈ N, if G is an n-vertex 3-colouring template with |E(Gi )| ≥

αi
(n
2

)+ Cn for all i ∈ [3], then G contains a rainbow triangle;

(iii) for any n ∈ N, setting a = �√α2n�, b = � 1−α1
2
√

α2
n� and c = n − a − b, the

n-vertex 3-colouring template H(a, b, c) satisfies |E(Hi )| ≥ αi
(n
2

)− Cn and
contains no rainbow triangle.

(c) If (α1, α2) /∈ R′
1 ∪ R2, then (α1, α2, α2) is not a forcing triple.

Remark 1.14 In both case (a) and case (b) any triple (α′
1, α

′
2, α

′
3) with α′

i < αi for
every i ∈ {1, 2, 3} is not a forcing triple, while every triple (α′

1, α
′
2, α

′
3) with α′

i > αi

for every i ∈ {1, 2, 3} is a forcing triple.
Remark 1.15 Note thatR′

1 andR2 meet along the curveα1 = 1−2
√

α2+2α2 from the
point (2−√

2, 1
2 ) to the point (1, 1)—indeed, along this curve, it is easily checked that

the canonical representation of (α1, α2) is (x, y) where x =
√

α1 − (1 − √
α2)2 =√

α2 and y = 1 − √
α2, and satisfies 2x2 + (1 − x − y)2 = 2α2 ≥ 1. For (α1, α2)

along this curve, our extremal 3-colouring templates H and F both have |C | = o(n)

and (up to changing at most o(n2) edges into non-edges and vice versa in each of the
colour classes) degenerate down to the same 3-colouring template G on A 
 B = [n]
with |A| = �√α2n�, |B| = n − |A| and colour classes G1 = A(2) ∪ B(2), G2 = A(2)

and G3 = [n](2)\A(2).

As a consequence of Theorem 1.13, we settle Conjecture 1.9:

Corollary 1.16 Conjecture 1.9 is true.

1.2 Further Remarks and Open Problems

Minimum degree conditions: in both of our extremal colouring templates F and H,
there are colour classes with isolated vertices. Indeed, we have δ(F1) = δ(F2) = 0
(by considering vertices in C and B respectively) and δ(G2) = 0 (by considering
vertices in B ∪ C). Given this, it is natural to ask how Problem 1.7 changes when we
impose minim-degree rather than density conditions.

We study this question in a companion paper [11], in which given δ(G1) we deter-
mine the maximum possible value of δ(G2) + δ(G3) in a Gallai colouring template
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G. It turns out the extremal behaviour for this problem is starkly different from the
one we established for Problem 1.7 in this paper. Indeed, the maximum possible value
of δ(G2) + δ(G3) jumps from 2n

r to 2n
r+1 when δ1(G) increases from n − � n

r 
 to
�n − n

r 
 + 1, in contrast to the more continuous behaviour seen in Theorem 1.13.
Other cliques: in [1], Aharoni, DeVos, de la Maza, Montejano and Šámal asked what
happens when the triangle K3 is replaced with a complete graph Kr on r vertices when
r ≥ 4.

Question 1.17 Let r ≥ 4. What is the smallest real number δr so that
for all n sufficiently large, any n-vertex

(r
2

)
-colouring template G with

min
{
|E(G1)|, . . . , |E(G(r2)

)|
}

> δr
n2
2 must contain a rainbow copy of Kr?

By considering G1 = G2 = · · · = G(r2)
= Tr−1(n), the (r − 1)-partite Turán graph,

it is clear δr ≥ 1 − 1
r−1 . Is this bound tight for any r?

Other graphs: besides larger cliques, one can ask for conditions guaranteeing the
existence of rainbow copies of some other graph H . Babiński and Grzesik [3] recently
considered this problem when H = P3, the path on 4 vertices with 3 edges. For
every r ≥ 3, they determined the value of the least α(r , P3) ≥ 0 such that for all
α > α(r , P3) and all n sufficiently large, every n-vertex r -colouring template G with
min (|E(G1)|, · · · , |E(Gr )|) ≥ αn2 must contain a rainbow P3.

In a similar direction, Frankl, Győri, He, Lv, Salia, Tompkins, Varga and Zhu [14]
successfully determined the (asymptotic behaviour of the) maximum of the geometric
mean of the colour classes in r -colouring templates with no rainbow copy of H when
r ∈ {3, 4} and H = P3 and when r = 4 and H = P4, the path on five vertices. It
would be interesting to obtain generalisation of both of these results for longer paths.
Stability, colourings vs templates: we expect that the proof of Theorem 1.13 can be
adapted to give stability versions of our results, but we had not explored this further due
to the length of the paper. Finally, we focused in this work on colouring templates, in
which colour classes may overlap. Following Erdős and Tuza [10], one could instead
consider analogous problems for colourings of Kn or of subgraphs of Kn . Can one
obtain analogues of Theorem 1.13 in this setting?

1.3 Notation

As noted above, we write [n] := {1, 2, . . . n}, S(2) := {{s, s′} : s, s′ ∈ S, s �= s′}
and (S, T )(2) := {{s, t} : s ∈ S, t ∈ T }. Where convenient, we identify Gi with its
edge-set E(Gi ). We also write xy for {x, y}. We useGi [X ] andGi [X ,Y ] as a notation
for the subgraph ofGi induced by the vertex-set X and for the bipartite subgraph ofGi

induced by the bipartition X 
Y respectively. Throughout the remainder of the paper,
we shall use |Gi |, |Gi [X ]| and |Gi [X ,Y ]| as shorthands for |E(Gi )|, |E(Gi [X ])| and
|E(Gi [X ,Y ])| respectively.We use Landau big O notation, and note that g = O( f ) or
g = o( f ) is an assertion about the order of g and not its sign (so we do not differentiate
between 1 − o(1) and 1 + o(1), for example).

Given a 3-colouring template G on a set V , we call a pair xy ∈ V (2) a rainbow
edge if xy ∈⋂3

i=1 Gi . Further, we call a pair xy which is contained in at least two of
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the colour classes G1,G2,G3 a bi-chromatic edge. The following notion of density
for a colouring template will be a useful tool in our analysis:

Definition 1.18 (Colour density vector) Given an r -colouring template G =
(G1,G2, . . . ,Gr ) on an n-set V , the colour density vector of G is

ρ(G) :=
(

|G1|(n
2

) ,
|G2|(n
2

) , . . . ,
|Gr |(n
2

)
)

.

2 Critical Colour Densities for Rainbow Triangles

2.1 Preliminary Remarks

Webegin by analysing the colour density vectors yielded by Constructions 1.5 and 1.8.

Proposition 2.1 For a = xn, b = yn and c = zn, the colour density vectors of F and
H are

(
x2 + y2, x2 + z2, 1 − x2

)
+
(
O(n−1), O(n−1), O(n−1)

)

and
(
1 − 2xy, x2, (1 − x)2 + 2xy

)
+
(
O(n−1), O(n−1), O(n−1)

)

respectively. In particular, for z = 0 (and thus x+ y = 1) they coincide asymptotically
and are both equal to

(
x2 + (1 − x)2, x2, 1 − x2

)+ (O(n−1), O(n−1), O(n−1)
)
.

Proof Simple calculation. �

Recall that τ = 4−√

7
9 . The next two propositions establish that certain (α1, α2, α3)

are trivially not forcing triples and that for (α1, α2) there exists a unique canonical
representation α1 = x2 + y2, α2 = x2 + z2 with x ≥ 1/2, 0 ≤ y ≤ 1 − x and
x + y + z = 1.

Proposition 2.2 Let (α1, α2, α3) be a triple of elements of [0, 1] with α1 ≥ α2 ≥ α3.
If any of the following hold, then (α1, α2, α3) is not a forcing triple:

(a) α1 < 1+τ 2

2 = 52−4
√
7

81 ;
(b) α2 < 1

4 ;
(c) α1 + α2 < 1;
(d) α1 = x2 + y2 and α2 = x2 + (1− x − y)2 for some non-negative reals x, y with

x + y ≤ 1 and 2x2 + (1 − x − y)2 < 1.

Proof For each of the four cases (a)–(d), we construct a suitable n-vertex Gallai 3-
colouring template based onF = F(a, b, c)whose colour density vector is coordinate-
wise asymptotically strictly greater than (α1, α2, α3) (possibly after rearranging the
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order of the colours). SinceF is rainbow K3-free, this suffices to show that (α1, α2, α3)

is not a forcing triple.
Case (a): α1 < 1+τ 2

2 . Set a = n − 2�τn
, b = c = �τn
. Then F(a, b, c) has

asymptotic colour density vector
(
1+τ 2

2

)
· (1, 1, 1). For ε > 0 chosen sufficient small,

this is pointwise strictly greater than (α1, α2, α3) + ε · (1, 1, 1). Thus (α1, α2, α3) is
not a forcing triple.
Case (b): α2 < 1

4 . Set a = 0, b = � n
2 
, c = n − b. Then F(a, b, c) has asymptotic

colour density vector ( 14 ,
1
4 , 1). For ε > 0 chosen sufficiently small, this is pointwise

strictly greater than (α2, α3, α1) + ε · (1, 1, 0) (since α3 ≤ α2). Rearranging colours,
it immediately follows that (α1, α2, α3) is not a forcing triple.
Case (c): α1 + α2 < 1. Pick ε > 0 sufficiently small so that 1 − α2 − 4ε > α1.
Set a = �n√

α2 + 2ε
, b = n − a, c = 0. Then F(a, b, c) has asymptotic colour
density vector (α2 + 2ε + (1 − √

α2 + 2ε)2, α2 + 2ε, 1 − α2 − 2ε), which is strictly
greater than (α2, α3, α1) + ε · (1, 1, 1). Rearranging colours, it immediately follows
that (α1, α2, α3) is not a forcing triple.
Case (d): α1 = x2 + y2, α2 = x2 + (1 − x − y)2 and α2 + x2 < 1. Observe that
2x2 < 1, whence x < 1/

√
2. Since α1 ≥ α2, this implies y ≥ (1− x)/2 > 0. Further,

by Case (c) above, we may assume 1 ≤ α1 + α2; since α1 + α2 ≤ 2x2 + (1− x)2, we
deduce from this that x ≥ 2/3 and in particular x > y.

