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Abstract
We prove that every properly edge-colored n-vertex graph with average degree at
least 32(log 5n)2 contains a rainbow cycle, improving upon the (log n)2+o(1) bound
due to Tomon. We also prove that every properly edge-colored n-vertex graph with
at least 105k3n1+1/k edges contains a rainbow 2k-cycle, which improves the previous
bound 2ck2n1+1/k obtained by Janzer. Our method using homomorphism inequalities
and a lopsided regularization lemma also provides a simple way to prove the Erdős–
Simonovits supersaturation theorem for even cycles, which may be of independent
interest.
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1 Introduction

In an edge-colored graph, a copy of a graph H is called rainbow if every edge in the
copy receives a unique color. If we forbid rainbow copies of some graphs in properly
edge-colored graphs G, what is the maximum number of edges in G? This extremal
questionwasfirst investigated byKeevash,Mubayi, Sudakov, andVerstraëte [8],where
they defined the rainbow Turán number ex∗(n,H) for a family of graphsH. Formally,
ex∗(n,H) denotes the maximum number of edges in a properly edge-colored n-vertex
graph with no rainbow copies of any H ∈ H. If H consists of a single graph H , then
we simply write ex∗(n, H) instead of ex∗(n, {H}).

To quote [8], there are two questions that are the most important among the several
ones raised therein. The first one is to determine ex∗(n, C), where C is the class of
all cycles. It is shown that ex∗(n, C) = �(n log n) in [8] and Das, Lee, and Sudakov

[3] obtained an upper bound O(ne(log n)
1
2+o(1)

). This was improved by Janzer [5] to
O(n log4 n) and the current best one is O(n(log n)2+o(1)) due to Tomon [9]. We
improve Tomon’s bound to O(n log2 n).

Theorem 1.1 A properly edge-colored n-vertex graph G with at least 32n log2(5n)

edges always contains a rainbow cycle.

The second question in [8] concerns ex∗(n, C2k), where C2k is the even cycle of
length 2k. In [8], a general lower bound ex∗(n, C2k) = �(n1+1/k) is obtained,whereas
the matching upper bounds were only verified for k = 2, 3. This upper bound was
subsequently improved by Das, Lee, and Sudakov [3] to O(n1+(1+ok (1)) log k/k) and
by Janzer [5] to O(n1+1/k). While Janzer’s bound matches the lower bound given in
[8], the implicit constant is exponential in k. We improve it to a polynomial one as
follows.

Theorem 1.2 A properly edge-colored n-vertex graph G with at least 105k3n1+1/k

edges always contains a rainbow 2k-cycle.

Whereas the recent improvement in [9] took a different approach to that of Janzer
[5], our proof is in spirit closer to that of [5] using homomorphism counts and improves
it in two ways. First, we use a more efficient lopsided regularization lemma than the
Jiang–Seiver lemma [7] used by Janzer. Second, the main proof after regularization
is conceptually simpler and more intuitive in the sense that it only relies on repeated
applications of the Cauchy–Schwarz inequality.

We stress that the repeated Cauchy–Schwarz method may be of independent
interest. There are various problems in extremal combinatorics, from the classical
Mantel’s theorem and the Kővári–Sós–Turán theorem to the recent developments on
Sidorenko’s conjecture, where the Cauchy–Schwarz inequality and its variants have
been extremely useful; however, the convexity inequalities have seen less success in
determining extremal numbers of bipartite graphs other than complete bipartite graphs.

To the best of our knowledge, it has been unknown whether even the Bondy–
Simonovits theorem [2], a weaker statement than Theorem 1.2, has a proof that only
uses the Cauchy–Schwarz inequality. Our proof method answers this natural question
by giving a simple proof of the Bondy–Simonovits theorem and moreover, obtains the
Erdős–Simonovits supersaturation for even cycles [4] as follows.
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Corollary 1.3 Any n-vertex graph G with average degree d ≥ 2 · 105k3n1/k contains
at least 1

2 (2
12k)−kd2k copies of the 2k-cycle.

2 The Key Homomorphism Inequality

In what follows, a coloring always means an edge coloring and likewise, a colored
graph is an edge-colored graph. Let Hom(H , G) be the set of homomorphisms from
H to G. In particular, we fully label vertices of H .

