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Abstract
A d-dimensional framework is a pair (G, p), where G = (V , E) is a graph and p is
a map from V to R

d . The length of an edge xy ∈ E in (G, p) is the distance between
p(x) and p(y). A vertex pair {u, v} of G is said to be globally linked in (G, p) if
the distance between p(u) and p(v) is equal to the distance between q(u) and q(v)

for every d-dimensional framework (G, q) in which the corresponding edge lengths
are the same as in (G, p). We call (G, p) globally rigid in R

d when each vertex pair
of G is globally linked in (G, p). A pair {u, v} of vertices of G is said to be weakly
globally linked in G in R

d if there exists a generic framework (G, p) in which {u, v}
is globally linked. In this paper we first give a sufficient condition for the weak global
linkedness of a vertex pair of a (d + 1)-connected graph G in R

d and then show that
for d = 2 it is also necessary. We use this result to obtain a complete characterization
of weakly globally linked pairs in graphs in R

2, which gives rise to an algorithm for
testing weak global linkedness in the plane in O(|V |2) time. Our methods lead to a
new short proof for the characterization of globally rigid graphs in R

2, and further
results on weakly globally linked pairs and globally rigid graphs in the plane and in
higher dimensions.
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1 Introduction

A d-dimensional framework is a pair (G, p), where G = (V , E) is a graph and p is a
map from V toR

d . We also say that (G, p) is a realization ofG inR
d . The length of an

edge uv ∈ E in (G, p) is ||p(u)− p(v)||, where ||.|| denotes the Euclidean norm inR
d .

Two frameworks (G, p) and (G, q) are equivalent if corresponding edge lengths are
the same, that is, ||p(u)− p(v)|| = ||q(u)−q(v)|| holds for all pairs u, v with uv ∈ E .
The frameworks (G, p) and (G, q) are congruent if ||p(u)− p(v)|| = ||q(u)−q(v)||
holds for all pairs u, v with u, v ∈ V .

A d-dimensional framework (G, p) is called globally rigid if every equivalent d-
dimensional framework (G, q) is congruent to (G, p). This is the same as saying that
the edge lengths of (G, p) uniquely determine all the pairwise distances. It is NP-hard
to test whether a given framework in R

d is globally rigid, even for d = 1 [28]. This
fundamental property of frameworks becomes more tractable if we consider generic
frameworks. A framework (G, p) (and the set {p(v) : v ∈ V (G)}) is said to be generic
if the set of its d|V (G)| vertex coordinates is algebraically independent over Q. It is
known that in a given dimension the global rigidity of a generic framework (G, p)
depends only on G: either every generic realization of G in R

d is globally rigid, or
none of them are [3, 12]. Thus, we say that a graph G is globally rigid in R

d if every
(or equivalently, if some) d-dimensional generic realization of G is globally rigid in
R
d . For d = 1, 2, combinatorial characterizations and corresponding deterministic

polynomial time algorithms are known for (testing) global rigidity in R
d . The case

d = 1 is a folklore result: it is not hard to see that a graph G on at least three vertices
is globally rigid in R

1 if and only if it is 2-connected. The necessary and sufficient
conditions for d = 2 are stated as Theorem 2.6 in the next section. The existence of
such a characterization (or algorithm) for d ≥ 3 is a major open question. For more
details on globally rigid graphs and frameworks, see, e.g., [21].

In this paper we consider a refined, local version, in which we are interested in
whether the edge lengths of a framework uniquely determine the distance between
a given pair of vertices, rather than all pairs of vertices. We shall need the follow-
ing notions. Following [16], we say that a pair of vertices {u, v} in a d-dimensional
framework (G, p) is globally linked in (G, p) if for every equivalent d-dimensional
framework (G, q) we have ||p(u) − p(v)|| = ||q(u) − q(v)||. Global linkedness in
R
d is not a generic property (for d ≥ 2): a vertex pair may be globally linked in some

generic d-dimensional realization of G without being globally linked in all generic
realizations. See Fig. 1. We say that a pair {u, v} is globally linked in G in R

d if it is
globally linked in all generic d-dimensional frameworks (G, p). We call a pair {u, v}
weakly globally linked in G in R

d if there exists a generic d-dimensional framework
(G, p) in which {u, v} is globally linked. If {u, v} is not weakly globally linked in
G, then it is called globally loose in G. It is immediate from the definitions that G
is globally rigid in R

d if and only if each vertex pair is globally linked in G in R
d .

As we shall see, the global rigidity of G already follows from the (seemingly weaker)
condition that each vertex pair is weakly globally linked in G (see Lemma 3.2(c)).

The case d = 1 is exceptional and well-understood. Global linkedness in R
1 is a

generic property: a pair {u, v} is globally linked in G in R
1 if and only if there is a

cycle in G that contains both u and v. Otherwise {u, v} is globally loose.

123



Combinatorica

u

v

u

v

u

v

u

v

Fig. 1 Two pairs of equivalent generic frameworks of a graph G in R
2. The vertex pair {u, v} is globally

linked in the two frameworks on the left. On the other hand, {u, v} is not globally linked in the two
frameworks on the right. Thus {u, v} is not globally linked but is weakly globally linked in G in R

2

For d ≥ 2 no combinatorial (or efficiently testable) characterization has previously
been found for globally linked or weakly globally linked pairs in graphs in R

d . These
problems belong to the few major problems in combinatorial rigidity which have
remained unsolved for d = 2. The main result of this paper is a solution for the
weakly globally linked pairs problem in two dimensions.We shall first give a sufficient
condition for the weak global linkedness of a vertex pair of a (d +1)-connected graph
G in R

d (Theorem 4.5) and then show that in a sense the condition is also necessary
in the case of 3-connected graphs in R

2 (Theorem 5.1). The general case of the two-
dimensional problem is reduced to the 3-connected case by a sequence of lemmas that
describe how weak global linkedness is affected by cutting a graph along a separating
pair. These results lead to themain result (Theorem5.8), which gives a characterization
of weakly globally linked pairs of vertices inR

2 and gives rise to an O(|V |2) algorithm
for the corresponding decision problem.

Our methods and results lead to a new short proof for the sufficiency part of Theo-
rem 2.6. We also obtain a number of other structural results on weakly globally linked
pairs and globally rigid graphs in R

2 and in higher dimensions.
Even though most of the known results (and conjectures) on global linkedness are

concerned with globally linked pairs of graphs in R
2, their characterization remains

open. Globally linked pairs in two dimensions have been characterized in minimally
rigid graphs [17], bracedmaximal outerplanar graphs [8], and inR2-connected graphs
[16]. In the latter two cases global linkedness turns out to be a generic property. Hence
these two results give rise to the characterization of weakly globally linked pairs, too,
in the corresponding families of graphs. A few partial results in higher dimensions are
also available, see [10, 19]. A conjectured characterization of globally linked pairs in
R
2 can be found in [16].
The rest of the paper is organized as follows. In Sect. 2 we introduce the necessary

notions concerning rigid graphs and frameworks. In Sect. 3 we prove some simple but
fundamental lemmas on weakly globally linked pairs in R

d . Section4 contains most
of the d-dimensional results (two key geometric lemmas and a sufficient condition
for weak global linkedness), and the new proof for Theorem 2.6. In Sect. 5 we state
and prove our main result, a complete characterization of the weakly globally linked
pairs in R

2. In Sect. 6 we discuss the algorithmic aspects and collect a few concluding
remarks and questions.
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2 Preliminaries

In this section we introduce the notions and results from the theory of (globally) rigid
frameworks and graphs that we shall use.