Pick ε: 0 < ε < y sufficiently small so that α2 + ε2 < 1 − (x + ε)2. Then for
a = �(x + ε)n�, b = �(y − ε)n� and c = n − a − b, the 3-colouring template
F(a, b, c) contains no rainbow triangles and has asymptotic colour density vector
((x + ε)2 + (y − ε)2, (x + ε)2 + (1 − x − y)2, 1 − (x + ε)2), which is pointwise
strictly greater than (α1, α2, α2) + ε2 · (2, 1, 1) (here in the first coordinate we used
the fact that x > y). Since α2 ≥ α3, it immediately follows that (α1, α2, α3) is not a
forcing triple. �


Proposition 2.3 Given non-negative real numbers α1, α2 satisfying α1 ≥ 1
2 and

α1+√
2α1−1
2 ≤ α2 ≤ α1, there exist a unique triple (x, y, z) ∈ [0, 1]3 with x+y+z = 1

and x ≥ 1
2 such that

α1 = x2 + y2 α2 = x2 + z2. (2.1)

Proof Set y(x) := √
α1 − x2 and z(x) := 1 − x − y(x). Our goal is to show there

exists a unique solution x� to x2 + (z(x))2 = α2 with x ≥ 1
2 , y(x) real and z(x) ≥ 0.

Solving the appropriate quadratic equations, it is easily checked that for x ∈ [ 12 , 1]
we have z(x) ≥ 0 for x ≥ x0 = 1+√

2α1−1
2 and y(x) ≥ z(x) for x ≤ x1 = 1+2

√
5α1−1
5 .

It is clear geometrically that x0 ≤ x1 (these values of x corresponding as they do to
intersections of the circle x2 + y2 = α1 with the lines y = 1 − x and y = (1 − x)/2
in the first quadrant of the plane). Further, solving another two quadratic equations, it
is easily checked that x1 ≤ √

α1 with equality if and only if α1 = 1, so that y(x) is
real in the interval [x0, x1].
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Now, (x0)2+(z(x0))2 = (x0)2 = α1+√
2α1−1
2 ≤ α2 and (x1)2+(z(x1))2 = (x1)2+

(y(x1))2 = α1 ≥ α2. The existence of an x� ∈ [x0, x1] such that (x�)
2+(z(x�))

2 = α2
thus follows from the intermediate value theorem.

It remains to show the uniqueness of this solution. Suppose there exists x = x� +dx
for some dx ≥ 0 and y, z with x + y + z = 1 such that (x, y, z) satisfies (2.1).
Clearly we must have y = y(x�) − dy and z = z(x�) − dz for some non-negative
dy, dz with dx = dy + dz (otherwise one of the equations in (2.1) or the condition
x+ y+z = 1must fail). Since x ≥ 1

2 we have y ≤ 1
2 and (x�+dx )2+(y(x�)−dy)2 ≥

(x�)
2 + (y(x�))

2 + (dx − dy). In particular, dy ≥ dx . Then dx = dy + dz implies
dz = 0, which in turn implies dx = 0 (else x2 + z2 > (x�)

2 + (z(x�))
2) and hence

dy = 0, and the uniqueness of our triple (x�, y(x�), z(x�)). �


Definition 2.4 (Good pair) We say that a pair of non-negative real numbers (α1, α2)

from [0, 1]2 is a good pair if

max

{
1

4
,
α1 + √

2α1 − 1

2

}
≤ α2 max

{
α2, 1 − α2,

1 + τ 2

2

}
≤ α1,

and in addition the unique (x, y, z) ∈ [0, 1]3 with x + y + z = 1 and x ≥ 1
2

such that (2.1) holds satisfies 2x2 + z2 ≥ 1. Given a good pair, we refer to this
unique (x, y, z) (whose existence is guaranteed by Proposition 2.3) as the canonical
representation of (α1, α2).

2.2 Proof Strategy

We divide the proof of Theorem 1.13 into two parts, depending on whether or not the
edge densitiesα1 andα2 of the two largest colour classes satisfyα1 ≤ α2+(1−√

α2)
2.

In both cases, we prove a technical statement of the form ‘if the colour classes of a
colouring template satisfy certain inequalities, then it must contain a rainbow triangle’.
To do so, we consider a putativeminimal counterexampleG to our technical statement,
and use its minimality to rule out the existence of rainbow edges.

We then consider a largest matching M of bi-chromatic edges in G, which we use
to obtain a partition of V = V (G) into sets Vi j of vertices meeting a bi-chromatic
edge of M in colours i j and a left-over set D. We perform a series of modification of
G to obtain a new colouring template G′′ such that the sizes of the colour classes of
G′′ satisfy the same inequalities as those ofG up to some small O(n) error terms. The
crux is, however, thatG′′ is very well-structured with respect to the partition obtained
in the previous step, so that we have a good control over the sizes of its colour classes.
In the final step of the argument, we use this information to derive a contradiction
from our family of inequalities.

The idea of considering a largest matching of bi-chromatic edges and modifyingG
based on the resulting partition appeared previously in the work of Aharoni, DeVos,
de la Maza, Montejanos and Šámal [1], more specifically their key Lemma 2.3 which
inspired our approach in the case α1 ≤ α2 + (1 − √

α2)
2.
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An important additional ingredient in our proof in the case α1 > α2 + (1− √
α2)

2

is the idea of looking a vertex-minimal counterexample G which also maximises the
size of the largest colour class G1. Indeed, this allows us to ‘push’ G towards a much
more amenable bipartite extremal structure, which we are able to analyse.

2.3 The F-Extremal Region: The Case˛1 ≤ ˛2 + (1 − √
˛2)

2

Note that for α1 ≥ 1/2 and α2 ≥ 1/4, the inequality for α1, α2 we have in this case
is equivalent to the lower bound for α2 we had in our definition of a good pair in
Sect. 2.1:

α2 ≤ α1 ≤ α2 + (1 − √
α2)

2 ⇔ α1 + √
2α1 − 1

2
≤ α2 ≤ α1. (2.2)

Theorem 2.5 Let (α1, α2) be a good pair and let (x, y, z) be its associated canonical
representation. Set α3 := 1−x2. IfG is a 3-colouring template on n vertices satisfying

|E(Gi )| + |E(G j )| ≥ (αi + α j
) (n

2

)
+ 5n (2.3)

for all distinct i, j ∈ [3], then G contains a rainbow triangle.

Proof Observe that for n ≤ 6, the statement of Theorem 2.5 is vacuous, since 5n ≥
2
(n
2

)
. SupposeTheorem2.5 is false, and let N ≥ 7 be the least value of n forwhich there

exists a Gallai 3-colouring templateGwhich provides a counterexample. Without loss
of generality, we may assume the vertex-set ofG is V = [N ]. We begin our proof with
an analogue of [1, Lemma 2.4], which establishes inter alia that there are no rainbow
edges. �

Lemma 2.6 For every non-empty proper subset X of V , at least one of the induced
subgraphs Gi [X ], i ∈ [3], fails to contain a perfect matching.

Proof Let X be a 2	-set in V with 0 < 	 < N/2. Suppose for a contradiction that
the graphs G1[X ], G2[X ] and G3[X ] contain perfect matchings M1, M2 and M3
respectively. We shall bound |Gi [V \ X ]| + |G j [V \ X ] for all distinct colour pairs
i j ∈ [3](2).

Fix a colour k ∈ [3], and let i, j denote the other two colours in [3]. Let vv′ be an
edge of Mk . Then every vertex u ∈ V \X can send at most 2 edges in colour i or j to
{x, x ′} (for otherwise we have a rainbow triangle). Summing over all edges of M3, it
follows that

|Gi [X ,V \ X ]|+|G j [X ,V \X ]| ≤
∑

vv′∈Mk

(|Gi [{v, v′}, V \ X ]|+ |G j [{v, v′},V \ X ]|)

≤ 2	(N − 2	). (2.4)
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Next we show that |Gi [X ]|+ |G j [X ]| ≤ 2	2. If 	 = 1, we have nothing to show since
2
(2l
2

) = 2	2. On the other hand if 	 ≥ 2, then consider an edge uu′ ∈ (Gi ∩G j )[X ] \
Mk . SinceMk is a perfectmatching anduu′ /∈ Mk , there exist distinct v, v′ ∈ X\{u, u′}
such that uv, u′v′ ∈ Mk . This in turn implies that uv′, u′v /∈ (Gi ∪G j )[X ]\Mk (since
otherwise one of the sets {u, u′, v′}, {u, u′, v} would contain a rainbow triangle). Note
that the vertices v, v′ are uniquely specified by uu′ and the matching Mk .