Each homomorphism in Hom(C2k, G) can be seen as a closed walk v0v1 . . . v2k of
length 2k (or closed 2k-walk for short) inG with v0 = v2k . Letφ be a proper coloring of
a graph G. A closed 2k-walk is degenerate if, for distinct i and j with {i, j} �= {0, 2k},
vi = v j or φ(vivi+1) = φ(v jv j+1), where the index addition is taken modulo 2k.
That is, the walk revisits a vertex in the middle or repeats a color. The former case is
said to be vertex-degenerate at (i, j) and the latter is called color-degenerate at (i, j).
If a 2k-walk is vertex-degenerate (resp. color-degenerate) at (i, j), then it is of type
|i − j | − 1 (resp. |i − j |).

One degenerate walk may have multiple types, so the types of degeneracy are not
disjoint in general. Asφ is a proper coloring, a closedwalk is vertex-degenerate of type
1 if and only if it is color-degenerate of type 1. Note that a non-degenerate 2k-walk
is a rainbow cycle of length 2k. Let D(C2k, G) be the set of all degenerate closed
walks of length 2k and let Sk be the star with k leaves. If G has no rainbow 2k-cycle,
then Hom(C2k, G) = D(C2k, G). Our strategy is to bound |D(C2k, G)| from above
to obtain an upper bound for |Hom(C2k, G)|.
Lemma 2.1 Given a colored graph G, let U1 be the set of closed 2k-walks in G that
are vertex-degenerate at (0, 2). Then

|Hom(C2k, G)| ≤
( |Hom(C2k, G)|

|U1|
)k

· |Hom(Sk, G)| and |D(C2k, G)| ≤ 4k2|U1|.

In particular, if G has no rainbow 2k-cycle, then |Hom(C2k, G)| ≤
(2k)2k |Hom(Sk, G)|.
Proof LetUs andFs be the set of closed2k-walks that are vertex-degenerate at (0, s+1)
and color-degenerate at (0, s), respectively, i.e., they consist of those walks of type s.
Note that U1 = F1. ��
Claim 2.2 For 1 ≤ s ≤ k − 1 and 1 ≤ t ≤ k,

|Us |2 ≤ |U1| · |U2s−1| and |Ft |2 ≤ |F1| · |F2t−1|. (1)

In particular, |Us | ≤ |U1| and |Ft | ≤ |F1| for all 1 ≤ s ≤ 2k − 3 and 1 ≤ t ≤ 2k − 1.

Proof of the claim For s = 1, the inequality becomes a trivial equality, so we may
assume s > 1. The key idea is to analyze Us by counting the closed walks therein in
the following way:
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• fix vertices x = v0 = vs+1, y = vs+k , and z = vs with xz ∈ E(G);
• choose a walk vs+1vs+2 . . . vs+k of length k − 1 from x to y;
• choose a walk vs+kvs+k+1 . . . v2k of length k − s from y to x ; and
• choose a walk v0v1 . . . vs of length s from x to z.

Let w�(u, v) be the number of walks of length � from u to v and let g(u, v) be the
edge indicator function of G, i.e., g(u, v) = 1 if uv ∈ E(G) and 0 otherwise. Then

|Us | =
∑
x,y,z

wk−1(x, y)wk−s(y, x)ws(x, z)g(x, z).

The Cauchy–Schwarz inequality now gives the following bound:

|Us |2 ≤
(∑

x,y,z

wk−1(x, y)2g(x, z)

) (∑
x,y,z

wk−s(y, x)2ws(x, z)2g(x, z)

)

≤
(∑

x,y,z

wk−1(x, y)2g(x, z)

) (∑
x,y,z

wk−s(y, x)2ws(x, z)2
)

,

where the second inequality follows from g(x, y) ≤ 1. The sum∑
x,y,z wk−1(x, y)2g(x, z) counts the number of closed (2k − 2)-walks plus a

pendant edge that corresponds to xz, which are exactly the 2k-walks in U1.
Thus,

∑
x,y,z wk−1(x, y)2 g(x, z) = |U1|. Analogously, the term wk−s(y, x)2 and

ws(x, z)2 count the number of closed walks of length 2(k − s) and 2s when
summed over the choices of y and z, respectively, both starting at x . Thus, sum-
ming wk−s(y, x)2ws(x, z)2 over x, y, z ∈ V (G) counts the number of closed
2k-walks that are vertex-degenerate at (0, 2s), which is exactly |U2s−1|. Therefore,
|Us |2 ≤ |U1| · |U2 s−1|.