2.1 Rigid Graphs and the Rigidity Matroid

In the structural results on global rigidity and global linkedness the notions of rigid
frameworks, rigid graphs and the rigidity matroid play a key role.

Let (G, p) be a d-dimensional framework. A flexing of (G, p) is a continuous
function π : [0, 1] → (Rd)V such that π(0) = p and the frameworks (G, π(t)) and
(G, p) are equivalent for every t ∈ [0, 1]. In other words, a flexing is a continuous
motion of the vertices in R

d that preserves all the edge lengths in the framework. We
say that the flexing π is trivial if (G, π(t)) is congruent to (G, p) for every t ∈ [0, 1].
The framework (G, p) is called rigid if it has no non-trivial flexing. It is known that
in a given dimension the rigidity of a generic framework (G, p) depends only on G:
either every generic realization of G in R

d is rigid, or none of them are [1]. Thus,
we say that a graph G is rigid in R

d if every (or equivalently, if some) d-dimensional
generic realization of G is rigid in R

d . For d = 1, 2, combinatorial characterizations
and corresponding deterministic polynomial time algorithms are known for (testing)
rigidity in R

d , see, e.g., [24]. The existence of such a characterization (or algorithm)
for d ≥ 3 is a major open question.

The following elementary result is well-known. For the proof of the two-
dimensional case see [16, Theorem 8.1].

Proposition 2.1 Suppose that (G, p) is a rigid generic framework. Then the number
of distinct congruence classes of frameworks which are equivalent to (G, p) is finite.

The rigidity matroid of a graph G is a matroid defined on the edge set of G which
reflects the rigidity properties of all generic realizations ofG. For a general introduction
to matroid theory we refer the reader to [26].

Let (G, p) be a realization of a graph G = (V , E) in R
d . The rigidity matrix of

the framework (G, p) is the matrix R(G, p) of size |E | × d|V |, where, for each edge
uv ∈ E , in the row corresponding to uv, the entries in the d columns corresponding
to vertices u and v contain the d coordinates of (p(u) − p(v)) and (p(v) − p(u)),
respectively, and the remaining entries are zeros. The rigidity matrix of (G, p) defines
the rigidity matroid of (G, p) on the ground set E by linear independence of the rows.
It is known that any pair of generic frameworks (G, p) and (G, q) have the same
rigidity matroid. We call this the d-dimensional rigidity matroid Rd(G) = (E, rd) of
the graph G.

We denote the rank of Rd(G) by rd(G). A graph G = (V , E) is Rd -independent
if rd(G) = |E | and it is an Rd -circuit if it is not Rd -independent but every proper
subgraph G ′ of G is Rd -independent. We note that in the literature such graphs are
sometimes called M-independent in R

d and M-circuits in R
d , respectively. An edge

e of G is an Rd -bridge in G if rd(G − e) = rd(G) − 1 holds. Equivalently, e is an
Rd -bridge in G if it is not contained in any subgraph of G that is an Rd -circuit.
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The following characterization of rigid graphs is due to Gluck.

Theorem 2.2 [11] Let G = (V , E) be a graph with |V | ≥ d + 1. Then G is rigid in
R
d if and only if rd(G) = d|V | − (d+1

2

)
.

A graph is minimally rigid in R
d if it is rigid in R

d but G − e is not rigid in R
d for

every edge e of G. By Theorem 2.2, minimally rigid graphs in R
d on at least d + 1

vertices have exactly d|V | − (d+1
2

)
edges.

Let G = (V , E) be a graph and {u, v} be a pair of vertices of G. An induced
subgraph G[X ] (and the set X ), for some X ⊆ V , is said to be (u, v)-rigid in R

d (or
simply (u, v)-rigid, if d is clear from the context), if G[X ] is rigid in R

d and u, v ∈ X .
We say that a (u, v)-rigid subgraph G[X ] is vertex-minimally (u, v)-rigid, if G[X ′]
is not (u, v)-rigid for all proper subsets X ′ ⊂ X . The pair {u, v} is called linked in
G in R

d if rd(G + uv) = rd(G) holds. A graph G with at least three edges is called
redundantly rigid in R

d if G − e is rigid in R
d for all e ∈ E(G).

Let M be a matroid on ground set E . We can define a relation on the pairs of
elements of E by saying that e, f ∈ E are equivalent if e = f or there is a circuit C
ofM with {e, f } ⊆ C . This defines an equivalence relation. The equivalence classes
are the connected components of M. The matroid is connected if it has only one
connected component. A graph G = (V , E) isRd -connected ifRd(G) is connected.
We shall use the well-known fact that if v is a vertex of degree at most d in G, then
every edge incident with v is an Rd -bridge in G. Hence the addition of a new vertex
of degree d to a rigid graph G in R

d preserves rigidity.
The following theorem was first proved by Geiringer in 1927 and later, indepen-

dently, by Laman in 1970.

Theorem 2.3 [24, 27] A graph G = (V , E) is R2-independent if and only if for all
subsets U of V with |U | ≥ 2, we have |E(U )| ≤ 2|U | − 3.

The following well-known statement can be deduced from Theorems 2.2 and 2.3.

Lemma 2.4 A graph G = (V , E) is an R2-circuit if and only if |E | = 2|V | − 2 and
G − e is rigid for each e ∈ E.

It follows from Lemma 2.4 that a pair {u, v} is linked in a graph G in R
2 if and

only if there exists a (u, v)-rigid subgraph ofG. For more details on the 2-dimensional
rigidity matroid, see [18].

2.2 Globally Rigid Graphs

The following necessary conditions for global rigidity are due to Hendrickson.

Theorem 2.5 [13] Let G be a globally rigid graph in R
d on at least d + 2 vertices.

Then G is (d + 1)-connected and redundantly rigid in R
d .

For d = 1, 2 the conditions of Theorem 2.5 together are sufficient to imply global
rigidity. It is not the case for d ≥ 3. The characterization of globally rigid graphs in
R
2 is as follows.
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Theorem 2.6 [15] Let G be a graph on at least four vertices. Then G is globally rigid
in R

2 if and only if G is 3-connected and redundantly rigid in R
2.

An equivalent characterization of global rigidity, in terms of the rigidity matroid of
G, follows from the next lemma.

Lemma 2.7 [15, Lemma 3.1, Theorem 3.2] Let G be a graph with at least two edges. If
G isR2-connected, thenG is redundantly rigid inR

2. Furthermore, if G is3-connected
and redundantly rigid in R

2, then G is R2-connected.

We shall also use the following lemma.

Lemma 2.8 [22, Lemma 6.2] Let G be a rigid, but not redundantly rigid graph in R
2,

and suppose that allR2-bridges of G are edges of the same triangle in G. Then G is
not 3-connected.

3 Properties of Weakly Globally Linked Pairs in R
d

We first collect some basic properties that hold in R
d for all d ≥ 1. The following

lemma was stated for d = 2 in [16] but the proof works for all d ≥ 1. An edge e of a
globally rigid graph H is critical if H − e is not globally rigid.

Lemma 3.1 [16, Lemma 7.1] Let G = (V , E) be a graph and u, v ∈ V . Suppose that
uv /∈ E, and that G has a globally rigid supergraph in R

d in which uv is a critical
edge. Then {u, v} is globally loose in G in R

d .