Thus given any uu′ ∈ X (2) \Mk we can define a pair of edges F(uu′) = {uv′, u′v},
with v, v′ as above, such that either uu′ /∈ Gi ∩ G j or uv′, u′v /∈ Gi ∪ G j . Observe
that F(uu′) ∩ F(ww′) �= ∅ if and only if Mk contains a matching from {u, u′} to
{w,w′} (i.e. if and only ifww′ = vv′), in which case F(uu′) = F(ww′). In particular
we have that |(Gi ∩ G j )[X ]\Mk | ≤ |X (2)\(Gi ∪ G j ∪ Mk)| and thus

|Gi [X ]| + |G j [X ]| ≤ 2|Mk | + |(Gi ∪ G j )[X ] \ Mk | + |(Gi ∩ G j )[X ] \ Mk |
≤ 2	 +

((
2	

2

)
− 	

)
= 2	2. (2.5)

Putting (2.4) and (2.5) together, we have

|Gi [V \ X ]| + |G j [V \ X ]| = |Gi | − |Gi [X , V \ X ]| − |Gi [X ]| + |G j |
− |G j [X , V \ X ]| − |G j [X ]|

≥ (αi + α j
) (N

2

)
+ 5N − 2	(N − 2	) − 2	2. (2.6)

�

Claim 2.7

(
αi + α j

) (N
2

)+5N −2	(N −2	)−2	2 ≥ (αi + α j
) (N−2	

2

)+5(N −2	).

Proof Rearranging terms, what we must show is

(
αi + α j − 1

)
2	 (N − 	) + (10 − αi − α j

)
	 ≥ 0. (2.7)

Note first of all that αi + α j ≥ 1. Indeed, since (α1, α2) is a good pair, this is by
definition the case for {i, j} = {1, 2}. Further, the definition of α3 := 1 − x2 ensures
α1 + α3 = 1 + y2 and α2 + α3 = 1 + z2 are both at least 1. Now, since X was a
proper non-empty subset of V , we have N > 2	, and hence the first term in the sum
on the left hand-side of (2.7) is non-negative. As αi + α j ≤ 2, the second term in 2.7
is strictly positive. Thus (2.7) holds, as required. �

Since i, j were arbitrary, it follows from (2.6) and Claim 2.7 thatG[V \ X ] is a Gallai
3-colouring template on n = N − |X | < N vertices satisfying (2.3), and hence a
smaller counterexample to Theorem 2.5, contradicting the minimality of N . �

As in [1], we have the following corollary to Lemma 2.6:

Proposition 2.8 (Observation 2.5 in [1]) Let xx ′ and yy′ be vertex-disjoint pairs from
V (2). Let {i, j, k} = [3]. Then the following hold:

1. if xx ′, yy′ ∈ Gi ∩ G j , then either
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(a) |Gk[xx ′, yy′]| = 0, or
(b) |Gk[xx ′, yy′]| = 1 and |Gi [xx ′, yy′]|, |G j [xx ′, yy′]| ≤ 2, or
(c) |Gk[xx ′, yy′]| = 2 and |Gi [xx ′, yy′]| = |G j [xx ′, yy′]| = 0;

2. if xx ′ ∈ Gi ∩ G j and yy′ ∈ Gi ∩ Gk, then either

(a)
∑3

i=1 |Gi [xx, yy′]| ≤ 4, or
(b) |Gi [xx ′, yy′]| = 3, |G j [xx ′, yy′]| = |G j [xx ′, yy′]| = 1, this latter possibility

occurring if and only if we have (up to permutations of the pairs jk, xx ′ and
yy′) xy ∈ Gi ∩ Gk, x ′y′ ∈ Gi ∩ G j and xy′ ∈ Gi .

Proof Identical to the (simple case analysis in the) proof of [1, Observation 2.5] but
with our Lemma 2.6 replacing [1, Lemma 2.4]. �


Still following Aharoni et al’s approach from [1], we consider a largest matching
M of bi-chromatic edges (called digons in [1]), to obtain a partition of the vertex
set. For i j ∈ [3](2), set Mi j := M ∩ Gi ∩ G j , and let Vi j denote the collection of
vertices contained in an edge of Mi j . Set D := V \ (V13 
 V23 
 V23) to be the set of
vertices not contained in an edge of M . As observed by Aharoni et al, one can perform
some local modifications of G to obtain a new colouring template G′′ which is well-
structured with respect to the partition V = V13
V12
V23
D, may possibly contain
rainbow triangles, but importantly satisfies the bounds (2.3) up to a small correction
term which is linear in N . More explicitly, combining [1, Claims 1–3], one obtains
the following:

Proposition 2.9 (Claims 1–3 in [1]) There exists a 3-colouring templateG′′ on V such
that the following hold:

(i) the bound |G ′′
i | + |G ′′

j | ≥ |Gi | + |G j | − 3
2N >

(
αi + α j

) (N
2

)+ 2N holds for all
distinct i and j;

(ii)
⋂3

i=1 G
′′
i = ∅ (i.e. there are no rainbow edges)

(iii) for all i j ∈ [3](2), (G ′′
i ∩ G ′′

j )[Vi j ] = (Vi j )(2) (i.e. Vi j induces a bi-chromatic
clique of edges in colours i and j , and thus by condition (ii) above contains no
edge in the third colour);

(iv) there are no bi-chromatic edges inside D or between distinct sets Vi j , i j ∈ [3](2);
(v) if y ∈ D and xx ′ is an edge in Mi j = M ∩ (Vi j )(2), then |G ′′

1[{y}, {x, x ′}]| +
|G ′′

2[{y}, {x, x ′}]| + |G ′′
3[{y}, {x, x ′}]| ≤ 3, with equality if and only if

|G ′′
i [{y}, {x, x ′}]| + |G ′′

j [{y}, {x, x ′}]| = 3.

Proof Immediate from the construction of the modified colour classes G ′′
i , i ∈ [3] in

[1, Claims 1–3] (which only rely on Lemma 2.6, Proposition 2.8 and the self-contained
graph theoretic lemma [1, Lemma 2.2]). Note that we started out with a slightly larger
linear term in our inequality (2.3), whence the slightly larger term in the expression
to the right of the last inequality in condition (i). �


Set ai j := |Vi j |/N and d := |D|/N . We are now ready to proceed with the
last part of the proof of Theorem 2.5, where we use the structure of the colouring
template G′′ to derive upper bounds for the sizes of its colour classes in terms of
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(a12, a13, a23, d) (Lemma 2.10 below), which we then show contradict the lower
bounds from Proposition 2.9(i) (Lemma 2.12 below). Lemma 2.12 is also the point in
the proof of Theorem 2.5 where we depart from the approach of Aharoni et al. [1].

Lemma 2.10 The following inequalities are satisfied:

a12(a12 + d) > α1 + α2 − 1 = 2x2 + y2 + z2 − 1, (2.8)

a13(a13 + d) > α1 + α3 − 1 = y2, (2.9)

a23(a23 + d) > α2 + α3 − 1 = z2, (2.10)
∑

i j

ai j (ai j + d) > α1 + α2 + α3 − 1 = x2 + y2 + z2 (2.11)

(a12)
2 + 2(a13)

2 + 2(a23)
2 + 2a13d + 2a23d > 2α1 + 2α2 + 3α3 − 3

= x2 + 2y2 + 2z2, (2.12)

2(a12)
2 + (a13)

2 + 2(a23)
2 + 2a12d + 2a23d > 2α1 + 3α2 + 2α3 − 3, (2.13)

2(a12)
2 + 2(a13)

2 + (a23)
2 + 2a12d + 2a13d > 3α1 + 2α2 + 2α3 − 3. (2.14)

Proof For inequality (2.8), we bound the sum of the number of edges in colours 1 and
2. Clearly a pair of vertices from V can contribute at most 2 to the sum |G ′′

1| + |G ′′
2|.

However by Proposition 2.9(iii) and (iv), pairs of vertices from (V13)(2), (V23)(2) and
D(2) contribute at most 1 to this sum. Further, by Proposition 2.9(iv), a vertex-pair
xx ′ with x , x ′ coming from two different sets Vi j can contribute at most 1 to this sum.
Finally, by Proposition 2.9(v), each edge from M13 or M23 sends at most two edges in
colours 1 or 2 to a vertex y ∈ D, while each edge of M12 sends at most three edges in
colours 1 or 2 to a vertex y ∈ D. Summing over all such edges, we see that the total
contribution to |G ′′

1| + |G ′′
2| from vertex pairs xy with x ∈ V13 ∪ V23 and y ∈ D is

at most (|V13| + |V23|) · |D|, while the contribution from pairs xy with x ∈ V12 and
y ∈ D is at most 3

2 |V12| · |D|. It follows from this analysis that

|G ′′
1| + |G ′′

2| ≤
(
N

2

)
+
(|V12|

2

)
+ 1

2
|V12| · |D| =

(
N

2

)
+
(
a12N

2

)
+ 1

2
a12dN

2

<

(
N

2

)
(1 + a12(a12 + d)) + N .

Combining this upper bound with the lower bound for |G ′′
1| + |G ′′

2| from Proposi-
tion 2.9(i), subtracting N from both sides and dividing through by

(N
2

)
, we get the

desired inequality (2.8). Inequalities (2.9) and (2.10) are obtained in the same way,
mutatis mutandis.