Let U j be the largest set among U1, · · · ,U2k−3. By symmetry, |U j | = |U2k−2− j |,
which allows us to assume j ≤ k−1. Then |U j | ≤ |U1|1/2|U2 j−1|1/2 ≤ |U1|1/2|U j |1/2,
so |U j | = |U1|. This proves |Us | ≤ |U1| for all s = 1, 2, · · · , 2k − 3.

The second inequality for Ft can also be obtained by using essentially the same
technique. As each closed 2k-walk v0 . . . v2k in Ft satisfies φ(v0v1) = φ(vtvt+1), we
count |Ft | as follows:
• fix a color c that repeats at v0v1 and vtvt+1;
• fix vertices x = v0 = v2k and y = vk ;
• choose a walk v0v1 . . . vk of length k from x to y where φ(v0v1) = c; and
• choose a walk vkvk+1 . . . v2k of length k from y to x where φ(vtvt+1) = c.

Let w̃k,�(u, v, c) be the number of k-walks from u to v such that the �-th edge has
color c. The Cauchy–Schwarz inequality then gives

|Ft |2 =
(∑

x,y,c

w̃k,1(x, y, c)w̃k,t−k+1(y, x, c)

)2
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≤
(∑

x,y,c

w̃k,1(x, y, c)2
) (∑

x,y,c

w̃k,t−k+1(y, x, c)2
)

.

The sum
∑

x,y,c w̃k,1(x, y, c)2 counts the number of closed 2k-walks from x that
repeat c at the first and the last edges, which is exactly |F1| by rotational symmetry.
Similarly, the second sum corresponds to |F2t−2k+1| = |F2t−1|. Therefore, we obtain
the inequality |Ft |2 ≤ |F1| · |F2t−1|. Finally, |Ft | ≤ |F1| follows from the symmetry
that yields |Ft | = |F2k−t | and verbatim the same argument used for showing |Us | ≤
|U1|. ��
Claim 2.3 |D(C2k, G)| ≤ 4k2|U1|.
Proof of the claim Recall that both Us and Fs specify the labels of the vertices where
degeneracy occurs. By rotational symmetry, the number of closed 2k-walks that are
vertex-degenerate at (i, i + s + 1) is exactly |Us | for each i = 0, 1, . . . , 2k − 1.
Likewise, the number of closed 2k-walks that are color-degenerate at (i, i + s) is |Fs |
for each i = 1, 2, . . . , 2k. Thus, the number of degenerate C2k-homomorphisms of
type s is at most 2k(|Us | + |Fs |). Taking the union bound over all possible types, we
get

|D(C2k, G)| ≤ 2k

(
k−1∑
s=1

|Us | +
k∑

s=1

|Fs |
)

. (2)

Together with Claim 2.2 this yields |D(C2k, G)| ≤ 4k2|U1| as desired. ��
Let Os be the set of all closed 2k-walks v0 . . . v2k with v0 = v2k such that v0 =

v2 = · · · = v2s . In particular, O1 = U1 = F1 and Ok = Ok−1 ⊆ Ok−2 ⊆ · · · ⊆ O1.
We also use O0 = Hom(C2k, G) for consistency.

Claim 2.4 The sequence |Os |, 0 ≤ s ≤ k, is log-convex, i.e., for each s = 1, . . . , k−1,

|Os |2 ≤ |Os−1| · |Os+1|.

Proof of the claim A star-walk of length � is a walk u0u1 . . . u� of length � such that
every even-indexed vertex is the same one, i.e., u0 = u2 = · · · = u2t where t = 
 �

2�.
If s = k − 1, then the inequality |Ok−1|2 ≤ |Ok−2| · |Ok | trivially follows from the
fact Ok = Ok−1 and Ok−1 ⊆ Ok−2.