We shall frequently use the next key lemma. For a graph G = (V , E) and integer
d ≥ 1 let

Jd(G) = {uv : u, v ∈ V , uv /∈ E, {u, v} is weakly globally linked in G in R
d}.

Lemma 3.2 Let G = (V , E) be a graph and let F be a set of edges on vertex set V .
Then the following hold.

(a) If G + Jd(G) + F is globally rigid in R
d , then G + F is globally rigid in R

d .
(b) If G + uv is globally rigid in R

d for some uv ∈ Jd(G), then G is globally rigid in
R
d .

(c) G is globally rigid inR
d if and only if all pairs of vertices in G are weakly globally

linked in R
d .

Proof Let us fix d and put J = Jd(G).

(a) Suppose, for a contradiction, that G + J + F is globally rigid and G + F is not.
Then there is a (possibly empty) subset J ′ ⊂ J and an edge uv ∈ J − J ′ for which
G+ J ′ + F is not globally rigid, but Ḡ = G+ J ′ + F +uv is globally rigid. Then
uv is a critical edge in Ḡ, and hence {u, v} is globally loose in G by Lemma 3.1,
a contradiction.

(b) If G + uv is globally rigid for some uv ∈ J then G + J is globally rigid. Thus
putting F = ∅ and applying (a) gives that G is globally rigid.
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(c) Necessity is obvious. If all pairs of vertices in G are weakly globally linked, then
G + J is a complete graph, which is globally rigid. Again, putting F = ∅ and
applying (a) gives that G is globally rigid.


�
Thenext lemma statesweakglobal linkedness is a stronger property than linkedness.

Lemma 3.3 Let G = (V , E) be a graph, u, v ∈ V . If {u, v} is not linked in G in R
d

then {u, v} is globally loose in G in R
d .

Proof Let (G, p) be a generic d-dimensional realization of G. Since {u, v} is not
linked, there exists a non-rigid supergraph G ′ of G for which G ′ + uv is rigid. Then
G ′ has a non-trivial flexing. It follows from the rigidity of G ′ + uv that during this
flexing the distance between u and v is not constant. Hence, {u, v} is not globally
linked in G. 
�

Let H = (V , E) be a graph and x, y ∈ V . We use κH (x, y) to denote the maximum
number of pairwise internally disjoint xy-paths in H . Note that if xy /∈ E then, by
Menger’s theorem, κH (x, y) is equal to the size of a smallest set S ⊆ V − {x, y}
for which there is no xy-path in H − S. The following lemma is the d-dimensional
version of [16, Lemma 5.6]. The proof is the same in d dimensions.

Lemma 3.4 Let G = (V , E) be a graph and let {u, v} be a non-adjacent vertex pair
with κG(u, v) ≤ d. Then {u, v} is globally loose in G in R

d .

Let Gi = (Vi , Ei ) be a graph, t ≥ 1 an integer, and suppose that Ki
t is a complete

subgraph of Gi on t vertices, for i = 1, 2. Then the t-clique sum operation on G1,G2,
along K 1

t , K 2
t , creates a newgraphG by identifying the vertices of K 1

t with the vertices
of K 2

t , following some bijection between their vertex sets. The clique sum operation
is a t-clique sum operation for some t ≥ 1.

In the following lemma sufficiency follows from the simple obervation that if a
vertex pair is weakly globally linked in a subgraph ofG, then it is also weakly globally
linked inG. Necessity follows from the fact that the clique sum operation is performed
along a complete (and hence globally rigid) subgraph.

Lemma 3.5 Suppose that G is the clique sum of G1 and G2 and let u, v ∈ V (G1).
Then {u, v} is weakly globally linked in G in R

d if and only if {u, v} is weakly globally
linked in G1 in R

d .

4 A Sufficient Condition for Weak Global Linkedness in R
d

In this section we provide a new sufficient condition for the weak global linkedness of
a pair of vertices of a (d + 1)-connected graph in R

d . An important ingredient in our
proof is a geometric lemma (Lemma 4.1) presented in the next subsection. In Sect. 4.2
we prove the aforementioned sufficient condition and in Sect. 4.3 we show how it can
be used to prove the sufficiency part of Theorem 2.6. In the last subsection we shall
see that an appropriate converse of Lemma 4.1 is also true (Lemma 4.7). This lemma
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will be used in the next section where we characterize weak global linkedness in two
dimensions. Roughly speaking, these two lemmas show that if a vertex pair {u, v}
belongs to a rigid subgraph H of G, then contracting some edges outside of H does
not change whether {u, v} is weakly globally linked.

4.1 The First Contraction Lemma

Abasic graph operation is the contraction of a subset V0 of V in the graphG = (V , E).
This operation, which is denoted by G/V0, identifies the vertices of V0 and removes
the loops and parallel copies of the edges of the resulting graph that it may create. The
contraction of an edge e = xy is the contraction of the set {x, y} and it is denoted by
G/e.

Lemma 4.1 Let G = (V , E) be a graph, u, v ∈ V , and suppose that G[V0] is a
(u, v)-rigid subgraph of G. Let e = (s1, s2) ∈ E − E(G[V0]) be an edge. If {u, v} is
weakly globally linked in G/e in R

d , then {u, v} is weakly globally linked in G in R
d .

Proof We may assume that G is connected and s2 /∈ V0. Let s denote the vertex of
G/e obtained by identifying s1 and s2 in G. Note that we may have s1 ∈ V0. In
this case we shall simply identify s with s1 for notational convenience. Let (G/e, p)
be a generic realization of G/e in which {u, v} is globally linked. Let (G, pi ) be a
sequence of generic realizations of G, for which pi |V−s1−s2 = p|V−s , pi (s1) = p(s),
and pi (s2) → p(s). Suppose, for a contradiction, that {u, v} is globally loose in G.
Then {u, v} is not globally linked in (G, pi ) for all i ≥ 1. Hence for all i ≥ 1 there
exists a realization (G, qi ), equivalent to (G, pi ), for which

||qi (u) − qi (v)|| �= ||pi (u) − pi (v)|| = ||p(u) − p(v)||.

Since G[V0] is rigid and p|V0 = pi |V0 , it follows from Proposition 2.1 that there is an
ε > 0 such that for all i ≥ 1,

∣∣||qi (u) − qi (v)|| − ||p(u) − p(v)||∣∣ ≥ ε.

Since G is connected, we can translate each framework, if necessary, so that for all
i ≥ 1, (G, qi ) is in the interior of a ball of radius K , centered at the origin, for some
fixed positive real number K . Thus there is a convergent subsequence qik → q. Since
(s1, s2) ∈ E , wemust have q(s1) = q(s2). By extending q|V−s1−s2 with q(s) = q(s1),
we obtain a realization (G/e, q) which is equivalent to (G/e, p). Furthermore, we
have

∣∣||q(u) − q(v)|| − ||p(u) − p(v)||∣∣ ≥ ε,

which contradicts the fact that {u, v} is globally linked in (G/e, p). 
�
We obtain the following sufficient (but not necessary, see Fig. 2) condition for weak

global linkedness as a corollary.
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Fig. 2 Consider the graph on the left. The subgraph induced by the solid vertices is rigid in R
2, and

contracting the edges e and f results in a graph that is globally rigid in R
2. Thus by Lemma 4.1, {u, v} is

weakly globally linked in R
2. This shows that the sufficient condition of Corollary 4.2 is not necessary

Corollary 4.2 Let G = (V , E) be a graph, u, v ∈ V . Suppose that there is some
V0 ⊂ V such that G[V0] is a (u, v)-rigid subgraph of G in R

d , and there is a uv-path
in G that is internally disjoint from V0. Then {u, v} is weakly globally linked in G in
R
d .