Nextwe turn our attention to the proof of inequality (2.11). This is done by bounding
the number of edges in colours 1, 2 and 3. We see that each pair xx ′ contributes at
most one to the sum

∑
i |G ′′

i |, with two exceptions. If x, x ′ ∈ Vi j , then xx ′ is a bi-
chromatic edge and contributes 2 to this sum. Finally, some pairs x ∈ Vi j , y ∈ D
may also contribute up to 2 to this sum; we bound the contribution of those pairs by
appealing to Proposition 2.9(v) which implies that for each pair xx ′ from Mi j , the
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sum of the contributions from xy and x ′y to
∑

i |G ′′
i | is at most 3. Summing over all

|Mi j | = |Vi j |/2 pairs xx ′ ∈ Mi j , we get

∑

i

|G ′′
i | ≤

(
N

2

)
+
∑

i j

((|Vi j |
2

)
+ 1

2
|Mi j | · |D|

)

<

(
N

2

)⎛

⎝1 +
∑

i j

(
(ai j )

2 + ai j d
)
⎞

⎠+ 3N . (2.15)

On the other hand, summing up the lower bounds for |G ′′
i | + |G ′′

j | we get from

Proposition 2.9(i) for all three pairs i j ∈ [3](2), we have

2
∑

i

|G ′′
i | ≥ 2

(
∑

i

αi

)(
N

2

)
+ 6N

Now,
∑

i αi = x2 + y2 + z2 +1, so combining this lower bound with the upper bound
in (2.15), we get the desired inequality (2.11).

Inequalities (2.12), (2.13) and (2.14) can be proved similarly. For instance, (2.12)
follows by counting edges in G ′′

1 and G ′′
2 twice and edges in G ′′

3 three times, and
analysing howmany times different types of pairs can be counted in this sum. Inequal-
ities (2.13) and (2.14) can be proved by counting similar linear combinations of the
|G ′′

i |. �

We shall now derive a contradiction from the system of inequalities we have derived
(which unfortunately requires a significant amount of careful calculations). To do so,
we shall make use of the following simple fact.

Proposition 2.11 Let b0, c0 and s be given non-negative reals satisfying c0 ≤ b0 and
2b0 + c0 ≤ s. Then the expression a2 + b2 + c2 attains its maximum value subject
to the conditions b ≥ b0, c ≥ c0, a + b + c = s and a ≥ b ≥ c uniquely when
a = s − b0 − c0, b = b0 and c = c0.

Proof Immediate from the convexity of the function x → x2. �

Lemma 2.12 Suppose that a12, a13, a23 and d are non-negative real numbers satisfying
inequalities (2.8)–(2.14). Then we have a12 + a13 + a23 + d > 1.

Proof Since (α1, α2) is a good pair, we have by definition α1 ≥ α2 and α2 − α3 =
2x2 + z2 − 1 ≥ 0, and hence α2 ≥ α3. In particular, the right hand-side in the
inequalities (2.8), (2.9) and (2.10) form a decreasing sequence. On the other hand,
for d fixed, the expressions on the left hand-side of the inequalities inequalities (2.8),
(2.9) and (2.10) are increasing functions of a12, a13 and a23 respectively. Similarly
the right-hand sides of the inequalities (2.12), (2.13) and (2.14) form an increasing
sequence, and for d fixed, the expressions on the left hand side are increasing functions
of a12, a13 and a23 respectively. Since the inequality (2.11) is invariant under any
permutationof (a12, a13, a23), it follows thatwemaypermute thefirst three coordinates
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of (a12, a13, a23, d) to ensure a12 ≥ a13 ≥ a23, while still satisfying our constraints
and without decreasing the value of a12 + a13 + a23 + d.

We may thus assume a12 ≥ a13 ≥ a23 in the remainder of the proof. With this
assumption in hand, some of our inequalities become superfluous. Moving forward
in the proof, we relax (2.10) to a non-strict inequality and only use (2.9), the relaxed
inequality (2.10), (2.11) and (2.12).

Suppose for the sake of contradiction that we have chosen non-negative real num-
bers ai j and d so that a12 +a13 +a23 +d ≤ 1 and the inequalities (2.9), (2.10), (2.11)
and (2.12) are satisfied. Given the value of a13 + a23, we can increase the value of a13
while decreasing a23 without violating the inequalities (2.9), (2.11) or (2.12), as long
as the inequality (2.10) remains satisfied and as long the inequality a12 ≥ a13 is still
satisfied. This is evident from the symmetric role played by the variables a13 and a23
and the convexity of the expressions in (2.11) and (2.12).

Thus we may assume that either a12 = a13 or the inequality (2.10) is tight. First let
us suppose that a12 = a13 and a12 + a13 + a23 + d ≤ 1. Then it follows that

1

2
≤ x2 + y2 ≤ x2 + y2 + z2 ≤

∑

i j

ai j
(
ai j + d

) ≤ d(1 − d) +
∑

i j

a2i j

≤ d(1 − d) +
(
1 − d

2

)2
.

However, it is easy to check that the inequality d(1 − d) + ( 1−d
2

)2 ≥ 1
2 is false for

every d ∈ [0, 1], and hence we are done in this case.
Hence we may suppose that the inequality (2.10) is tight, i.e. that we have (a23)2 +

da23 = z2. Hence it follows that

a23 = −d + √
d2 + 4z2

2
. (2.16)

Let δ ≥ 0 be chosen so that a213 + da13 = y2 + δ, and note that the non-negativity of
δ is guaranteed by (2.9). Hence we have

a13 = −d +√d2 + 4y2 + 4δ

2
. (2.17)

Combining this with (2.16), we can simplify the inequalities (2.12) and (2.11) to obtain
the following lower bounds for a12:

a12 >
√
x2 − 2δ, (2.18)

(a12)
2 + da12 > x2 − δ, implying a12 >

−d + √
4x2 + d2 − 4δ

2
, (2.19)

a12 ≥ a13 = −d +√d2 + 4y2 + 4δ

2
. (2.20)
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We start by observing that we must have d > 0. Indeed, if d = 0, then (2.16)
and (2.17) imply that a13 ≥ y and a23 = z. Increasing the value of a12 if necessary,
we may assume that a12 + a13 + a23 = 1 without violating (2.11). However, then
Proposition 2.11 implies that a212 + a213 + a223 ≤ x2 + y2 + z2, which contradicts
(2.11). Thus we must have d > 0.

Next, we note that we may assume δ <
x2−y2

2 . �


Claim 2.13 If δ ≥ x2−y2

2 , then a12 + a13 + a23 + d > 1.

Proof Suppose δ ≥ x2−y2

2 . Then (2.17) implies that

a13 ≥ −d +√d2 + 2(x2 + y2)

2

Since (α1, α2) is a good pair,

x2 + y2 = α1 ≥ 1 + τ 2

2
>

1

2
,

from which we deduce that a13 > −d+1
2 . Thus (2.20) implies that we also have

a12 > −d+1
2 , and hence we conclude that a12 + a13 + a23 + d > 1, as required. �


Assuming from now on that δ <
x2−y2

2 , we make a useful observation on the
value of x before splitting our analysis into two cases, depending on which of the two
inequalities (2.18) and (2.19) gives the best lower bound for a12.

Claim 2.14 x ≥ 1 − 2τ .

Proof Since (α1, α2) is a good pair, we have

1 ≤ 2x2 + z2 ≤ 2x2 +
(
1 − x

2

)2
.

Solving the associated quadratic inequality and using the fact that x ≥ 0 yields the

claimed lower bound on x : x ≥ 1+2
√
7

9 = 1 − 2τ . �


Case 1: 0 ≤ δ ≤ d
√
x2 + d2 − d2. Let us fix d > 0, and define the function

f (δ) = fx,y,z,d(δ) for δ ∈
[
0, d

√
x2 + d2 − d2

]
by setting

f (δ) :=
√
x2 − 2δ +

√
d2 + 4y2 + 4δ + √

d2 + 4z2

2
,

and observe that by (2.18) we have a12 + a13 + a23 + d ≥ f (δ). Thus our aim is to
prove that the least value of f on this interval is strictly greater than 1. The derivative
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of f can be written as

f ′ (δ) = x2 − 4y2 − d2 − 6δ√(
x2 − 2δ

) (
d2 + 4y2 + 4δ

) (√
x2 − 2δ +√d2 + 4y2 + 4δ

) .

In particular, there exists a constant c = x2−4y2−d2

6 so that f is increasing on

[0, c] and f is decreasing on
[
c, d

√
x2 + d2 − d2

]
. Hence f attains its small-

est value when δ = 0 or δ = d
√
x2 + d2 − d2 (note that c may not belong

to the interval
[
0, d

√
x2 + d2 − d2

]
, but the conclusion still remains true). Since

f (0) = x +
√
y2 + d2

4 +
√
z2 + d2

4 > x + y + z = 1, we may turn our attention to

analysing f
(
d
√
x2 + d2 − d2

)
. It is easy to check that we have

f
(
d
√
x2+d2 − d2

)
=
√
x2+d2 − d+

√
4y2+4d

√
x2+d2−3d2 + √

4z2+d2

2
.

