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Abstract
In this paper we study the fundamental problem of finding small dense subgraphs
in a given graph. For a real number s > 2, we prove that every graph on n vertices
with average degree d ≥ s contains a subgraph of average degree at least s on at
most nd− s

s−2 (log d)Os (1) vertices. This is optimal up to the polylogarithmic factor,
and resolves a conjecture of Feige and Wagner. In addition, we show that every graph

with n vertices and average degree at least n1− 2
s +ε contains a subgraph of average

degree at least s on Oε,s(1) vertices, which is also optimal up to the constant hidden
in the O(.) notation, and resolves a conjecture of Verstraëte.

Keywords Densest subgraph · Small subgraph · Average degree

1 Introduction

Given a graph G and a parameter k, the densest k-subgraph problem asks to find
a k-vertex subgraph of G of maximum average degree. This is one of the central
problems in theoretical computer science. It is NP-hard, and has no polynomial-time
approximation scheme (PTAS) under certain complexity theoretic assumptions [13,
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23]. On the other hand, the currently best known approximation algorithm achieves
an O(n1/4)-approximation [3]. There is a vast literature on this topic, see, for example
[4, 6, 29] and their references.

In addition to the algorithmic perspective, another natural direction for the above
problem is to understand the maximum density of the small subgraphs of a given
graphwhich one can theoretically guarantee. The precise problemunder consideration,
proposed by Feige andWagner [15], is that given a positive integer n and real numbers
d, s satisfying d ≥ s ≥ 2, what is the minimum of t = t(n, d, s) such that every graph
G on n vertices with average degree at least d contains a subgraph of average degree
at least s on at most t vertices. Note that this question is essentially equivalent to
determining the smallest possible average degree of the densest t-vertex subgraph of
an n-vertex graphwith average degree at least d. The problem also falls squarelywithin
the context of the so called local–global principle, that states that one can obtain global
understanding of a structure from having a good understanding of its local properties,
or vice versa. This phenomenon has been ubiquitous in many areas of mathematics
and beyond, see e.g. [2, 7, 17, 24].

The question of Feige and Wagner, in the case s = 2, is equivalent to the famous
girth problem [12], that asks for the length of the shortest cycle in a graph on n vertices
with average degree d. This problem is extensively studied, and using our notation, it
is well known that t(n, d, 2) = �(logd−1 n) (see e.g. [5], page 104, Theorems 1.1 and
1.2). However, it is a major open problem to determine the leading coefficient (see,
e.g., [25–27]). Much less is known if s > 2. A simple probabilistic argument gives
the following result.

Proposition 1.1 For every s > 2, there is a positive cs such that for all s ≤ d ≤ n−1,
we have t(n, d, s) ≥ csnd

− s
s−2 . In other words, for every s ≤ d ≤ n − 1, there is an

n-vertex graph G with average degree at least d in which every subgraph with average
degree at least s has at least csnd

− s
s−2 vertices.

Feige and Wagner [15, Conjecture 1.4] proposed the conjecture that this lower
bound on t(n, d, s) is optimal, up to polylogarithmic factors in n. In the special case
s ≈ 4, they also proved certain results in the support of it. First, they showed that if
ε > 0 and s = 4−ε, then t(n, d, s) = Oε(nd−2). Second, theyproved that t(n, d, 4) =
Oε(nd−1.8+ε) for every ε > 0. Also, Alon and Hod (personal communication) proved
the aforementioned conjecture for certain special values of s and a limited range of
d. Here, we completely settle the conjecture of Feige and Wagner with the following
theorem (which is even stronger as the error term is logarithmic in d instead of n).
Here and below, logarithms are to base two.

Theorem 1.2 For every s > 2, there is a constant C = C(s) such that the following
holds for all d ≥ s. Let G be an n-vertex graph with average degree at least d, where

d ≤ n
s−2
s . Then there is a non-empty set R ⊂ V (G) of size at most nd− s

s−2 (log d)C

such that G[R] has average degree at least s.
Note that while this result requires d ≤ n

s−2
s , we may also apply it for graphs with

average degree greater than n
s−2
s by simply taking d = n

s−2
s . This way we obtain a

subgraph of order at most polylog(n) with average degree at least s.
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While our proof of Theorem 1.2 is non-algorithmic, it gives the best theoretical
lower bound on the average degree one is guaranteed to find. It would be interesting to
decidewhether there is a polynomial time algorithm that finds a subgraph that achieves
the bound provided by the above theorem.

Theorem 1.2 cannot be used to find a constant sized (independent of n) subgraph
with large average degree. In this case, one cannot expect a similar answer as before,
as the random deletion method shows the following.

