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Abstract
We prove that every additive set A with energy E(A) ≥ |A|3/K has a subset A′ ⊆ A
of size |A′| ≥ (1−ε)K−1/2|A| such that |A′ − A′| ≤ Oε(K 4|A′|). This is, essentially,
the largest structured set one can get in the Balog–Szemerédi–Gowers theorem.
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1 Introduction

An additive set is a nonempty finite subset of an abelian group. The energy of an
additive set A is defined to be the number E(A) of quadruples (a1, a2, a3, a4) ∈ A4

solving the equation a1 + a2 = a3 + a4. An easy counting argument shows

E(A) =
∑

d∈A−A

rA−A(d)2 , (1.1)

where rA−A(d) indicates the number of representations of d as a difference of two
members of A. So the Cauchy–Schwarz inequality yields E(A) ≥ |A|4/|A− A| and,
in particular, every additive set A with small difference set A − A contains a lot of
energy. In the converse direction Balog and Szemerédi [2] proved that large energy
implies the existence of a substantial subset whose difference set is small. After several
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quantitative improvements (see e.g.,Gowers [3] andBalog [1]) the hitherto best version
of this result was obtained by the second author [4].

Theorem 1.1 Given a real K ≥ 1 every additive set A with energy E(A) ≥ |A|3/K
has a subset A′ ⊆ A of size |A′| ≥ �(|A|/K ) such that |A′ − A′| ≤ O(K 4|A′|). ��

When investigating the question how a quantitatively optimal version of this result
might read, there are two different directions one may wish to pursue. First, there is
the obvious problemwhether the exponent 4 can be replaced by some smaller number.
Second, one may try to find “the largest” set A′ ⊆ A such that |A′ − A′| ≤ OK (|A′|)
holds. As the following example demonstrates, there is no absolute constant ε� > 0
such that |A′| ≥ (1 + ε�)K−1/2|A| can be achieved in general.

Fix an arbitrary natural number n. For a very large finite abelian group G we
consider the additive set

A = {
(g1, . . . , gn) ∈ Gn : there is at most one index i such that gi 	= 0

}

whose ambient group is Gn . Obviously we have

|A| = |G|n + On(1) and E(A) = |A|3/n2 + On(|A|2),

so the real number K satisfying E(A) = |A|3/K is roughlyn2.However, every A′ ⊆ A
of size |A′| ≥ (1+ε)|G| satisfies |A′ − A′| ≥ ε2|G|2. Our main result implies that this
is, in some sense, already the worst example. More precisely, for every fixed ε > 0
the Balog-Szemerédi-Gowers theorem holds with |A′| ≥ (1 − ε)K−1/2|A|. Perhaps
surprisingly, we can also reproduce the best known factor K 4.

Theorem 1.2 Given real numbers K ≥ 1, ε ∈ (0, 1/2), and an additive set A with
energy E(A) ≥ |A|3/K there is a subset A′ ⊆ A such that

|A′| ≥ (1 − ε)K−1/2|A| and |A′ − A′| ≤ 233ε−9K 4|A′| = Oε(K
4|A′|).

Our proof has two main cases and in one of them (see Lemma 3.1 below) we even
get the stronger bound |A′ − A′| ≤ Oε(K 3|A′|). It would be interesting to prove this
in the second case as well. Using examples of the form A = {x ∈ Z

d : ‖x‖ ≤ R}
one can show that the exponent 4 cannot be replaced by any number smaller than
log(4)/ log(27/16) ≈ 2.649 (see [5]).

2 Preliminaries

This section discusses two auxiliary results we shall require for the proof of Theo-
rem 1.2. The first of them is similar to [6, Lemma 6.19].

Lemma 2.1 If δ, ξ ∈ (0, 1] and R ⊆ A2 denotes a binary relation on a set A such that
|R| ≥ δ|A|2, then there is a set A′ ⊆ A of size |A′| ≥ δ(1− ξ)|A| which possesses the
following property: For every pair (a1, a2) ∈ A′2 there are at least 2−7δ4ξ4|A|2|A′|
triples (x, b, y) ∈ A3 such that (a1, x), (b, x), (b, y), (a2, y) ∈ R.
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Proof Set N (x) = {a ∈ A : (a, x) ∈ R} for every x ∈ A. Since
∑

x∈A |N (x)| =
|R| ≥ δ|A|2, the Cauchy–Schwarz inequality yields

∑

x∈A

|N (x)|2 ≥ δ2|A|3 . (2.1)

Setting K (a, a′) = {x ∈ A : a, a′ ∈ N (x)} for every pair (a, a′) ∈ A2 and

� = {
(a, a′) ∈ A2 : |K (a, a′)| ≤ δ2ξ2|A|/8}

a double counting argument yields

∑

x∈A

|N (x)2 ∩ �| =
∑

(a,a′)∈�

|K (a, a′)| ≤ δ2ξ2|A||�|/8 ≤ δ2ξ2|A|3/8.