(2.21)

Let us consider (2.21) with z and d fixed, and varying x and y while keeping x + y
as constant. Set s := x + y, and note that by Claim 2.14 we have x ≥ 1− 2τ and thus
s ≥ 1+x

2 ≥ 1 − τ . Rewriting (2.21) as a function g(x) = gs,z,d(x) of x , we obtain

g(x) := f
(
d
√
x2+ d2−d2

)
=
√
x2 + d2− d+

√
4(x − s)2+4d

√
x2+d2−3d2

2

+
√
4z2 + d2

2
,

whose derivative is given by

g′(x) = x√
x2 + d2

+
2(x − s) + xd√

x2+d2√
4(x − s)2 + 4d

√
x2 + d2 − 3d2

.

Our aim is to show that g′(x) is positive for 1 − 2τ ≤ x ≤ 1. We first note that
4d

√
x2 + d2 − 3d2 > d2. Since x − s < 0, we obtain that

g′(x) ≥ x√
x2 + d2

− 2(s − x)√
4(x − s)2 + d2

.

Thus it suffices to prove that g′(x) > 0 in order to deduce that x2
(
4(s − x)2 + d2

)
>

4(s − x)2
(
x2 + d2

)
. This follows from the fact that 2(s − x) − x ≤ 2(1 − x) − x ≤
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6τ −1 < 0. Hence it suffices to prove that f
(
d
√
x2 + d2 − d2

)
> 1when x = 1−2τ

and y + z = 2τ .
We now substitute the value x = 1 − 2τ into (2.21) and set h(d) = hy,z(d) :=

f
(
d
√

(1 − 2τ)2 + d2 − d2
)
. By differentiating and using the facts that y ≤ 1− x =

2τ , that z ≤ 1−x
2 ≤ τ , and that 4

√
x2 + d2 + 4d2√

x2+d2
≥ 6d, we get

h′(d) = d√
x2 + d2

+
4
√
x2 + d2 + 4d2√

x2+d2
− 6d

4
√
4y2 + 4d

√
x2 + d2 − 3d2

+ d

2
√
4z2 + d2

− 1

≥ d√
(1−2τ)2 + d2

+
4
√

(1−2τ)2+d2+ 4d2√
(1−2τ)2+d2

−6d

4
√
16τ 2+4d

√
(1−2τ)2+d2−3d2

+ d

2
√
4τ 2+d2

−1.

Let k(d) denote the function on the right hand side of the inequality above. As shown
in the Appendix (inequality (A.1)), the function k(d) is positive for d ∈ [0, 1].
In particular, it follows that h′(d) is positive for all d ∈ [0, 1], and hence h(d)

is increasing. Thus h(d) > h(0) = x + y + z = 1 for all d > 0, which

implies that f
(
d
√
x2 + d2 − d2

)
> 1. Hence a12 + a13 + a23 + d > 1 whenever

δ ∈
[
0, d

√
x2 + d2 − d2

]
. This concludes the proof in this case.

Case 2: δ ∈
[
d
√
x2 + d2 − d2, x2−y2

2

]
. Let 	(δ) = 	x,y,z,d(δ) denote the function

given by

	 (δ) :=
√
d2 + 4x2 − 4δ +√d2 + 4y2 + 4δ + √

d2 + 4z2

2
− d

2
. (2.22)

Note that (2.17), (2.16) and (2.19) imply that we have a12 + a13 + a23 + d ≥ 	 (δ).
The derivative of 	 is given by

	′(δ) = 1√
d2 + 4y2 + 4δ

− 1√
d2 + 4x2 − 4δ

.

Since δ ≤ x2−y2

2 , it follows that d2 + 4x2 − 4δ ≥ d2 + 4y2 + 4δ, and hence

we have 	′(δ) ≥ 0 for δ ≤ x2−y2

2 . Thus 	(δ) attains its minimum on our interval[
d
√
x2 + d2 − d2, x2−y2

2

]
when δ = d

√
x2 + d2 − d2. As the inequalities (2.18)

and (2.19) give the same bound for a12 when δ = d
√
x2 + d2 − d2, we conclude

that 	
(
d
√
x2 + d2 − d2

)
≥ f

(
d
√
x2 + d2 − d2

)
> 1 (the latter strict inequal-

ity being proved in our analysis of Case 1). Thus in this case also we must have
a12 + a13 + a23 + d > 1. Combined with Claim 2.13, our case analysis proves
Lemma 2.12. �
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Now the conclusion Lemma 2.12 contradicts the fact that we have a12+a13+a23+d =
1; this contradiction shows no counterexample to Theorem 2.5 exists, concluding the
proof of the theorem. �


2.4 The H-Extremal Region: The Case˛1 ≥ ˛2 + (1 − √
˛2)

2

Given a 3-colouring template G on N vertices with |G1| ≥ max {|G2|, |G3|}, we
define the function

g(G) := |G1| + |G2| + |G3| − 2

(
N

2

)
− 2max {|G2|, |G3|}

+2

√(
N

2

)
max {|G2|, |G3|}.

Theorem 2.15 There exists an absolute constant C > 5 such that the following hold:
if G is a 3-colouring template on n vertices satisfying |G1| ≥ |G2| ≥ |G3| and

g(G) ≥ Cn, (2.23)

then G contains a rainbow triangle.

Remark 2.16 Setting |Gi | = αi
n2
2 for i ∈ [3] and assuming α3 ≤ α2, (2.23) implies

after rearranging terms and dividing through by n2
2 that α3 ≥ 2− α1 + α2 − 2

√
α2 +


(n−1), which up to the error term is exactly the bound we require in Theorem 1.13
part (b).

Proof Let C > 0 be a sufficiently large constant to be specified later. It will be
convenient to give a name to the function ofmax {|G2|, |G3|} involved in the definition
of g(G). Set therefore fn : R≥0 → R to be the function given by

fn (x) := x −
√

x

(
n

2

)
.

When n is clear from context, we often omit the subscript n andwrite f for the function
fn . �

Proposition 2.17 The function f is strictly decreasing in the interval [0, 1

4

(n
2

)] and
strictly increasing in the interval [ 14

(n
2

)
,
(n
2

)]. Its unique minimum in [0, (n2
)] is

f ( 14
(n
2

)
) = − 1

4

(n
2

)
.

Proof Simple calculus. �

Suppose Theorem 2.15 is false, and let N be the least value of n ≥ 3 for which there
exists a Gallai 3-colouring template satisfying the assumptions of Theorem 2.15.
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Among such Gallai colouring templates, let G be one maximising the size of the
largest colour class |G1|. In the next lemma, we show that the sizes of the vertex set
and of the colour classes in this putative counterexample to Theorem 2.15 cannot be
too small.

Lemma 2.18 The following hold:

(i)
∑3

i=1 |Gi | > 3
2

(N
2

)+ CN;
(ii) N > 4C;
(iii) |G2| > 1

4

(N
2

)+ C
2 N.

Proof By Proposition 2.17 and (2.23), we have

3∑

i=1

|Gi | > 2

(
N

2

)
+ 2 f (|G2|) + CN ≥ 3

2

(
N

2

)
+ CN ,

establishing (i). Further, by Theorem 1.34 we have
∑

i |Gi | ≤ 2
(N
2

)
, which implies

1
2

(N
2

)
> CN and thus N > 4C . This proves (ii). Finally, observe that (i) implies that

2|G2| ≥ |G2| + |G3| ≥
3∑

i=1

|Gi | −
(
N

2

)
>

1

2

(
N

2

)
+ CN ,

and hence |G2| > 1
4

(N
2

)+ CN
2 , proving (iii). �


Next,weuse themaximality of |G1| and theminimality of N to prove twokey structural
lemmas about the colour classes of G.

Lemma 2.19 G2 ∪ G3 ⊆ G1.

Proof Wefirst showG2 ⊆ G1 using a simple idea from [18]. Consider the 3-colouring
template G′ with colour classes given by G ′

1 = G1 ∪ G2, G ′
2 = G1 ∩ G2 and

G ′
3 = G3. It it easily checked that G′ is also a Gallai colouring template, and that∑3
i=1 |G ′

i | =∑3
i=1 |Gi |.

Our aim is to prove that G′ also satisfies (2.23). By Lemma 2.18(i), we have

2max
(|G ′

2|, |G ′
3|
) ≥

3∑

i=1

|G ′
i | −

(
N

2

)
=

3∑

i=1

|Gi | −
(
N

2

)
>

1

2

(
N

2

)
+ CN ,

whence g′
2 := max

(|G ′
2|, |G ′

3|
)
satisfies g′

2 ≥ 1
4

(N
2

) + C
2 N . Clearly g′

2 ≤ |G2|,
whence f (g′

2) ≤ f (|G2|) by Proposition 2.17. We thus have

3∑

i=1

|G ′
i | =

3∑

i=1

|Gi | > 2

(
N

2

)
+ 2 f (|G2|) + CN ≥ 2

(
N

2

)
+ 2 f (g′

2) + CN ,

4 Formally, Theorem 1.3 is stated for N sufficiently large. However in the case r = 3 it is easy to see that
the claimed bound holds for all N ≥ 3. Indeed, ifG is a 3-colouring template on N vertices that contains no
rainbow triangle, then for any set of vertices S of size 3 we must have

∑3
i=1 |Gi [S]| ≤ 6 = 2

(3
2
)
, whence

∑3
i=1, |Gi | ≤ 2

(N
2
)
by averaging.