Corollary 4.2, together with Lemma 3.2, leads to short proofs for some previous
results on globally rigid graphs. We illustrate this by the following theorem.

Theorem 4.3 [4] Let G1 and G2 be two globally rigid graphs in R
d on at least d + 2

vertices, with exactly d + 1 vertices in common. Suppose that e is a common edge.
Then G = G1 ∪ G2 − e is globally rigid in R

d .

Proof Let e = uv. Theorem 2.5 implies that G1 − e is rigid. Since G2 is (d + 1)-
connected, there is a path from u to v in G that is internally disjoint from G1. Thus
{u, v} is weakly globally linked in G by Corollary 4.2. It is easy to see that G + uv is
globally rigid. Hence G is also globally rigid by Lemma 3.2. 
�

By using the same proof idea we obtain a simple proof of the “rooted minor"
theorem of Tanigawa [30].

4.2 The Sufficient Condition

Let G = (V , E) be a graph. For U ⊆ V , let NG(U ) denote the set of those vertices
in V −U that have at least one neighbour in U . For u ∈ V , let NG(u) = NG({u}).

Let ∅ �= X ⊆ V and let V1, V2, . . . , Vr be the vertex sets of the connected compo-
nents of G − X . The graph Con(G, X) is obtained from G by contracting each vertex
set Vi into a single vertex vi , 1 ≤ i ≤ r . The graph Clique(G, X) is obtained from
G by deleting the vertex sets Vi , 1 ≤ i ≤ r , and adding a new edge xy for all pairs
x, y ∈ NG(Vi ), xy /∈ E , for 1 ≤ i ≤ r . See Fig. 3.

Lemma 4.4 Let G = (V , E) be a (d + 1)-connected graph. Suppose that G[V0] is a
rigid subgraph of G for some V0 ⊆ V . Then Clique(G, V0) is globally rigid in R

d if
and only if Con(G, V0) is globally rigid in R

d .

Proof Let E ′ be the set of those edges in Clique(G, V0) that are not in G[V0]. Let
H = Con(G, V0) + E ′. It follows from Corollary 4.2 that {u, v} is weakly globally
linked in Con(G, V0) for all uv ∈ E ′. Hence, by Lemma 3.2, Con(G, V0) is globally
rigid if and only if H is globally rigid. H can be obtained from Clique(G, V0) by
adding new vertices and joining each new vertex to a clique. It follows from the
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Fig. 3 An example of a graph G and the graphs Con(G, X) and Clique(G, X)

(d + 1)-connectivity of G that each of these cliques has size at least d + 1. Thus H is
globally rigid if and only if Clique(G, V0) is globally rigid. 
�

We are ready to state the main result of this section.

Theorem 4.5 Let G = (V , E) be a (d + 1)-connected graph and u, v ∈ V . Suppose
that G[V0] is a (u, v)-rigid subgraph of G in R

d . If Clique(G, V0) is globally rigid in
R
d , then {u, v} is weakly globally linked in G in R

d .

Proof Suppose that Clique(G, V0) is globally rigid in R
d . Then so is Con(G, V0)

by Lemma 4.4. In particular, {u, v} is weakly globally linked in Con(G, V0). Since
Con(G, V0) can be obtained from G by contracting edges not induced by V0,
Lemma 4.1 gives that {u, v} is weakly globally linked in G. 
�

4.3 Globally Rigid Graphs: A New Proof

Theorem 4.5 and Lemma 3.2 lead to a new short proof of the sufficiency part of
Theorem 2.6, which only uses the simple combinatorial Lemmas 2.7 and 2.8 and the
fact that the global rigidity of graphs in R

2 is a generic property. The original proof
in [15] relies on an inductive construction of 3-connected R2-connected graphs.

Proof of sufficiency in Theorem 2.6 The proof is by induction on |V |. If |V | = 4 then
G is a complete graph on four vertices, which is globally rigid. So we may suppose
that |V | ≥ 5. First, we show that for all non-adjacent pairs u, v, there is a (u, v)-rigid
proper induced subgraphG[X ] ofG. To see this consider two edges e, f ∈ E incident
with u and v, respectively. Since G is 3-connected and redundantly rigid, it is R2-
connected by Lemma 2.7. Hence there is anR2-circuit C in G with e, f ∈ E(C). By
Lemma 2.4, |E(C)| = 2|V (C)| − 2 and dC (v) ≥ 3 for all v ∈ V (C). It follows that
C has at least four vertices of degree three. Thus there is a vertex w ∈ V (C) with
w /∈ {u, v} and dC (w) = 3. Now X = V (C) − w induces the desired (u, v)-rigid
subgraph.

In the rest of the proof we show that every non-adjacent vertex pair {u, v} of G
is weakly globally linked in G. The theorem will follow from this by Lemma 3.2(c).
Let us fix u, v and consider a (u, v)-rigid proper induced subgraph G[X ] of G. As we
have shown above, such a subgraph exists. By Theorem 4.5 it suffices to show that
Clique(G, X) is globally rigid.

Let D be the vertex set of a component ofG− X and let H be obtained fromG−D
by adding a new edge xy for each non-adjacent pair x, y ∈ NG(D). Since G can be
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obtained from H by attaching a graph along a complete subgraph, and removing edges,
the 3-connectivity of G implies that H is 3-connected. A similar argument shows that
H is rigid, and so is H − e for every edge e in H not induced by NG(D). Thus if
H has some R2-bridges, then they are all induced by NG(D). If |NG(D)| ≥ 4, then
each edge induced by NG(D) belongs to a K4 in H , so H cannot haveR2-bridges at
all. If |NG(D)| = 3, then every R2-bridge in H belongs to the same triangle, on the
vertices of NG(D). But that is impossible by Lemma 2.8. Therefore H is a rigid graph
with noR2-bridges, and hence it is redundantly rigid. By repeated applications of this
argument we obtain that Clique(G, X) is 3-connected and redundantly rigid. Since
|X | ≤ |V | − 1, we can now use induction to deduce that Clique(G, X) is globally
rigid. This completes the proof.

We remark that a different proof for the sufficiency part in Theorem 2.6 was also
given by Tanigawa [30]. The high level ideas of his proof and the proof given in this
subsection are similar. By using our notation the main lemma [30, Lemma 4.1] can be
stated as follows: if v is a vertex of degree at least d + 1 in G, G − v is rigid in R

d ,
and Clique(G, V − {v}) is globally rigid in R

d , then G is globally rigid in R
d . This

statement is a special case of the “only if" direction of our Lemma 4.4.

4.4 The Second Contraction Lemma

As a corollary of Lemma 4.1, it can be deduced that ifG[V0] is a (u, v)-rigid subgraph
of a graph G, V1 is the vertex set of a component of G − V0 and {u, v} is weakly
globally linked in G/V1, then {u, v} is weakly globally linked in G. In this subsection
we shall prove the converse of this statement, see Lemma 4.7 below.