Together with (2.1) we obtain

∑

x∈A

(|N (x)|2 − 8ξ−1|N (x)2 ∩ �|) ≥ δ2(1 − ξ)|A|3

and, hence, there exists some x� ∈ A such that the set A� = N (x�) satisfies

|A�|2 − 8ξ−1|A2
� ∩ �| ≥ δ2(1 − ξ)|A|2 . (2.2)

We shall prove that the set

A′ = {a ∈ A� : the number of all a′ ∈ A� with (a, a′) ∈ � is at most |A�|/4}

has all required properties. By (2.2) we have

|A� � A′||A�|/4 ≤ |A2
� ∩ �| ≤ ξ |A�|2/8,

for which reason

|A′| ≥ (1 − ξ/2)|A�| ≥ (1 − ξ)1/2|A�|
(2.2)≥ δ(1 − ξ)|A|,

meaning that A′ is indeed sufficiently large. To conclude the proof we need to show

∑

b∈A

|K (a1, b) × K (b, a2)| ≥ 2−7δ4ξ4|A|2|A′|

for every pair (a1, a2) ∈ A′2. This follows from the fact that due to the definition of
A′ there are at least |A�|/2 elements b ∈ A� such that the sets K (a1, b) and K (b, a2)
both have at least the size δ2ξ2|A|/8. ��
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Lemma 2.2 Suppose that the real numbers x1, . . . , xn ∈ [0, 1] do not vanish simulta-
neously. Denote their sum by S and the sum of their squares by T . For every α ∈ (0, 1)
there exists a set I ⊆ [n] such that

∑

i∈I
xi ≥ max

{
αT ,

(
(1 − α)5|I |4T 4

210S2

)1/6
}

.

Proof For reasons of symmetry we may assume x1 ≥ · · · ≥ xn . Set Si = ∑i
j=1 x j

for every nonnegative i ≤ n. Due to T ≤ x1S and x1 ≤ 1 we have T ≤ S = Sn and
thus there exists a smallest index k ∈ [n] satisfying Sk ≥ αT . Notice that

k−1∑

i=1

x2i ≤
k−1∑

i=1

xi = Sk−1 ≤ αT .

Moreover x1 ≥ T /S implies the existence of a largest index � such that x� ≥ (1 −
α)T /(2 S). Due to

n∑

i=�+1

x2i ≤ (1 − α)T

2S

n∑

i=�+1

xi ≤ (1 − α)T

2
,

we have
�∑

i=k

x2i ≥ (1 − α)T

2
, (2.3)

whence, in particular, � ≥ k. Next,

�

(
(1 − α)T

2S

)2

≤
�∑

i=1

x2i ≤ T

entails
(1 − α)2�T ≤ 4S2 . (2.4)

Now assume for the sake of contradiction that our claim fails. Every i ∈ [k, �]
satisfies Si ≥ Sk ≥ αT and thus the failure of I = [i] discloses

Si <

(
(1 − α)5i4T 4

210S2

)1/6

.

Combined with i xi ≤ Si this entails

�∑

i=k

x2i ≤
(

(1 − α)5T 4

210S2

)1/3 �∑

i=k

i−2/3.
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In view of (2.3) we are thus led to

(
27S2

(1 − α)2T

)1/3

≤
�∑

i=k

i−2/3 ≤
∫ �

0
x−2/3dx = 3�1/3,

i.e., 27S2 ≤ 27(1 − α)2�T , which contradicts (2.4). ��

3 The proof of Theorem 1.2

Let us fix two real numbers K ≥ 1 and ε ∈ (0, 1/2) as well as an additive set A
satisfying E(A) ≥ |A|3/K . We consider the partition

A − A = P ∪· Q

defined by

P = {
d ∈ A − A : rA−A(d) ≥ K−1/2|A|}

and Q = {
d ∈ A − A : rA−A(d) < K−1/2|A|} .

According to (1.1) at least one of the cases

∑

d∈P

rA−A(d)2 ≥ ε|A|3
4K

or
∑

d∈Q
rA−A(d)2 ≥ (4 − ε)|A|3

4K
(3.1)

needs to occur and we begin by analysing the left alternative.