123



Combinatorica

so that (after swapping colours 2 and 3 if necessary)G′ is also a Gallai template on N
vertices satisfying the assumptions of Theorem 2.15. SinceGwas chosen to maximise
the size of the first colour class among such counterexamples to Theorem 2.15, we
have that |G1| ≥ |G ′

1| = |G1 ∪ G2|. Thus G2 ⊆ G1, as claimed.
That G3 ⊆ G1 is proved by using a similar, albeit simpler argument (since now

both sides of (2.23) are unchanged when we replace G1 and G3 by G1 ∪ G3 and
G1 ∩ G3 respectively). �

Lemma 2.20 There are no rainbow edges in G: G1 ∩ G2 ∩ G3 = ∅.
Proof Suppose for a contradiction that xx ′ ∈ G1 ∩ G2 ∩ G3. We shall show the
subtemplate G′ induced by V \ {x, x ′} is a smaller counterexample to Theorem 2.15.

Observe that for every y ∈ V \ {x, x ′}, if one of the edges xy, x ′y is bi-chromatic
or rainbow, then the other edge must be missing from

⋃3
i=1 Gi (as otherwise we have

a rainbow triangle in G). In particular, writing R for the number of rainbow edges
from xx ′ to V \{x, x ′} (which by our observation satisfies R ≤ N − 2), we have

3∑

i=1

|G ′
i |≥

3∑

i=1

|Gi |−2(N − 2) − 3 − R > 2

(
N

2

)
+2 fN (|G2|)+CN−2N − R + 1

= 2

(
N − 2

2

)
+ C(N − 2)

+ 2 fN (|G2|) + 2N − R + 2C − 5
(2.24)

Clearly, the size of the second largest colour class inG′ is at most |G2|− R− 1 (since
both |G2| and |G3| decreased by at least R + 1 when we removed the rainbow edge
xx ′ and the R rainbow edges from xx ′ to V \ {x, x ′}). Now, we have that

− R + 2 fN (|G2|) − 2 fN−2(|G2| − R − 1)

= R + 2 − 2

√(
N

2

)
|G2|

⎛

⎝1 −
√

N 2 − 5N + 6

N 2 − N

√

1 − R + 1

|G2|

⎞

⎠ . (2.25)

Write |G2| = α2
(N
2

)
and R+1 = ρ(N−1). ByLemma2.18(iii), we knowα2 ∈ [ 14 , 1].

Further, by our observation above R+1 ≤ N−1, whence ρ ≤ 1. By a straightforward
asymptotic analysis,

1 + ρ(n − 1) − 2

(
n

2

)√
α2

⎛

⎝1 −
√
1 − 5n−1 + 6n−2

1 − n−1

√

1 − 2ρ

α2n

⎞

⎠

=
(

ρ − 2
√

α2 − ρ√
α2

)
n + O(1). (2.26)

For α2 ∈ [1/4, 1], and ρ ∈ [0, 1], we have ρ − ρ√
α2

≥ 1 − 1√
α2
. Since

(
1 − √

α2
) (√

α2 − 1
2

) ≥ 0, it follows that 1 − 2
√

α2 − 1√
α2

≥ −2. Combining
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this fact with (2.24), (2.25) and (2.26), and picking C > 5 sufficiently large to ensure
that we can absorb the O(1) term in (2.26) with the 2C − 5 term in (2.24) (recall that
N > 4C by Lemma 2.18(ii), so picking C sufficiently large ensures N itself can be
made sufficiently large), we get

3∑

i=1

|G ′
i | > 2

(
N − 2

2

)
+ 2 fN−2(|G2| − R − 1) + C(N − 2).

We are now done once we observe that if g′
2 is the size of the second largest colour

class in G′, then fN−2(g′
2) ≤ fN−2(|G2| − R − 1). Indeed, as we noted above,

g′
2 ≤ |G2| − R − 1. On the other hand, note that all colour classes have lost at most

1+2(N−2) = 2N−3 edges whenwe removed xx ′ from V . Thus by Lemma 2.18(iii)

g′
2 ≥ |G2| − 2N + 3 ≥ 1

4

(
N

2

)
+ C

2
N − 2N + 3 >

1

4

(
N − 2

2

)
.

As fN−2 is increasing for x ≥ 1
4

(N−2
2

)
(Proposition 2.17), this last inequality

implies fN−2(g′
2) ≤ fN−2(|G2| − R − 1). Thus G′ is indeed a counterexample

to Theorem 2.15, contradicting the vertex minimality of G. �

Corollary 2.21 There are no bi-chromatic edges in colours 23: G2 ∩ G3 = ∅.
Proof Since there are no rainbow edges (Lemma 2.20), this is immediate from the fact
proved in Lemma 2.19 that G2 ∩ G3 ⊆ G1. �

We now consider a largest matching of bi-chromatic edges from G. By Lemmas 2.19
and 2.20, this matching M is the disjoint union of two matchings M12 and M13 of
bi-chromatic edges in colours 12 and 13 respectively. Let V12 and V13 denote the
collections of vertices contained in some edge of M12 and M13 respectively, and let
D := V \ (V12 
 V13).

We shall performmodifications ofG in a sequential manner, to obtain a new colour-
ing template G′′, which may contain some rainbow triangles, but is well-structured
with respect to the partition V = V12 
V13 
 D while still satisfying a slightly weaker
form of (2.23). This will lead to the desired contradiction (Lemma 2.25).

Beforewe startmodifying our colouring template, we shallmake some observations
aboutG, introduce an auxiliary graph A onM , and observe some elementary properties
of g, our function of colouring templates, all of which we shall need to analyse our
sequence of modifications of G.

Proposition 2.22 For j ∈ {2, 3}, set {k} := {2, 3} \ { j}. Then the following hold:

(i) for any pair of distinct edges X , X ′ ∈ M1 j , if there is any edge in colour k from
X to X ′, we have that at least two edges from X to X ′ are missing from G1 ∪G2;

(ii) for any edge X ∈ M1 j and any edge Y ∈ M1k , we have
∑3

i=1 |Gi [X ,Y ]| ≤ 5,
with equality only attained if |G2[X ,Y ]| = |G3[X ,Y ]| = 1and |G1[X ,Y ]| = 3;

(iii) if X ∈ M1 j and Y ,Y ′ are distinct edges in M1k such that
∑3

i=1 |Gi [X ,Y ]| =∑3
i=1 |Gi [X ,Y ′]| = 5, then |Gk[Y ,Y ′]| ≤ 3;
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(iv) if v ∈ D and X ∈ M1 j are such that there exists a bi-chromatic edge in colour
1k from v to X, then

∑3
i=1 |Gi [X , v]| = 2;

(v) there is no bi-chromatic edge in D (and in particular D is an independent set in
G2 ∪ G3);

(vi) for every X ∈ Mi j , there exists at most one v ∈ D sending bi-chromatic edges
to both endpoints of X.

Proof Parts (i)–(iv) are immediate from the factG is rainbow K3-free and simple case
analysis. Parts (v)–(vi) follow from the maximality of the bi-chromatic matching M
and the fact that G2 ∪ G3 ⊆ G1. �

Next, we define an auxiliary graph A on the edges of the matching M12 
 M13 by
including a pair X , X ′ ∈ M1 j in A if |G j [X , X ′]| ≤ 3 and a pair X ∈ M12, Y ∈ M13

if
∑3

i=1 |Gi [X ,Y ]| = 5. Finally, we make some elementary observations about g.

Proposition 2.23 Let G′ be a 3-colouring template with |G ′
1| ≥ max

{|G ′
2|, |G ′

3|
}
. If

max
{|G ′

2|, |G ′
3|
} ≤ 1

4

(N
2

)+ N, then g(G′) ≤ 2N.

Proof Since |G1| ≤ (N2
)
, our assumption together with the bound

√
1 + 2x ≤ 1 + x

gives

g(G′) ≤ −
(
N

2

)
+
(
N

2

)√
1 + 8

N − 1
≤ 2N .

�

Proposition 2.24 Suppose max

(|G ′
2|, |G ′

3|
) ≥ 1

4

(N
2

)+ N. Then the following hold:

(i) the value of g(G′) does not decrease if we delete a bi-chromatic edge and add two
edges in colour 1;

(ii) for t ≤ N, the value of g(G′) decreases by at most t if we delete up to t edges in
colours 2 or 3.

Proof For part (i), assume without loss of generality that |G ′
2| ≥ |G ′

3|. Replacing a
bi-chromatic edge in colour 13 by two edges in colour 1 does not change the value
of g. If |G ′

3| = |G ′
2|, then similarly we do not change the value of g by removing a

bi-chromatic edge in colours 12 and adding in two edges in colour 1. On the other
other hand, if |G ′

3| < |G ′
2|, then deleting a bi-chromatic edge in colours 12 and adding

in two edges in colour 1 keeps
∑3

i=1 |G ′
i | constant and strictly decreases 2 f (|G ′

2|) =
2|G ′

2| − 2
√(N

2

)|G ′
2| (since f = fN (x) is increasing in the interval [ 14

(N
2

)
,
(N
2

)], as
shown in Proposition 2.17); thus g(G′) =∑3

i=1 |G ′
i |−2 f (max(|G ′

2|, |G ′
3|)) actually

increases in this case.
The proof of part (ii) follows similarly, and is left as an exercise to the reader. �


We are now ready to embark upon our sequence of modifications of G. Set G′ = G.
Recall that initially |G ′

2| ≥ 1
4

(N
2

) + C
2 N > 1

4

(N
2

) + 2N by Proposition 2.18. Also,
initiallyG′ has the two properties that it contains no rainbow edge and that it satisfies
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G ′
2 
 G ′

3 ⊆ G ′
1, both of which will be preserved by our modifications. Note however

that our modifications will not preserve the property of being rainbow K3-free. Also,
if the value of max{|G ′

2|, |G ′
3|} ever becomes too small by dropping below 1

4

(N
2

)+ N ,
we shall immediately stop the modification process.
Step 1: dealing with D. We go through the edges of the matching M12. For each
such edge X , we go through the vertices of D. If v ∈ D sends a bi-chromatic edge
of colours 13, then by Proposition 2.22(iv), we can replace this bi-chromatic edge by
two edges in colour 1 from v to X . By Proposition 2.24(i), this does not decrease the
value of g. If this change brings max(|G ′

2|, |G ′
3|) below 1

4

(N
2

)+ N , then we stop our
procedure and output the colouring template G′′ = G′.