For 1 ≤ s ≤ k − 2, the walks in Os can be counted as follows:

• fix vertices x = v0 = v2 = · · · = v2s , y = vs+1, z = vk+s+1, where y is either x
or a neighbor of x depending on the parity of s;

• choose a walk vk+s+1vk+s+2 . . . v2k of length k − s − 1 from z to x ;
• choose a star-walk v0v1 . . . vs+1 of length s + 1 from x to y;
• choose a walk vk+s+1vk+s . . . v2s of length k − s + 1 from z to x ; and
• choose a star-walk v2sv2s−1 . . . vs+1 of length s − 1 from x to y.
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As in the proof of Claim 2.2, w�(u, v) denotes the number of �-walks from u to v. Let
σ�(u, v) be the number of star-walks of length � from u to v. Note that, unlikew�(·, ·),
σ�(·, ·) may not be a symmetric function in general. Now we can compute |Os | as

|Os | =
∑
x,y,z

wk−s−1(z, x)σs+1(x, y)wk−s+1(z, x)σs−1(x, y).

The Cauchy–Schwarz inequality then yields

|Os |2 ≤
(∑

x,y,z

wk−s−1(z, x)2σs+1(x, y)2

)(∑
x,y,z

wk−s+1(z, x)2σs−1(x, y)2

)
.

In the first sum, σs+1(x, y)2 counts either a closed star-walk of length 2(s + 1) (if s
is odd and x = y) from x or a star-walk of length 2s together with an edge xy (if s
is even and xy ∈ E(G)). By considering xy and yx as the (s + 1)-th and (s + 2)-th
edge of the star-walk, summing the latter case over all choices of y counts the closed
star-walks of length 2(s +1). Hence the first sum counts the number of walks inOs+1
by summing the number of ways to augment each closed walk of length 2(k − s − 1)
by a closed star-walk of length 2(s + 1) at x . By the same reason with replacing s + 1
by s −1, the second sum counts the number of walks inOs−1, which proves the claim.
��

We are now ready to finish the proof of the lemma. By Claim 2.4,

|Hom(C2k, G)|
|U1| = |O0|

|O1| ≥ |O1|
|O2| ≥ · · · ≥ |Ok−1|

|Ok | .

Therefore,

|O0|
|Ok | = |O0|

|O1| · |O1|
|O2| . . .

|Ok−1|
|Ok | ≤

( |O0|
|O1|

)k

.

Each closed2k-walk inOk is of the formvu1vu2 . . . vukv,whichnaturally corresponds
to a homomorphism from Sk to G that maps the central vertex to v and the i-th leaf to
ui . Therefore,

|Hom(C2k, G)|
|Hom(Sk, G)| = |O0|

|Ok | ≤
( |O0|

|O1|
)k

=
( |Hom(C2k, G)|

|U1|
)k

,

which concludes the proof. ��

3 Regularization

Suppose that the n-vertex graph G is “close" to being regular, e.g., |Hom(Sk, G)| ≤
10nk+1 pk , where p = 2e(G)/n2 is the edge density of G. Here the constant 10 is
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arbitrarily chosen to illustrate. If G contains no rainbow 2k-cycles, then Lemma 2.1
gives

n2k p2k ≤ |Hom(C2k, G)| ≤ (2k)2k |Hom(Sk, G)| ≤ 10 · (2k)2knk+1 pk,

where the first inequality follows from the fact that even cycles satisfy Sidorenko’s
conjecture. As a corollary, e(G) ≤ 2 · 101/kk2n1+1/k , which is stronger than
Theorem 1.2.

However, this ideal assumption is not guaranteed in general. Instead, the following
two lemmas will enable us to “regularize" the graph G.

Lemma 3.1 Let G be a properly edge-colored graph with minimum degree δ(G) ≥ 1.
Then there exists a properly edge-colored graph G ′ with the following properties:

(1) G ′ satisfies |V (G)| ≤ |V (G ′)| ≤ 4e(G)/δ(G) and every vertex of G ′ has degree
between δ(G)/2 and δ(G);

(2) There is a color-preserving homomorphism ψ from G ′ to G. In particular, if G ′
contains a rainbow cycle, then so does G.

Proof Let δ := δ(G) for brevity. We construct G ′ by iterating the following process.
Fix an ordering the vertices of G. At each step, take a vertex v ∈ V (G) according to
the ordering and let s := dG(v)/δ�. We then split v into new vertices v1, . . . , vs so
that the neighbor sets N (v1), . . . , N (vs) form a partition of the neighbor set of v in
G and δ/2 ≤ |N (vi )| ≤ δ for every 1 ≤ i ≤ s. This is possible since dG(v) ≥ δ and
we can make the sizes of N (v1), N (v2), · · · , N (vs) as equal as possible. We color the
edges in such a way that each edge uvi for u ∈ NG(v) inherits the same color as uv.