Proposition 1.3 For every s > 2 and positive integer t , there exists ε = ε(s, t) > 0
such that the following holds for every sufficiently large n. There exists a graph G on

n vertices with average degree at least n1− 2
s +ε such that every subgraph of G on at

most t vertices has average degree less than s.

A similar argument shows that in case d = �
(
n

s−2
s

)
, the logarithmic error term is

indeed needed in Theorem 1.2. Motivated by applications from [28] to parity check
matrices, Verstraëte (see [22]) conjectured that this lower bound presented in Proposi-
tion 1.3 is optimal in a certain sense. More precisely, he proposed the conjecture that
for every s > 2 and ε > 0 there exists some t = t(s, ε) such that if n is sufficiently

large, then every graph on n vertices with average degree at least n1− 2
s +ε must contain

a subgraph on at most t vertices with average degree at least s. In the special case
s is an integer, this was proved by Jiang and Newman [22]. For even values of s,
Janzer [19] strengthened this result, obtaining under the same hypothesis an s-regular
subgraph. More precisely he proved that if G is a graph on n vertices with at least

n2−
1
r + 1

k+r−1+ε edges for sufficiently large n, then G contains an r -blowup of the cycle
C2k (note that the r -blowup of the cycle C2k is s = 2r -regular and by taking k large
one can make the term 1

k+r−1 arbitrarily small). In our next theorem, we prove the
conjecture of Verstraëte for all real values of s > 2.

Theorem 1.4 For every s > 2 and ε > 0, there is a positive integer t such that the
following holds for all sufficiently large n. Let G be an n-vertex graph of average

degree d ≥ n1− 2
s +ε. Then there is a non-empty set R ⊂ V (G) of size at most t such

that G[R] has average degree at least s.
Our results are closely related to the problem of Erdős, Faudree, Rousseau and

Schelp on finding small subgraphs of large minimum degree. In [10], they determined
the minimal number of edges in a graph on n vertices which guarantees a proper sub-
graph (i.e., with u < n vertices) of minimum degree at least s (see [31] for additional
details and recent developments). Erdős, Faudree, Rousseau and Schelp [11] further
asked the following general question. Given positive integers n and s, and a positive
real number d satisfying d ≥ s ≥ 2, what is the minimum of u = u(n, d, s) such
that every graph G on n vertices with average degree at least d contains a subgraph
of minimum degree at least s on at most u vertices? It is reasonable to suspect that
u(n, d, s) ≈ t(n, d, s), that is, that Theorems 1.2 and 1.4 hold with the average degree
of G[R] replaced with its minimum degree. In case s is even, the minimum degree
version of Theorem 1.4 does hold by the aforementioned results of [19] and [22], the
first of which even guarantees a regular subgraph. Moreover, the case s = 3 follows
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from a recent result of Janzer [20], which refutes a conjecture of Erdős and Simonovits
[9] (and again provides a regular subgraph). However, the cases when s is odd and
greater than 3 remain open. On the other hand, the minimum degree variant of The-
orem 1.2 is completely open for every s ≥ 3, and our methods do not seem to be
adaptable for this problem. At least, by noting that every graph of average degree at
least 2s contains a subgraph of minimum degree at least s (see Lemma 2.2), we get
the following immediate corollary of Theorem 1.2.

Corollary 1.5 For every integer s ≥ 2, there is a constant C = C(s) such that the
following holds for every d ≥ 2s. Let G be an n-vertex graph with average degree

at least d, where d ≤ n
s−1
s . Then there is a non-empty set R ⊂ V (G) of size at most

nd− s
s−1 (log d)C such that G[R] has minimum degree at least s.

2 Small Subgraphs of Large Average Degree

In this section, we prove Theorems 1.2 and 1.4. Both proofs follow the same argument,
however, with a different range of parameters. Let us give a brief outline of this
argument.

The key idea is that for every rational number ρ > 1 we construct a tree Tρ , which
we refer to as a balanced tree, with the following property. Let q = q(ρ) be the
number of leaves of Tρ . If H is a graph that is the union of copies of Tρ having the
same set of leaves, then the average degree of H is at least 2ρ(1− q

|V (H)| ). These trees
were first studied by Bukh and Conlon [8] in their celebrated paper on the Rational
Exponents conjecture.