We then repeat the same procedure with colours 2 and 3 switching roles, i.e. replace
bi-chromatic edges in colours 12 from D to edges of M13 by pairs of edges in colour
1 (and outputting G′′ = G′ if the size of the second largest colour class ever becomes
too small). Throughout, the value of g(G′) does not decreases.

Next, we sequentially go through the edges M12 ∪ M13. By Proposition 2.22(vi),
for each such edge X ∈ M1 j , there is at most one vertex vX ∈ D such that vX sends
two bi-chromatic edges in colours 1 j to X . If such a vertex vX exists, then we delete
one of the two edges in colour j from vX to X .

If the size of the second largest colour class in G′ does not become too small, then
at the end of this sequence of operations we have deleted at most N/2 < N edges in
colours 2 and 3, and so by Proposition 2.24(ii) we have g(G′) ≥ g(G) − N by the
end of this step. Further, G′ now has the property that for j ∈ {2, 3} at most half of
the edges from M1 j to D are bi-chromatic in colours 1 j , and the rest of those edges
are in colour 1 or absent from

⋃3
i=1 G

′
i .

Step 2: cleaning inside the V1 j . We sequentially go through the pairs of distinct edges
X , X ′ ∈ M12. For each such pair, if there is one edge in colour 3 between X and X ′ then
we have that (a) XX ′ is an edge in our our auxiliary graph A, and (b) there are at least
two edges from X to X ′ which are missing in G1 ∪ G2 (by Proposition 2.22(i)). We
then delete this edge in colour 3, and arbitrarily add in one of the at least two missing
edges in colour 1 between X and X ′. If there are two edges in colour 3 between X
and X ′, then we replace them with the two missing edges from G1[X , X ′], one after
the other. By Proposition 2.24, this does not decrease the value of g(G′). Note that
there cannot be more than 2 edges in colour 3 between them as G3 ⊆ G1. If one of
our changes brings max(|G ′

2|, |G ′
3|) below 1

4

(N
2

)+N , then we stop our procedure and
output the colouring template G′′ = G′.

We then repeat the same procedure with colours 2 and 3 switching roles, i.e. replace
edges in colours 2 inside V13 by edges in colour 1 (and outputting G′′ = G′ if the
size of the second largest colour class ever becomes too small). Throughout, the value
of g(G′) does not decrease (and thus remains at least g(G) − N ). If the size of the
second largest colour class inG′ does not become too small in the process, then when
we are done with this sequence of operations we have that for j ∈ {2, 3} the set V1 j
only contains edges in colours 1 or j and for every edge XX ′ ∈ A[V1 j ], there is (still)
at least one edge in (X , X ′)(2) missing in G ′

j .
Step 3: cleaning across V12 × V13. Recall the auxiliary graph A introduced after
Proposition 2.22. We sequentially go through the pairs X ∈ M12, Y ∈ M13 with
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XY /∈ A. For each such pair, we have
∑4

i=1 Gi [X ,Y ] ≤ 4. So we can sequentially
delete edges from X to Y in colours 2 or 3, and replace them by edges from X to Y
in colour 1. If this change brings max(|G ′

2|, |G ′
3|) below 1

4

(N
2

)+ N , then we stop our
procedure and output the colouring template G′′ = G′. By Proposition 2.24(i), this
does not decrease the value of g(G′).

Next, we turn our attention to the pairs X ∈ M12, Y ∈ M13 with XY ∈ A. It
follows from Proposition 2.22(iii) that for each X ∈ M12, the collection of Y ∈ M13
with XY ∈ A forms a clique in A. By a graph theoretic result of Aharoni et al. [1,
Lemma 2.2], under such a condition on the neighbourhoods we have

|A[M12, M13]| ≤ |A[M12]| + |A[M13]| + |M12| + |M13|
2

For convenience, set e12 = |A[M12]|, e13 = |A[M13]| and e = |A[M12, M13]|. We
begin by moving min{e12, e} edges from G2[M12, M13] to G2[M12] and min{e13, e}
edges fromG3[M12, M13] toG3[M13] (adding edges in colour 1 to preserveG ′

2
G ′
3 ⊆

G ′
1 if necessary). This clearly does not decrease the value of g. Next we go through

the remaining edges in colours 2 or 3 in (M12, M13)
(2) one after the other, and replace

all but at most e−min(e, e12)−min(e, e13) ≤ |M12|+|M13|
2 of them by edges in colour

1.
To be more precise, at each step of this subprocess we let j ∈ {2, 3} be the second

largest colour class inG′ and k the third largest colour class. If there is in (M12, M13)
(2)

any edge f of G j and at least one missing edge in G1, then we remove the edge f in
colour j fromG′ and replace it by an edge f ′ in colour 1; if this bringsmax(|G ′

2|, |G ′
3|)

below 1
4

(N
2

) + N , then we stop our procedure and output the colouring template
G′′ = G′. Otherwise if there is in (M12, M13)

(2) any edge f of Gk and any edge f ′
missing from G1, then we remove the edge f in colour k fromG′ and replace it by an
edge in colour 1. By Proposition 2.24(i) this does not decrease g.

When the subprocess ends, we have at most |M12|+|M13|
2 ≤ N/4 edges in colours

2 or 3 left between X and Y , which we remove. By Proposition 2.24(ii), deleting
these edges reduces the value of g by at most N

4 . If this brings max(|G ′
2|, |G ′

3|) below
1
4

(N
2

) + N , then we stop our procedure and output the colouring template G′′ = G′.
Otherwise, we have decreased the value of g by at most N/4 in total in this step,
whence g(G′) ≥ g(G) − 2N , and G′ has the following property for j ∈ {2, 3}:

at most half of the edges from V1 j to D are in G ′
j , and all other edges of G ′

j

lie inside V1 j . (2.27)

We set G′′ = G′ and terminate our modification procedure. We are now ready to
bound g(G′′) and obtain the desired contradiction.

Lemma 2.25 g(G′′) ≤ 3N.

Proof If |G ′′
2| ≤ 1

4

(N
2

) + N , then our claim is immediate from Proposition 2.23.
Otherwise, set x1 j N := |V1 j | for j ∈ {2, 3} and dN := |D|. By (2.27), we have
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|G ′′
j | ≤ (x1 j N2

) + 1
2 x1 j dN

2. Clearly |G ′′
1| ≤ (N2

)
. Assume without loss of generality

that |G ′′
2| ≥ |G ′′

3|.
Now, the function x �→ −x + 2

√
x
(N
2

)
is increasing in the interval [0, (N2

)]. It then
follows from the bounds on the sizes of the colour classes above that, for a choice of
the constant C > 0 sufficiently large, we have

g(G′′) = |G ′′
1| − 2

(
N

2

)
+ |G ′′

3| − |G ′′
2| + 2

√

|G ′′
2|
(
N

2

)

≤ −
(
N

2

)
+
((

x13N

2

)
+ x13dN 2

2

)
−
((

x12N

2

)
+ x12dN 2

2

)

+ 2

√((
x12N

2

)
+ x12dN 2

2

)(
N

2

)

<
N 2

2

(
− 1 + (1 − d − x12)

2 − (x12)
2 + (1 − 2x12 − d)d

+ 2
√
x12(x12 + d)

)
+ 3N

= N 2
(
−d − 2x12 + 2

√
x12(x12 + d)

)
+ 3N ≤ 3N .

�

Since, as noted at the end of our modification procedure, g(G) ≤ g(G′′) + 2N , it
follows from Lemma 2.25 that g(G) ≤ 5N , whence G fails to satisfy (2.23) (since
C was chosen so that C > 5), a contradiction. Thus there is no counterexample to
Theorem 2.15, concluding our proof. �


2.5 Putting It Together: Proof of Theorem 1.13 and Corollary 1.16

Proof of Theorem 1.13 For part (a), the statement (i) follows from the definition ofR′
1:

α2 = x2 + (1 − x − y)2 ≥ 1 − x2 = α3. The statement (ii) follows directly from
Theorem 2.5, while the statement (iii) follows from Proposition 2.1. Similarly for part
(b), the statement (i) follows from the definition of R2: α3 = 2 − α1 − 2

√
α2 + α2,

which is at most α2 since α1 ≥ 2 − 2
√

α2. The statements (ii) and (iii) then follow
from Theorem 2.15 and Proposition 2.1.