Lemma 3.1 If
∑

d∈P rA−A(d)2 ≥ ε|A|3/(4K ), then there exists a set A′ ⊆ A of size
|A′| ≥ (1 − ε)K−1/2|A| such that |A′ − A′| ≤ 210ε−4K 3|A′|.
Proof For every difference d ∈ P we set Ad = A ∩ (A+ d). Due to |Ad | = rA−A(d)

the hypothesis implies ∑

d∈P

|Ad |2 ≥ ε|A|3/(4K ) . (3.2)

For every pair (x, y) ∈ A2 the set L(x, y) = {d ∈ P : x, y ∈ Ad} has at most
the cardinality |L(x, y)| ≤ rA−A(x − y), because every difference d ∈ L(x, y)
corresponds to its own representation x − y = (x − d) − (y − d) of x − y as a
difference of two members of A. Applying this observation to all pairs in

	 = {
(x, y) ∈ A2 : rA−A(x − y) ≤ ε2|A|/(16K )

}

we obtain

∑

d∈P

|A2
d ∩ 	| =

∑

(x,y)∈	

|L(x, y)| ≤
∑

(x,y)∈	

rA−A(x − y) ≤ ε2|A||	|
16K

≤ ε2|A|3
16K

.
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Together with (3.2) this yields

∑

d∈P

(
ε|A2

d | − 4|A2
d ∩ 	|) ≥ 0

and, consequently, for some element d(�) ∈ P the set A� = Ad(�) satisfies |A2
� ∩	| ≤

ε|A�|2/4. We contend that the set

A′ = {
a ∈ A� : There are at most |A�|/4 pairs of the form (a, x) in 	

}

has the required properties. As in the proof of Lemma 2.1 we obtain

|A′| ≥ (1 − ε)|A�| = (1 − ε)rA−A(d(�)) ≥ (1 − ε)K−1/2|A|;

so it remains to derive the required upper bound on |A′ − A′|.
To this end we consider an arbitrary pair (a, a′) of elements of A′. Owing to the

definition of A′ there are at least |A�|/2 elements x ∈ A� such that (a, x) /∈ 	 and
(a′, x) /∈ 	. For each of them we have a − a′ = (a − x) − (a′ − x), there are at least
ε2|A|/(16K ) pairs (a1, a2) ∈ A2 solving the equation a − x = a1 − a2 and at least
the same number of pairs (a3, a4) ∈ A2 such that a′ − x = a3 − a4. Altogether there
are at least

ε4|A|2|A�|/(29K 2) ≥ 2−9ε4K−5/2|A|3

possibilities of writing a − a′ = (a1 − a2) − (a3 − a4) and for this reason we have

|A′ − A′| ≤ |A|4
2−9ε4K−5/2|A|3 = 29ε−4K 5/2|A| ≤ 210ε−4K 3|A′|.

��
We conclude the proof of Theorem 1.2 by taking care of the right case in (3.1).

Lemma 3.2 If
∑

d∈Q rA−A(d)2 ≥ (1− ε/4)|A|3/K, then there is a set A′ ⊆ A of size

|A′| ≥ (1 − ε)K−1/2|A| such that |A′ − A′| ≤ 233ε−9K 4|A′|.
Proof Let Q = {d1, . . . , d|Q|} enumerate Q. By the definition of Q there are real
numbers x1, . . . , x|Q| ∈ [0, 1] such that

rA−A(di ) = xi K
−1/2|A| holds for every i ∈ [|Q|].

Owing to
∑

d∈A−A rA−A(d) = |A|2 and the hypothesis we have

|Q|∑

i=1

xi ≤ K 1/2|A| as well as
|Q|∑

i=1

x2i ≥ (1 − ε/4)|A|.
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By Lemma 2.2 applied with α = 1− ε/4 there exist an index set I ⊆ [|Q|] such that
∑

i∈I
xi ≥ max

{
(1 − ε/2)|A|, (2−21ε5K−1|I |4|A|2)1/6

}
. (3.3)

Now we set Q′ = {di : i ∈ I }, consider the relation

R = {(a1, a2) ∈ A2 : a1 − a2 ∈ Q′}

and define δ ∈ (0, 1] by |R| = δ|A|2. Due to

δ = |A|−2
∑

i∈I
rA−A(di ) = 1

K 1/2|A|
∑

i∈I
xi

the bounds in (3.3) imply both

δ ≥ (1 − ε/2)K−1/2 and
|I |4

δ6|A|4 ≤ 221ε−5K 4 . (3.4)

By Lemma 2.1 applied to ξ = ε/2 and R there exists a set A′ ⊆ A of size

|A′| ≥ (1 − ε/2)δ|A| ≥ (1 − ε)K−1/2|A|

such that for every pair (a1, a2) ∈ A′2 there are at least 2−11ε4δ4|A|2|A′| triples
(x, b, y) ∈ A3 with (a1, x), (b, x), (b, y), (a2, y) ∈ R. Due to the equation

(a1 − a2) = (a1 − x) − (b − x) + (b − y) − (a2 − y)

this means that every difference a1 − a2 ∈ A′ − A′ has at least 2−11ε4δ4|A|2|A′|
representations of the form q1 − q2 + q3 − q4 with q1, q2, q3, q4 ∈ Q′, whence

|A′ − A′| ≤ |Q′|4
2−11ε4δ4|A|2|A′|

(3.4)≤ 232ε−9K 4(δ|A|/|A′|)2|A′|.

Due to |A′| ≥ (1 − ε/2)δ|A| ≥ δ|A|/√2 the result follows. ��
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