Now suppose we are given a graph G with n vertices and average degree at least d,
which does not contain a subgraph of order at most t ≈ nd− s

s−2 and average degree
at least s. Take ρ such that 2ρ is slightly larger than s, let Tρ be the balanced tree
with respect to ρ, and let q be the number of leaves of Tρ . By counting the number of
subgraphs of G isomorphic to Tρ and using the pigeonhole principle, we find a large
collection T of copies of Tρ in G, all having the same set of leaves. Let H be their
union. We show that some subgraph of H will contradict our assumption on G, i.e. it
has order at most t and average degree at least s. In order to show this, we consider
two cases depending on the number of vertices in H . If |V (H)| > t , we take some
sub-collection T ′ of T such that H ′, which denotes the union of the copies of Tρ in T ′,
has order roughly t . Our choice of parameters will guarantee that 2ρ(1− q

|V (H ′)| ) ≥ s,
so H ′ suffices by the above mentioned property of Tρ . Otherwise, we argue that unless
H has average degree at least s, it cannot contain the described number of copies of
Tρ , and we are done again.
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2.1 Preliminaries

In this section, we prove the lower bounds (Propositions 1.1 and 1.3) and collect
some basic results. First, let us start with the following simple consequence of the
multiplicative Chernoff bound.

Lemma 2.1 Let X be the sum of independent indicator (i.e. 0-1 valued) random vari-

ables. Then P(X ≤ E(X)
2 ) < e−E(X)

8 .

Next, we present the promised probabilistic lower bound arguments.

Proof of Proposition 1.1 Let cs be sufficiently small. If d ≥ n−1
2 , then csnd

− s
s−2 < 1,

so we can take G to be any n-vertex graph with average degree at least d.
Else, let G be a random graph on n vertices in which each edge is chosen with

probability p = 2d
n−1 , independently of all other edges. Then |E(G)| is the sum of

independent indicator random variables and has mean nd, so by Lemma 2.1, the
probability that G has fewer than nd/2 edges (i.e., that G has average degree less than

d) is at most exp(− nd
8 ) ≤ e− 1

8 ≤ 99
100 .

Let R be a subset ofV (G) of size r ≤ csnd
− s

s−2 . By the union bound, the probability
that G[R] has average degree at least s (i.e., that G[R] has at least rs2 edges) is at most
( (r2)�rs/2�

)
p� rs

2 � ≤
(

e(r2)�rs/2� p
)� rs

2 � ≤ (erp)
rs
2 . Hence, by the union bound, the probability

that G has a subgraph of average degree at least s on at most csnd
− s

s−2 vertices is at
most

	csnd− s
s−2 
∑

r=1

(
n

r

)
(erp)

rs
2

≤
	csnd− s

s−2 
∑

r=1

(en
r

· (erp)
s
2

)r =
	csnd− s

s−2 
∑

r=1

(e
s
2+1r

s−2
2 np

s
2 )r . (1)

Moreover, for r ≤ 	csnd− s
s−2 
, we have

r
s−2
2 np

s
2 ≤ c

s−2
2

s n
s−2
2 d− s

2 np
s
2 ≤ c

s−2
2

s n
s−2
2 d− s

2 n

(
4d

n

) s
2 = c

s−2
2

s 4
s
2 .

Hence, if cs is sufficiently small, then by (1), the probability that G has a subgraph of
average degree at least s on at most csnd

− s
s−2 vertices is at most 1

1000 . It follows that
with positive probability G has no such subgraph but has average degree at least d,
completing the proof. ��
Proof of Proposition 1.3 We show that ε = 1

ts suffices. Assume that n is sufficiently
large with respect to s and t , and let G ′ be the graph on n vertices in which each edge

is present independently with probability p = n− 2
s + 2

ts . Letting X be the number of

edges of G ′, we have E(X) = (n
2

)
p > 1

4n
2− 2

s + 2
ts .
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Let R be the family of graphs R with vertex set contained in V (G ′) and having
r ≤ t vertices and exactly � rs2 � edges. Say that such an R is bad if R is a subgraph of

G ′. Clearly, P(R is bad) = p� rs
2 �. Let Y be the number of bad elements of R, then

E(Y ) =
∑

R∈R
P(R is bad) ≤

t∑

r=1

(
n

r

)( (r
2

)

�rs/2�
)
p� rs

2 �

<

t∑

r=1

nr (erp)
rs
2 < t

(
e

s
2 t

s
2 np

s
2
)t = t

ts
2 +1e

ts
2 n.