We shall need some new notions and an auxiliary lemma. A configuration of a
set U is a function that maps U into R

d . Two configurations p1, p2 of U are said
to be congruent if ||p1(u) − p1(v)|| = ||p2(u) − p2(v)|| for all u, v ∈ U . Suppose
that p and q are two incongruent configurations of a set U . We call a point x ∈ R

d

(q, p)-feasible if there exists a point y ∈ R
d such that ||p(u) − x || = ||q(u) − y||

for all u ∈ U . We then call y a (q, p)-associate of x . Observe that if π is an isometry
of R

d , then the set of (q, p)-feasible points is equal to the set of (π ◦ q, p)-feasible
points. The affine hull of a set X ⊆ R

d will be denoted by Aff(X).

Lemma 4.6 Let p be a configuration of a set U. Suppose that Q = {q1, . . . , qk} is
a non-empty set of configurations of U such that qi is not congruent to p, for all
1 ≤ i ≤ k. Let Fi be the set of (qi , p)-feasible points, 1 ≤ i ≤ k. Then R

d − ⋃k
i=1 Fi

is a non-empty open set.

Proof Let S = R
d − ⋃k

i=1 Fi . We claim that Fi is closed for all 1 ≤ i ≤ k, which
will imply that S is open. Let x j → x be a convergent sequence with x j ∈ Fi , j ∈ N,
and let y j be a (qi , p)-associate of x j . The set {y j : j ∈ N} is bounded. Hence there
exists a convergent subsequence y j� → y. Then y is a (qi , p)-associate of x , which
gives x ∈ Fi . This proves the claim.

In the rest of the proof we show that S is non-empty. Notice that |U | ≥ 2 must
hold. We shall prove the following stronger statement by induction on |U |: for every
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a ∈ U we have

S ∩ Aff(p(U − {a})) �= ∅. (1)

First suppose that |U | = 2, and let U = {a, b}. Then we have ||qi (a) − qi (b)|| �=
||p(a) − p(b)||, since qi and p are not congruent. Thus p(b) ∈ S and hence (1)
follows.

Next suppose that |U | ≥ 3. Let

Q′ = {q ∈ Q : p|U−{a} is not congruent to q|U−{a}},

and let Q′′ = Q − Q′. By putting F ′ = ⋃
qi∈Q′ Fi and F ′′ = ⋃

qi∈Q′′ Fi , we have

S = R
d − F ′ − F ′′. By induction, the set Aff(p(U − {a, b})) − F ′ is non-empty for

every b ∈ U − {a}. Since F ′ is closed, this implies that

Aff(p(U − {a})) − F ′ is non-empty and relatively open in Aff(p(U − {a})). (2)

We claim that for all qi ∈ Q′′ the set

Fi ∩ Aff(p(U − {a})) is either empty or a proper affine subspace of

Aff(p(U − {a})). (3)

To prove the claim, let qi ∈ Q′′. By replacing qi with π ◦qi , where π is an appropriate
isometry of R

d , we may assume that p|U−{a} = qi |U−{a}. Then it follows from the
incongruency of p and qi that p(a) �= qi (a). Suppose that x ∈ Aff(p(U − {a}))
and y is a (qi , p)-associate of x . Then there exists an isometry that fixes each point
of p(U − {a}) and maps x to y. This isometry fixes each point of Aff(p(U − {a})),
therefore, y = x . So the only possible (qi , p)-associate of x is x itself. It follows that
x is (qi , p)-feasible if and only if ||x − p(a)|| = ||x − qi (a)||, that is, if x is in the
bisector hyperplane H of p(a) and qi (a). Since qi and p are not congruent, we obtain
Aff(p(U − {a})) � H . This proves the claim.

The lemma follows by noting that (2) and (3) yield that the set S∩Aff(p(U−{a})) =(
Aff(p(U − {a})) − F ′) − F ′′ is non-empty, and hence (1) holds. 
�
Lemma 4.7 Let G = (V , E) be a graph, u, v ∈ V , and suppose that G[V0] is a
(u, v)-rigid subgraph of G. Let V1 be the vertex set of some component of G − V0.
Then {u, v} is weakly globally linked in G in R

d if and only if {u, v} is weakly globally
linked in G/V1 in R

d .

Proof Since G/V1 can be obtained from G by contracting edges not induced by V0,
the “if" direction follows by repeated applications of Lemma 4.1. To prove the “only
if" direction suppose that {u, v} is weakly globally linked in G and let (G, p) be a
generic realization ofG in which {u, v} is globally linked. Let v1 be the vertex ofG/V1
obtained by the contraction of V1 in G. We shall prove that p|V−V1 has an extension
to (V − V1) ∪ {v1} that is a generic realization of G/V1 in which {u, v} is globally
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linked. We may assume that {u, v} is not globally linked in (G − V1, p|V−V1), for
otherwise we are done by choosing an arbitrary generic extension.

Let q1, ..., qk be a maximal set of pairwise incongruent configurations of V0 such
that, for 1 ≤ i ≤ k, there exists some realization (G − V1, ri ) equivalent to (G −
V1, p|V−V1)with ri |V0 = qi and ||ri (u)−ri (v)|| �= ||p(u)− p(v)||. By our assumption
k ≥ 1. SinceG[V0] is rigid, p is generic and (G[V0], qi ) is equivalent to (G[V0], p|V0),
Proposition 2.1 implies that k is finite. For 1 ≤ i ≤ k, the configurations qi |NG (V1)

and p|NG (V1) are incongruent, for otherwise qi would be extendible to a configuration
q ′
i so that (G, q ′

i ) is equivalent to (G, p), contradicting the assumption that {u, v} is
globally linked in (G, p).

Applying Lemma 4.6 to NG(V1), p|NG (V1) and the set Q = {q1|NG (V1), . . . ,

qk |NG (V1)} gives that there is some x = (x1, . . . , xd) ∈ R
d for which x is not

(qi |NG (V1), p|NG (V1))-feasible for all i ∈ {1, . . . , k} and for which p(V − V1) ∪ {x}
is generic. We can now complete the proof of the lemma by considering the generic
realization (G/V1, p), where p|V−V1 = p|V−V1 and p(v1) = x . Then {u, v} is glob-
ally linked in (G/V1, p). Indeed, the existence of an equivalent realization (G/V1, q)

with ||q(u) − q(v)|| �= ||p(u) − p(v)|| would imply that q|V0 is congruent to qi for
some 1 ≤ i ≤ k and that x is (qi |NG (V1), p|NG (V1))-feasible, contradicting the choice
of x . 
�

By using the notation of Lemma 4.7, let e = s1s2 ∈ E be an edge with s1, s2 ∈ V1.
Applying the lemma to the graph G/e gives that {u, v} is weakly globally linked in
G/e if and only if it is weakly globally linked in G/V1. It follows that {u, v} is weakly
globally linked in G/e if and only if it is weakly globally linked in G; cf. Lemma 4.1.

5 Weakly Globally Linked Pairs in R
2

In this section we focus on the d = 2 case. Thus, we shall occasionally write that a
graph is (globally) rigid to mean that it is (globally) rigid in R

2, and we may similarly
omit the dimension when referring to global linkedness of vertex pairs in graphs. This
section contains one of our main results, a characterization of weakly globally linked
pairs in graphs.

5.1 Weakly Globally Linked Pairs in 3-Connected Graphs

We start with the special case of 3-connected graphs. By Lemma 3.3 it suffices to
consider non-adjacent linked pairs {u, v} of G, or equivalently, pairs {u, v} for which
there exists some subgraph G0 = (V0, E0) of G with u, v ∈ V0 such that G0 + uv is
an R2-circuit.