Thus the only task that remains is to establish part (c). Our goal is to show that
if α1 ≥ α2 and (α1, α2) /∈ R′

1 ∪ R2, then (α1, α2, α2) is not a forcing triple. By

Propositions 2.2(a)–(d), we see that if α1 < 1+τ 2

2 , α2 < 1
4 , α1 + α2 < 1 or (α1, α2) ∈

R1\R′
1, then we are done. The only region this leaves uncovered consists of the

(α1, α2) with α2 ∈ [ 14 , 1
2 ) and max

{
1 − α2, 1 − 2

√
α2 + 2α2

} ≤ α1 < 2 − 2
√

α2.
Consider any α2 ∈ [ 14 , 1

2 ). Then for any α1 < 2 − 2
√

α2, there exists ε > 0 such
that α1 < 2 − 2

√
α2 + ε − ε and α2 + ε < 1

2 . Setting a = �√(α2 + ε)n�, b =
� 2

√
(α2+ε)−1

2
√

(α2+ε)
n� and c = n−a−b, we have (by Proposition 2.1 or a quick calculation)
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that the n-vertex Gallai 3-colouring template H(a, b, c) has colour density

(
2 − 2

√
α2 + ε, α2 + ε, α2 + ε

)+
(
O(n−1), O(n−1), O(n−1)

)
,

from which it follows that (α1, α2, α2) is not a forcing triple (since α1 + ε < 2 −
2
√

α2 + ε). �


Proof of Corollary 1.16 We need to show that in any Gallai n-vertex 3-colouring tem-
plate with colour density vector (α1, α2, α3) and α1 ≥ α2 ≥ α3,

∏3
i=1 αi ≤

h(υ) + o(1). By Theorem 1.13, it suffices to show this for (α1, α2) ∈ R′
1 ∪ R2.

If (α1, α2) ∈ R2, then by Theorem 1.13(b)(ii)–(iii), it is enough to show that
for any choice of x, y ≥ 0 with 1 − x − y ≥ 0, the Gallai 3-colouring template
H(�xn�, �yn�, n − �xn� − �yn�) satisfies∏3

i=1 |Hi | ≤ h(υ)
(n
2

)3 + O(n5). Now, by

Proposition 2.1,
∏3

i=1 |Hi | = fH (x, y)
(n
2

)3 + O(n5), where fH (x, y) is given by

fH (x, y) := (1 − 2xy)x2((1 − x)2 + 2xy).

For x fixed and y ∈ [0, 1 − x], simple calculus tells us that

fH (x, y) ≤
{
fH (x, 2−x

4 ) if x ≤ 2
3

fH (x, 1 − x) if x > 2
3 .

Now it can be checked that fH (x, 2−x
4 ) is an increasing function of x in the interval

[0, 2
3 ] (its derivative with respect to x is x

2

(
(1 − x)2 + 1

) (
3(x − 2

3 )
2 + 2

3

) ≥ 0),
whence for any such x we have fH (x, 2−x

4 ) ≤ fH ( 23 ,
1
3 ). It follows that for any

choice of x, y ≥ 0 with x + y ≤ 1, we have fH (x, y) ≤ maxx ′∈[0,1] fH (x ′, 1− x ′) =
maxx ′∈[0,1]

(
(x ′)2 + (1 − x ′)2

)
(x ′)2

(
1 − (x ′)2

) = h(υ) as required.
Similarly if (α1, α2) ∈ R′

1, then by Theorem 1.13(a)(ii)–(iii), it is enough to show
that for any choice of x ≥ 1

2 and y ≥ 1−x
2 with 1− x − y ≥ 0, the Gallai 3-colouring

template F(�xn�, �yn�, n − �xn� − �yn�) satisfies∏3
i=1 |Fi | ≤ h(υ)

(n
2

)3 + O(n5).

By Proposition 2.1 we have
∏3

i=1 |Fi | = fF (x, y)
(n
2

)3 + O(n5), where fF (x, y) :=
(x2 + y2)

(
x2 + (1 − x − y)2

)
(1 − x2). Now

∂ fF
∂ y

(x, y) = 4(1 − x2)

(
y − 1 − x

2

)(
x2 + y2 − (1 − x)y

)
,

and for y ≥ 1−x
2 we have x2 + y2 − (1 − x)y ≥ x2 + ( 1−x

2

)2 − 2
( 1−x

2

)2 =
1
4 (3x − 1)(x + 1) ≥ 0 for all x ≥ 1

2 . Thus
∂ fF
∂ y (x, y) ≥ 0 for (x, y) in the domain we

are considering, and fF (x, y) ≤ fF (x, 1−x) = (x2 + (1 − x)2
)
x2
(
1 − x2

) ≤ h(υ),
as required. �
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Fig. 3 A plot of the function
k(d) from (A.1) for d ∈ [0, 1]
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A Appendix: Verifying Inequality (A.1)

We wish to prove the following inequality:

k(d) = d

2
√
d2 + 4τ 2

+
4d2√

d2+(1−2τ)2
+ 4
√
d2 + (1 − 2τ)2 − 6d

4
√
4d
√
d2 + (1 − 2τ)2 − 3d2 + 16τ 2

+ d√
d2 + (1 − 2τ)2

− 1 ≥ 0 (A.1)

for 0 ≤ d ≤ 1 and τ = 4−√
7

9 . A plot of the function k(d) for d ∈ [0, 1] is provided in
Fig. 3, which may help a reader convince themselves the inequality is true. We give a
rigorous proof below.

Our first step is to find an upper bound on the modulus of the derivative of k(d).
Differentiating term by term gives us that k′(d) is equal to

− d2

2
(
d2 + 4τ 2

)3/2 + 1

2
√
d2 + 4τ 2

+
− 4d3

(d2+(1−2τ)2)
3/2 + 12d√

d2+(1−2τ)2
− 6

4
√
4d
√
d2 + (1 − 2τ)2 − 3d2 + 16τ 2

−

(
4d2√

d2+(1−2τ)2
+ 4
√
d2 + (1 − 2τ)2 − 6d

)2

8
(
4d
√
d2 + (1 − 2τ)2 − 3d2 + 16τ 2

)3/2 − d2
(
d2 + (1 − 2τ)2

)3/2

+ 1√
d2 + (1 − 2τ)2

.

Taking the modulus and distributing over the terms gives us an upper bound for |k′(d)|
of

d2

2
(
d2 + 4τ 2

)3/2 + 1

2
√
d2 + 4τ 2

+
4d3

(d2+(1−2τ)2)
3/2 + 12d√

d2+(1−2τ)2
+ 6

4
√
4d
√
d2 + (1 − 2τ)2 − 3d2 + 16τ 2
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+

(
4d2√

d2+(1−2τ)2
+ 4
√
d2 + (1 − 2τ)2 + 6d

)2

8
(
4d
√
d2 + (1 − 2τ)2 − 3d2 + 16τ 2

)3/2 + d2
(
d2 + (1 − 2τ)2

)3/2

+ 1√
d2 + (1 − 2τ)2

.

We upper bound this by setting d = 1 where that maximizes a term, which yields

(
4√

d2+(1−2τ)2
+ 4
√

(1 − 2τ)2 + 1 + 6

)2

8
(
4d
√
d2 + (1 − 2τ)2 − 3d2 + 16τ 2

)3/2 + 1

2
√
d2 + 4τ 2

+
12√

d2+(1−2τ)2
+ 4

(d2+(1−2τ)2)
3/2 + 6

4
√
4d
√
d2 + (1 − 2τ)2 − 3d2 + 16τ 2

+ 1

2
(
d2 + 4τ 2

)3/2 + 1√
d2 + (1 − 2τ)2

+ 1
(
d2 + (1 − 2τ)2

)3/2 .

Next we set d = 0 wherever that obviously maximizes a term, and use the fact that
τ < 1

2 to substitute 1 − 2τ for
√

(1 − 2τ)2, which gives

(
4
√

(1−2τ)2+1 + 4
1−2τ +6

)2

8
(
4d
√
d2+(1−2τ)2−3d2 + 16τ 2

)3/2 +
12

1−2τ + 4
(1−2τ)3

+ 6

4
√
4d
√
d2 + (1 − 2τ)2 − 3d2 + 16τ 2

+ 1

4τ
+ 1

16τ 3
+ 1

1 − 2τ
+ 1

(1 − 2τ)3
.

Next, looking at 4d
√
d2 + (1 − 2τ)2−3d2+16τ 2 we see that it is at least d2+16τ 2 >

0.What is more, its derivative with respect to d is clearly greater or equal to 2d. Hence,
for d in our interval [0, 1], this function is minimized at d = 0. So we set d = 0 in
the remaining expressions and get

(
4
√

(1 − 2τ)2 + 1 + 4
1−2τ + 6

)2

512τ 3
+

12
1−2τ + 4

(1−2τ)3
+ 6

16τ

+ 1

4τ
+ 1

16τ 3
+ 1

1 − 2τ
+ 1

(1 − 2τ)3
.

Simplifying this we get

66716 + 31943
√
7 + 12

√
19825442 + 7493276

√
7

1152
≈ 196.868 ≤ 200.
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Finally, evaluating the left hand side of inequality (A.1) at 8000 evenly spaced points
in the interval [0, 1] and using the fact the minimum cannot differ by more than 200

8000
from the minimum of these values we find that the left hand side of (A.1) is bounded
from below by 0.00147. The actual minimum is 0.0264741, which is achieved at
d ≈ 0.0948007.
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