Hence, we have E(X − Y ) > 1
8n

2− 2
s + 2

ts > n2− 2
s +ε. But then there exists a choice

for G ′ such that X − Y > n2− 2
s +ε. For each bad R ∈ R, remove an edge of G ′

contained in R, and let the resulting graph be G. Then G contains no element ofR as
a subgraph, so every subgraph of G on at most t vertices has average degree less than

s. Furthermore, G has average degree at least 2(X−Y )
n > n1− 2

s +ε, finishing the proof.
��

Finally, before we embark on the proofs of our main theorems, let us state a useful
lemma about subgraphs of large minimum degree.

Lemma 2.2 Every graph G of average degree d contains a nonempty subgraph of
minimum degree at least d

2 .

Proof Keep removing vertices of degree less than d
2 as long as there is such a vertex.

In total, we removed less than |V (G)|d
2 = |E(G)| edges, so the resulting graph is

nonempty and has minimum degree at least d
2 . ��

2.2 Balanced Trees

In this section, we define balanced trees, which one can view as the building blocks of
our small subgraph of large average degree. Interestingly, but perhaps not unexpect-
edly, these trees coincide with the balanced trees constructed by Bukh and Conlon [8]
in their paper on the Rational Exponents conjecture.

Definition 2.3 Let T be a tree with leaf set L . For any non-empty S ⊂ V (T )\L , let

ρT (S) := eS
|S| ,

where eS is the number of edges in T incident to at least one vertex from S. Also, set
ρT = ρT (V (T ) \ L). (That is, ρT = t−1

a , where t is the number of vertices of T and
a is the number of non-leaf vertices in T .) We say that T is balanced if ρT ≤ ρT (S)

holds for every non-empty S ⊂ V (T ) \ L .

The main reason balanced trees are useful for us is given by the following simple
lemma which one can prove by induction. Roughly speaking, it states that if T is a
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Fig. 1 The red, blue and green tree all have the same leaf set. (Color figure online)

balanced tree, then any graph which is formed by taking the union of some copies
of T all of which have the same the set of leaves has large average degree. Note that
we allow some of the non-leaf vertices to coincide as well: see Fig. 1 for an example
where T is the binary tree of height two, and the red and the blue copy share a non-leaf
vertex.

Lemma 2.4 (Bukh–Conlon [8, Lemma 2.2]) Let T be a balanced tree with q leaves
and let H be a graph which is the union of copies of T with the same set of leaves.
Then e(H) ≥ (|V (H)| − q)ρT .

Proof Let H be the union of k copies of T with the same set L of leaves. We prove the
inequality e(H) ≥ (|V (H)|−q)ρT by induction on k. If k = 1, then e(H) = e(T ) ≥
eV (T )\L = |V (T )\L|ρT = (|V (H)| − q)ρT , as desired. Assume now that k ≥ 2. Let
T0 be one of the k copies of T constituting H and let H ′ be the union of the remaining
k − 1 copies of T . By the induction hypothesis, we have e(H ′) ≥ (|V (H ′)| − q)ρT .
Let S = V (T0)\V (H ′). Note that since all copies of T in H have the same set L of
leaves, we have S ⊂ V (T0) \ L . Now observe that eS ≥ |S|ρT (where T0 is identified
with T and S is viewed as a subset of V (T )). Indeed, the inequality is trivial if S = ∅
and else eS = |S|ρT (S) ≥ |S|ρT since T is balanced. But then

e(H) ≥ e(H ′) + eS ≥ (|V (H ′)| − q)ρT + |S|ρT = (|V (H)| − q)ρT ,

completing the induction step. ��

Next we describe a construction of balanced trees which are caterpillars. A cater-
pillar is a tree in which the non-leaf vertices form a path.

Definition 2.5 (Bukh–Conlon [8]) Suppose that a and b are positive integers satisfying
a + 1 ≤ b < 2a + 1 and set i = b − a. We define a tree Ta,b by taking a path with a
vertices, which are labelled in order as 1, 2, . . . , a, and then adding a leaf to each of
the i + 1 vertices

1,
⌊
1 + a

i

⌋
,
⌊
1 + 2 · a

i

⌋
, . . . ,

⌊
1 + (i − 1) · a

i

⌋
, a.
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(Note that if b = 2a, then 	1 + (i − 1) · a
i 
 = a. In this case we attach two leaves in

total to vertex a.) For b ≥ 2a + 1, we define Ta,b recursively to be the tree obtained
by attaching a leaf to each non-leaf of Ta,b−a .

Remark In [8], trees Ta,b for b ∈ {a − 1, a} are introduced as well and they are used
to define Ta,b for b ∈ {2a − 1, 2a}, but one can easily see that our definition gives the
same graphs.

Bukh and Conlon showed that, indeed, Ta,b is balanced for every a < b. Combined
with the simple observation that Ta,b has maximum degree at most �b/a� + 1, we
obtain the following result.