Theorem 5.1 Let G = (V , E) be a 3-connected graph and u, v ∈ V with uv /∈ E.
Suppose that G0 = (V0, E0) is a subgraph of G with u, v ∈ V0 such that G0+uv is an
R2-circuit. Then {u, v} is weakly globally linked inG inR

2 if and only ifClique(G, V0)
is globally rigid in R

2.
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Proof By Lemma 2.4, G[V0] is rigid, and thus sufficiency follows from Theorem 4.5.
To prove the other direction suppose, for a contradiction, that {u, v} is weakly globally
linked in G but Clique(G, V0) is not globally rigid. Since G0 + uv is redundantly
rigid, so is Clique(G, V0) + uv. The 3-connectivity of G implies that Clique(G, V0)
is 3-connected. Thus Clique(G, V0) + uv is globally rigid by Theorem 2.6. Hence
{u, v} is globally loose in Clique(G, V0) by Lemma 3.1. As G can be obtained from
Clique(G, V0) by clique sum operations and removing edges, Lemma 3.5 implies that
{u, v} is globally loose in G, a contradiction. 
�

5.2 Weakly Globally Linked Pairs and 2-Separators

In this subsection we shall prove some lemmas that describe, among others, howweak
global linkedness is affected when the graph is cut into two parts along a separating
pair of vertices. These lemmas will enable us to reduce the question of whether a
linked pair of vertices in a graph G is weakly globally linked to the case when G is
3-connected. We shall also need the following extension of [17, Corollary 5].

Lemma 5.2 Let G = (V , E) be a rigid graph, ab ∈ E an R2-bridge in G, and
u, v ∈ V . Suppose that G has no (u, v)-rigid proper induced subgraph. Then the
following hold.

(a) Every generic framework (G − ab, p) has a flexing that transforms it into a
framework (G − ab, q) such that ||p(a) − p(b)|| = ||q(a) − q(b)|| and ||p(u) −
p(v)|| �= ||q(u) − q(v)||.

(b) The pair {u, v} is globally loose in G.

Proof It is clear that (a) implies (b). To prove (a) consider a minimally rigid spanning
subgraph H = (V , B) of G. Since ab is an R2-bridge, we have ab ∈ B. The graph
H +uv contains a uniqueR2-circuitC with u, v ∈ V (C). Since G has no (u, v)-rigid
proper induced subgraph, C = H + uv must hold. Let (G − ab, p) be a generic
framework. By [17, Lemma 11] the framework (H − ab, p) has a flexing π that
transforms it into a framework (H−ab, q) such that ||p(a)− p(b)|| = ||q(a)−q(b)||
and ||p(u) − p(v)|| �= ||q(u) − q(v)||. We claim that π is a flexing of (G − ab, p) as
well. Consider an edge xy ∈ E − B. Since H is rigid, xy belongs to anR2-circuit C ′
of H + xy. Moreover, ab is an R2-bridge in G (as well as in its subgraph H + xy),
and hence C ′ does not contain ab. Thus there is a rigid subgraph of H − ab (namely,
C ′ − xy), which contains x and y. Hence π does not change the distance between x
and y, which completes the proof. 
�
Lemma 5.3 Let G = (V , E) be a rigid graph, let z ∈ V with NG(z) = {x, y}, and
let u, v ∈ V − {z}. Then {u, v} is weakly globally linked in G − z + xy if and only if
{u, v} is weakly globally linked in G.

Proof Let G1 = G − z + xy. Observe that G1 is isomorphic to G/zx . Since G − z
is rigid, we can use Lemma 4.1 to deduce that if {u, v} is weakly globally linked in
G1, then {u, v} is weakly globally linked in G. To prove the other direction suppose
that {u, v} is weakly globally linked in G. Then it is also weakly globally linked in
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Fig. 4 The case where G[V0]
has no (u, v)-rigid subgraph

G + xy. Since G + xy is the clique sum of G1 and a copy of K3, Lemma 3.5 implies
that {u, v} is weakly globally linked in G1. 
�

A pair (a, b) of vertices of a 2-connected graph H = (V , E) is called a 2-separator
if H − {a, b} is disconnected.
Lemma 5.4 Let G = (V , E) be a rigid graph with |V | ≥ 4 and (a, b) be a 2-separator
in G. Let C be a connected component of G − {a, b} and let V0 = V (C) ∪ {a, b}.
Suppose that u, v ∈ V0. Then {u, v} is weakly globally linked in G if and only if {u, v}
is weakly globally linked in G[V0] + ab.

Proof If {u, v} is weakly globally linked in G, then it is easy to see, by using
Lemma 3.5, that {u, v} is weakly globally linked in G[V0] + ab.

To prove that if {u, v} is weakly globally linked in G[V0] + ab, then {u, v} is
weakly globally linked in G, we use induction on |V |. If |V | = 4, then we must have
G = K4 − e and uv ∈ E , so the statement is obvious. Suppose that |V | ≥ 5. If there
exists a (u, v)-rigid subgraph of G[V0], then, since G[V0] + ab can be obtained from
G by a sequence of edge contractions, we can use Lemma 4.1 to deduce that {u, v} is
weakly globally linked in G. So in the rest of the proof we may assume that

G[V0] has no (u, v) − rigid subgraph. (4)

In particular, G[V0] is not rigid. Hence, by the rigidity of G, it follows that {a, b} is
not linked in G[V0] and ab is anR2-bridge in G[V0] + ab.

Since {u, v} is weakly globally linked in G[V0] + ab, Lemma 5.2(b) implies that
there exists a (u, v)-rigid proper induced subgraph G ′ = (V ′, E ′) of G[V0] + ab.
Suppose that G ′ is vertex-minimal. By (4) we obtain ab ∈ E ′ and a, b ⊂ V ′. We
consider three cases depending on the structure of G[V0] − V ′. Since G ′ is a proper
induced subgraph, we have V0 − V ′ �= ∅. See Fig. 4.
Case 1: G[V0] − V ′ has a component Z with |V (Z)| ≥ 2.

By Lemma 4.7 {u, v} is weakly globally linked in (G[V0] + ab)/Z . Since G and
G ′ are rigid, G − V (Z) is also rigid, and Z has at least two neighbours in G. Hence
G/Z is rigid. Thus we obtain, by induction, that {u, v} is weakly globally linked in
G/Z . By using that G−V (Z) is rigid, Lemma 4.7 gives that {u, v} is weakly globally
linked in G.
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Case 2: Each component of G[V0] − V ′ is a singleton and there exists a vertex
z ∈ V0 − V ′ with dG(z) = 2.

Let NG(z) = {x, y}. By Lemma 5.3 {u, v} is weakly globally linked in (G[V0] +
ab) − z + xy. If {u, v} = {a, b} and |V0| = 3, then {u, v} is weakly globally linked in
G by Lemma 4.1. So we may assume that |V0| ≥ 4, and hence (a, b) is a 2-separator
of the rigid graph G− z+ xy. Hence {u, v} is weakly globally linked in G− z+ xy by
induction. By using that G is rigid, Lemma 5.3 implies that {u, v} is weakly globally
linked in G.
Case 3: Each component of G[V0] − V ′ is a singleton and for each z ∈ V0 − V ′ we
have dG(z) ≥ 3.

We claim that for each z ∈ V0 − V ′ and x, y ∈ NG(z) there is a rigid subgraph
of G ′ − ab which contains x and y. To see this let w be another neighbour of z,
different from x, y, and let G ′′ be obtained from G ′ − ab by adding vertex z and
edges zx, zy, zw. The three edges incident with z inG ′′ cannot beR2-bridges, since it
would imply, by using the rigidity of G ′ and computing ranks, that G ′′ is (u, v)-rigid,
contradicting (4). Thus there is an R2-circuit C in G ′′ containing z. Then C must
contain x and y, too, and C − z is a rigid subgraph of G ′ − ab which contains x and
y, as claimed.