Let ψ be a map from G ′ to G so that each vertex maps to the original vertex of G
before splitting. Then ψ is a color-preserving homomorphism and every vertex of G ′
has degree between δ/2 and δ. Since the number of edges is preserved throughout the
whole process,

|V (G ′)| · δ/2 ≤ 2e(G ′) = 2e(G),

which implies |V (G ′)| ≤ 4e(G)/δ. Finally, the color-preserving homomorphism ψ

maps a rainbow cycle in G ′ to a rainbow circuit in G which contains a rainbow cycle.
This proves the “in particular" part. ��
Lemma 3.2 Let k ≥ 2 and let G be an n-vertex bipartite graph with average degree
d > 0. Suppose that G contains no proper subgraph with larger average degree. Then
G contains a subgraph G ′ with bipartition (A, B) satisfying the following for some
i ∈ N:

(1) |A| ≥ 1
k 2

− ki
k−1 n, |B| ≥ n

64 ;
(2) dG ′(a) ∈ [2i−6d, 2i−5d] for all a ∈ A;
(3) dG ′(b) ≤ 4d for all b ∈ B.

Proof Denote by (X , Y ) a bipartition of G. Let X0 and Y0 be the set of vertices in X
and Y , respectively, of degree at least 4d and let X1 := X \ X0 and Y1 := Y \ Y0.
Then |X0|, |Y0| ≤ e(G)/(4d) = n/8.
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Since there is no proper subgraph of G with average degree larger than d,

e(G[X0, Y0]) ≤ 1

2
(|X0| + |Y0|)d ≤ nd

8
= 1

4
e(G).

Hence, one of G[X0, Y1], G[X1, Y0] and G[X1, Y1] has at least e(G)/4 edges. By
symmetry, we can assume that for some X ′ ∈ {X0, X1}, the graph G[X ′, Y1] has at
least e(G)/4 edges.

As G[X ′, Y1] has at least e(G)/4 edges and average degree at least d/4, we can
delete some vertices of G[X ′, Y1] to obtain a graph G1 = G[X∗, Y ∗] with minimum
degree at least d/16 and e(G1) ≥ e(G)/8. Since the vertices in Y ∗ have degree at
most 4d,

|Y ∗| ≥ e(G1)

4d
≥ e(G)

32d
= n

64
.

We partition X∗ into the following sets

Zi =
{
v ∈ X∗ : dG1(v) ∈ [2i−6d, 2i−5d)

}
, i ∈ N.

If there exists i such that |Zi | ≥ 1
k 2

− ki
k−1 n, then take A to be Zi and B = Y ∗, and we

are done. If not, then we have

e(G)

8
≤ e(G1) ≤

∞∑
i=1

|Zi | · 2i−5d <
dn

32k
·

∞∑
i=1

2− i
k−1 <

dn

32k
· 1

1 − 2− 1
k−1

<
dn

16
.

In the last inequality we used the facts that 2−x ≤ 1 − x/2 for 0 ≤ x ≤ 1 and that
0 < 1

k−1 ≤ 1 for k ≥ 2. This is a contradiction as e(G) = dn/2. This proves the
lemma. ��

The following simple lemma essentially proves Sidorenko’s conjecture for even
cycles in the ‘asymmetric’ bipartite setting.We include a short proof for completeness.

Lemma 3.3 Let G be a bipartite graph with vertex partition (A, B). Suppose that the
average of degrees of the vertices in A is dA and the average of degrees of the vertices
in B is dB. Then for every k ∈ N we have

|Hom(C2k, G)| ≥ dk
A · dk

B .

Proof Consider the bipartite adjacency matrix M = (mi j ) of G, where the rows and
columns of M are indexed by the elements of A and B, respectively, with

mi j =
{
1 if i j ∈ E(G)

0 otherwise.
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Then

|Hom(C2k, G)| = trace((MT M)k) = λk
1 + · · · + λk

n,

where n := |B| and λ1 ≥ · · · ≥ λn are (nonnegative) eigenvalues of the positive
semidefinite matrix MT M .