The minimality of G ′ implies that it has no (u, v)-rigid proper induced subgraph.
Let (G[V0] + ab, p) be a generic realization. By Lemma 5.2(a) (G ′ − ab, p|V ′) has
an equivalent realization (G ′ − ab, q), for which ||p(u) − p(v)|| �= ||q(u) − q(v)||,
||p(a)− p(b)|| = ||q(a)−q(b)||, and such that the distances between the linked pairs
of G ′ −ab are the same in the two realizations. Then, since each pair of neighbours of
every z ∈ V0 − V ′ is linked in G ′ − ab, it follows that (G ′ − ab, q) can be extended
to a realization (G[V0] + ab, q ′) that is equivalent to (G[V0] + ab, p). Hence {u, v}
is globally loose in G[V0] + ab, a contradiction. This completes the proof. 
�

We next extend Lemma 5.4 from rigid graphs to 2-connected graphs.

Lemma 5.5 LetG = (V , E)bea2-connectedgraphand {u, v}a linkedpair of vertices
of G. Suppose that (a, b) is a 2-separator of G. Let C be a connected component of
G−{a, b}, and let V0 = V (C)∪{a, b}. Suppose that u, v ∈ V0. Then {u, v} is weakly
globally linked in G if and only if {u, v} is weakly globally linked in G[V0] + ab.

Proof If {u, v} is weakly globally linked in G, then it follows from Lemma 3.5 that
{u, v} is weakly globally linked in G[V0] + ab. To prove the “if" direction suppose
that {u, v} is weakly globally linked in G[V0]+ ab. Since {u, v} is a linked pair, there
is a (u, v)-rigid induced subgraph G[U ] of G. If {a, b} � U , then U is a subset of V0
and G[V0] + ab can be obtained from G by contracting edges which are not induced
by U . Thus {u, v} is weakly globally linked in G by Lemma 4.1. So we may suppose
that {a, b} ⊆ U . Let A1, . . . , Ak be the components of G −U contained in V0, and let
B1, . . . , Bl be the components of G−U not contained in V0. Observe that the rigidity
of G[U ] and the 2-connectivity of G imply that G/A1/ . . . /Ak/B1/ . . . /Bk is rigid.
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Hence we have that

{u, v} is weakly globally linked in G

⇔ {u, v} is weakly globally linked in G/A1/ . . . /Ak/B1/ . . . /Bk

⇔ {u, v} is weakly globally linked in G[V0]/A1/ . . . /Ak + ab

⇔ {u, v} is weakly globally linked in G[V0] + ab,

where the first and third equivalence follows from Lemma 4.7 and the second equiv-
alence follows from Lemma 5.4, using the rigidity of G/A1/ . . . /Ak/B1/ . . . /Bk .


�
The next lemma on the weak global linkedness of linked separating pairs follows

from Lemma 5.5 by putting {a, b} = {u, v}. It can also be deduced from Lemma 4.1
by using that there is some component C of G − {u, v} for which {u, v} is linked in
G[V (C) ∪ {u, v}].
Lemma 5.6 Let G = (V , E) be a 2-connected graph, and u, v ∈ V be a linked pair of
vertices for which (u, v) is a 2-separator in G. Then {u, v} is weakly globally linked
in G.

We use the following operation to eliminate 2-separators. Let G = (V , E) be a 2-
connected graph, let (a, b) be a 2-separator in G, and let C be a connected component
of G − {a, b}. We say that the graph G[V (C) ∪ {a, b}] + ab (when ab /∈ E) or
G[V (C) ∪ {a, b}] (when ab ∈ E) is obtained from G by a cleaving operation along
(a, b). The graph Ḡ obtained from G by adding every edge ab, for which ab /∈ E and
(a, b) is a 2-separator of G, is called the augmented graph of G.

The following lemma is easy to show by induction, using the cleaving operation.

Lemma 5.7 Let G = (V , E) be a 2-connected graph and let {u, v} be a non-adjacent
vertex pair in G with κG(u, v) ≥ 3. Then either (u, v) is a separating pair in G or there
is a unique maximal 3-connected subgraph B of Ḡ with {u, v} ⊂ V (B). In the latter
case the subgraph B can be obtained from G by a sequence of cleaving operations.
Furthermore, uv /∈ E(B), and if the pair {u, v} is linked in G then it is also linked in
B.

The subgraph B in Lemma 5.7 is called the 3-block of {u, v} in G.
We are ready to state the main result of this section: a complete characterization

of the non-adjacent weakly globally linked pairs in a graph G. By Lemma 3.3 and
Lemma 3.4 wemay assume that {u, v} is linked and κG(u, v) ≥ 3 (for otherwise {u, v}
is globally loose). By Lemma 3.5 we may also assume that G is 2-connected.

Theorem 5.8 Let G = (V , E) be a 2-connected graph and let {u, v} be a non-adjacent
linked pair of vertices with κG(u, v) ≥ 3. Then {u, v} is weakly globally linked in G
if and only if either

(i) (u, v) is a separating pair in G, or
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Fig. 5 Consider the graph G. The pair {u, v} is linked in G, as there is a (u, v)-rigid subgraph of G, and
we have κG (u, v) = 3. B is the 3-block of {u, v} in G. Consider the subgraph B0 = (V0, E0) of B that
is induced by the solid vertices. B0 + uv is an R2-circuit. Since Clique(B, V0) is globally rigid, {u, v} is
weakly globally linked in G by Theorem 5.8

(ii) Clique(B, V0) is globally rigid,
where B is the 3-block of {u, v} in G, and B0 = (V0, E0) is a subgraph of B with
u, v ∈ V0 such that B0 + uv is an R2-circuit.

Proof The proof is by induction on the number h of vertex pairs x, y ∈ V with
κG(x, y) = 2. If h = 0, then B = G and (ii) holds by Theorem 5.1. Suppose that
h ≥ 1 and let (a, b) be a 2-separator in G. If {a, b} = {u, v} then Lemma 5.6 applies
and (i) holds. Otherwise we can use Lemmas 5.5, 5.7, and induction, to complete the
proof. 
�

See Fig. 5 for an illustration of Theorem 5.8.
Further structural results on weakly globally linked pairs can be found in [20].

6 Concluding Remarks

6.1 Algorithmic Aspects

Theorem 5.8 and its proof shows that weak global linkedness of a vertex pair {u, v}
in a graph G = (V , E) can be tested in O(|V |2) time, as efficient algorithms are
available for each of the required subroutines. Basic graph algorithms can be used to
test, in linear time, whether κG(u, v) ≥ 3 holds and to find the maximal 2-connected
block that contains u, v. After reducing the problem to the 2-connected case, the linear
time algorithm of [14] can be applied to check whether (u, v) is a separating pair and
(when it is not) to identify the 3-block B of {u, v}. (Note that B coincides with one
of the so-called cleavage units of G.) Computing Clique(G, X) for a given X ⊆ V is
also easy.

Testing whether {u, v} is linked, and (when it is linked) finding an R2-circuit of
G + uv containing uv can be done in O(|V |2) time [2]. Within the same time bound,
we can test whether a graph is globally rigid, see, e.g., [2, 23].
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6.2 Higher Dimensions

For d ≥ 3, a pair {u, v} may be linked in a graph G0 in R
d , even if G0 contains no

(u, v)-rigid subgraph. Thus the following statement, suggested by D. Garamvölgyi, is
an extension of Lemma 4.1.

Lemma 6.1 Let G = (V , E) be a graph, u, v ∈ V0 ⊆ V , and suppose that {u, v} is
linked in G[V0] in R

d . Let e ∈ E − E(G[V0]) be an edge. If {u, v} is weakly globally
linked in G/e in R

d , then {u, v} is weakly globally linked in G in R
d .

The proof of Lemma 6.1 is essentially the same as that of Lemma 4.1; the only
change required is to substitute Lemma 6.2 below for Proposition 2.1. For the defini-
tions of the new notions appearing in the next proof, see, e.g., [21, 29].

Lemma 6.2 Let {u, v} be a linked pair in a graph G in R
d and let (G, p) be a generic

realization of G in R
d . Then the set

{||q(u) − q(v)|| : (G, q) is equivalent to (G, p)}

is finite.

Proof Suppose, for a contradiction, that there exists an infinite sequence of frameworks
(G, qi ), i ≥ 1, equivalent to (G, p), inwhich the distances ||qi (u)−qi (v)|| are pairwise
different. We may assume that G is connected and qi (u) is the origin for all i ≥ 1.
Then each (G, qi ) is in the interior of a ball of radius K , for some constant K . Thus,
by choosing a subsequence, if necessary, we may assume that (G, qi ) is convergent,
with limit (G, q).

It was proved in [3] that if two frameworks are equivalent and at least one of them
is generic, then their equilibrium stresses are the same.

(For a proof, see also [25, Lemma 15.24].) Thus (G, p) and (G, q) have the same
equilibrium stresses. In particular, the rank of the rigidity matrix of (G, q) is equal to
the maximum (generic) rank of G. This fact and the linkedness of {u, v} imply that the
ranks of the rigidity matrices of (G + uv, q) and (G, q) are the same. So their kernels
are the same, too. Thus every infinitesimal motion x : V → R

d of (G, q) satisfies
(q(u) − q(v))T (x(u) − x(v)) = 0. By continuity this holds for all frameworks in a
small enough neighbourhood of (G, q).

Consider the frameworks q ′
i = (qi+1 + qi )/2, which converge to q. Let xi =

(qi+1 − qi ). The well-known averaging technique shows that for vertices a, b ∈ V ,

(q ′
i (a) − q ′

i (b))
T (xi (a) − xi (b)) = 0 ⇔ ||qi+1(a) − qi+1(b)|| = ||qi (a) − qi (b)||.

(For a proof see, e.g., [5, Theorem 13].) Hence, xi is an infinitesimal motion of q ′
i with

(q ′
i (u) − q ′

i (v))T (xi (u) − xi (v)) �= 0, for all i ≥ 1, a contradiction. 
�
We obtain the following corollary of Lemma 6.1.

Corollary 6.3 Let G = (V , E) be a graph, u, v ∈ V0 ⊆ V , and suppose that {u, v} is
linked in G[V0] in R

d . Suppose that there is a uv-path in G that is internally disjoint
from V0. Then {u, v} is weakly globally linked in G in R

d .

123



Combinatorica

For a recent application of Corollary 6.3, see [31].

6.3 Minimally Globally Rigid Graphs

A graph G = (V , E) is called minimally globally rigid in R
d if it is globally rigid in

R
d and for every edge e ∈ E the graph G− e is not globally rigid in R

d . Garamvölgyi
and Jordán [9, Theorem 3.3] proved that if G = (V , E) is minimally globally rigid in
R
d and |V | ≥ d + 1, then

|E | ≤ (d + 1)|V | −
(
d + 2

2

)
.

Moreover, as it is noted in [9], for every globally rigid graph G in R
d on at least

d + 1 vertices, and for every minimally rigid spanning subgraph G0 of G, there
exists a globally rigid spanning subgraph of G that contains G0 and has at most
(d + 1)|V | − (d+2

2

)
edges.

The authors also conjectured that a minimally globally rigid graph in R
d is in

fact Rd+1-independent, see [9, Conjecture 4.2]. The truth of this conjecture would
imply that a minimally globally rigid graph G = (V , E) in R

d is not only sparse,
but every subgraph of G is sparse: for each U ⊆ V with |U | ≥ d + 1 we have
|E(U )| ≤ (d + 1)|U | − (d+2

2

)
.

Next, we prove this upper bound in the special case when the subgraph induced by
U is rigid.

Theorem 6.4 Let G = (V , E) be a minimally globally rigid graph in R
d . Suppose

that U ⊆ V , |U | ≥ d + 1 and G[U ] is rigid. Then |E(U )| ≤ (d + 1)|U | − (d+2
2

)
.

Proof Let G0 = (U , E0) be a minimally rigid spanning subgraph of G[U ]. Since G
is globally rigid, so is Clique(G,U ). Thus, by the results of [9], there is a globally
rigid spanning subgraph G ′ = (U , E ′) of Clique(G,U ) that contains G0 and has
at most (d + 1)|U | − (d+2

2

)
edges. Suppose, for a contradiction, that there is some

edge e = uv ∈ E(U ) − E ′. Note that G[U ] − e is rigid. Then G ′ is a subgraph of
Clique(G − e,U ), and hence {u, v} is weakly globally linked in G − e by Theorem
4.5. Since e is critical in G, this contradicts Lemma 3.1. It follows that G[U ] is a
subgraph of G ′; therefore |E(U )| ≤ |E ′| ≤ (d + 1)|U | − (d+2

2

)
. 
�

For d = 2 we can extend Theorem 6.4 to all subsetsU ⊆ V with |U | ≥ d + 1, see
[9, Theorem 4.7]. Here we give a short new proof of this statement.

Theorem 6.5 [9] Let G = (V , E) be a minimally globally rigid graph in R
2. Suppose

that U ⊆ V and |U | ≥ 3. Then |E(U )| ≤ 3|U | − 6.

Proof By Theorem 6.4 the statement is true if G[U ] is rigid. Suppose that G[U ] is not
rigid, that is, r2(G[U ]) ≤ 2|U |−4.Wemay assume thatG[U ] has no isolated vertices.
It is well-known (see, e.g., [18]) that for the collection Gi = (Vi , Ei ), 1 ≤ i ≤ k, of
the maximal rigid subgraphs of G[U ] we have ∑k

i=1(2|Vi | − 3) = r2(G[U ]). For an
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integer h ≥ 2 let f (h) = 3h−6, if h ≥ 3, and let f (h) = 1 otherwise. Then we have

|E(U )| =
k∑

i=1

|Ei | ≤
k∑

i=1

f (|Vi |) ≤
k∑

i=1

3

2
(2|Vi | − 3) = 3

2
r2(G[U ]) ≤ 3|U | − 6,

where the first inequality follows from Theorem 6.4. 
�
Recently, the d-dimensional version of Theorem 6.5 was proved by Garamvölgyi

[6]. In that paper Garamvölgyi introduced stress-linked vertex pairs of graphs, building
upon the concepts of [3, 12]. He proved that stress-linkedness in R

d implies global
linkedness in R

d and conjectured that the converse is also true. He also gave a combi-
natorial characterization of stress-linked pairs in R

2, which matches the conjectured
characterization of globally linked pairs in R

2 proposed in [16].
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