It is well-known that λ1 = maxx∈Rn
xT MT Mx

xT x
. Taking x = (1, . . . , 1)T and using

the Cauchy–Schwarz inequality, we obtain

λ1 ≥
∑

a∈A deg2(a)

|B| ≥
(∑

a∈A deg(a)
)2

|A||B| = dAdB .

Hence |Hom(C2k, G)| ≥ λk
1 ≥ (dAdB)k . ��

4 Proofs of theMain Results

Now we are ready to prove our main results.

Proof of Theorem 1.2 By taking a subgraph, assume that G is a bipartite graph with
at least 50000k3n1+1/k edges and let d ≥ 105k3n1/k be the average degree of G. We
further assume that G has no subgraph with larger average degree, as otherwise we can
just take that subgraph to be our graph. Also assume that G has no rainbow 2k-cycle.
We apply Lemma 3.2 to obtain a graph G ′ and some i ∈ N such that

• |A| = 1
k 2

− ki
k−1 n;

• dG ′(a) ∈ [2i−6d, 2i−5d] for all a ∈ A;
• dG ′(b) ≤ 4d for all b ∈ B.

Indeed, we can obtain the equality in the first bullet point by deleting some vertices
if necessary. Note that the first two conditions ensures that the average of degrees of
vertices in B is at least

2i−6d|A|
n

≥ d

64k
2− i

k−1 .

Apply Lemma 3.3 to obtain that

Hom(C2k, G ′) ≥ 2k(i−6)dk(
d

64k
)k2− ki

k−1 . (3)

As dG ′(b) ≤ 4d for all b ∈ B and
∑

b∈B dG ′(b) = e(G ′), the convexity of the
function f (x) = xk yields that

∑
b∈B

dG ′(b)k ≤ e(G ′)
4d

· (4d)k ≤ (4d)k−1e(G ′).
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Hence, Lemma 2.1 implies that

|Hom(C2k, G ′)| ≤ (2k)2k |Hom(Sk, G ′)| ≤ (2k)2k

(∑
a∈A

dG ′(a)k +
∑
b∈B

dG ′(b)k

)

≤ (2k)2k(|A|2k(i−5)dk + (4d)k−1e(G ′))
≤ (2k)2k(2k(i−5)dk + (4d)k−1 · 2i−5d)|A|
≤ (2k)2kdk(2k(i−5) + 4k−12i−5) · 1

k
2− ki

k−1 n.

Here, the penultimate inequality holds as e(G ′) ≤ 2i−5d|A|. Combining this with (3),
we obtain

dk < (105k3)kn.

However, we assume that d ≥ 105k3n1/k , a contradiction. This proves the theorem. ��

Proof of Corollary 1.3 The proof proceeds as in Theorem 1.2. If at least half of the
Hom(C2k, G) is non-degenerate, thenwe can bound it from below using (3); otherwise
we reach a similar contradiction as now |Hom(C2k, G)| ≤ (8k2)k |Hom(Sk, G)| by
Lemma 2.1. ��

Proof of Theorem 1.1 Suppose that G does not have a rainbow cycle. By iteratively
deleting low degree vertices, we may assume that the minimum degree of G is δ ≥
d(G)/2 ≥ 32 log2(5n). Apply Lemma 3.1 to obtain a graph G ′ on n′ ≤ 4n vertices
such thatG ′ doesn’t contain a rainbow cycle and every vertex ofG ′ has degree between
δ/2 and δ.

Let k = log n′. Because G ′ does not contain any rainbow 2k-cycle, Lemma 2.1
implies that

|Hom(C2k, G ′)| ≤ (2k)2k |Hom(Sk, G ′)| ≤ (2k)2kδkn′.

On the other hand, every even cycle satisfies Sidorenko’s conjecture, so we know that

(2k)2kδkn′ ≥ (δ/2)2k .

As n′ = 2k , this yields that

(4k2 · δ · 2)k ≥ (δ2/4)k,

which is a contradiction as δ ≥ 32 log2(5n) > 32k2. Hence G must contain a rainbow
cycle. ��
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Zakharov and Zamir [1] have improved the bound O(n log2 n) to O(n log n log log n).

Funding Open Access funding enabled and organized by KAIST.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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