Lemma 2.6 (Bukh–Conlon [8, Lemma 1.3]) For any positive integers a < b, Ta,b is
a balanced caterpillar with a non-leaf vertices, b edges and maximum degree at most
�b/a� + 1.

2.3 Counting Trees

In this section, we provide lower and upper bounds on the number of copies of a fixed
tree in graphs with some prescribed properties. Let us start with the lower bound.

For a graph G and a set S of vertices in G, we write �G(S) for the set of vertices in
G which have a neighbour in S. We make use of the following celebrated theorem of
Friedman and Pippenger [16] about large bounded degree trees in expanding graphs.

Theorem 2.7 (Friedman–Pippenger [16]) If G is a non-empty graph such that for
every S ⊂ V (G) with |S| ≤ 2m − 2, we have |�G(S)| ≥ (k + 1)|S|, then G contains
every tree with at most m vertices and maximum degree at most k.

Say that a graph G is (ρ, r)-sparse if for every R ⊂ V (G) of size at most r , the
number of edges in G[R] is at most ρ|R|.
Lemma 2.8 Let G be a (ρ, r)-sparse graph with average degree at least 4ρ(k + 2).
Then G contains every tree with at most r

2(k+2) vertices and maximum degree at most
k.

Proof ByLemma 2.2,G contains a subgraphG ′ ofminimum degree at least 2ρ(k+2).
Note that G ′ is also (ρ, r)-sparse. We show that G ′ already contains every tree with at
mostm = r

2(k+2) vertices andmaximum degree at most k. Otherwise, by Theorem 2.7,
there is a set S ⊂ V (G ′) of size at most 2m−2 ≤ r

k+2 such that |�G ′(S)| < (k+1)|S|.
Let R = S ∪ �G ′(S). Then

|R| ≤ |S| + |�G ′(S)| < (k + 2)|S| ≤ r .

Furthermore, by the minimum degree condition, the number of edges in G ′[R] is at
least

1

2
|S| · 2ρ(k + 2) > ρ|R|,

which is a contradiction. ��
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Now we are ready to state our first tree counting lemma.

Lemma 2.9 For any ρ > 1 and positive integer k, there exists c0 = c0(ρ, k) > 0 such
that the following holds for every n ≥ 8. Let G be an n-vertex (ρ, r)-sparse graph
with average degree at least d ≥ c−1

0 . Let T be a tree with t ≤ r
2(k+2) vertices and

maximum degree at most k. Then G contains at least (c0d)t−1 copies of T .

Proof We show that c0 = 1
16ρ(k+2) suffices. Let p = 8ρ(k+2)

d < 1, and sample
each edge of G independently with probability p. Let the resulting graph be G ′,
and let X = e(G ′). Then E(X) = pe(G) ≥ pdn

2 = 4ρ(k + 2)n. As X is the
sum of independent indicator random variables, we can use Lemma 2.1 to write

P
(
X ≤ 1

2E(X)
) ≤ e−E(X)

8 < 1
2 . Hence, with probability at least 1

2 , G
′ has aver-

age degree at least 4ρ(k + 2). If this happens, we can apply Lemma 2.8 to conclude
that G ′ contains a copy of T . Thus, the expected number of copies of T in G ′ is at
least 1

2 . On the other hand, writing N for the number of copies of T in G, we also have
that the expected number of copies of T in G ′ is pt−1N . Hence, we get the inequality
pt−1N ≥ 1

2 , which implies that G contains at least

N ≥ 1

2
p−(t−1) = 1

2

(
d

8ρ(k + 2)

)t−1

> (c0d)t−1

copies of T . ��
Now let us turn to our upper bound on the number of copies of a tree. For simplicity,

we only present a counting result in case the tree is a caterpillar. However, it seems
likely that a similar result should hold for trees in general as well.

Lemma 2.10 Let G be a graph with n vertices and m edges. Let T be a caterpillar
with a non-leaf vertices and maximum degree k. Then G contains at most n · ( 2ma )ak

copies of T .

Proof Let d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence of G. As T is a caterpillar, its
non-leaf vertices form a path on a vertices, so let us first count the number of such
paths in G.

Claim For every vertex v ∈ V (G), the number of paths on a vertices in G starting
from v is at most d1 . . . da−1.

Proof We prove this by induction on a. If a = 2, this is trivial, so let us assume that
a ≥ 3. Let G ′ be the subgraph of G we get after removing v, and let d ′

1 ≥ · · · ≥ d ′
n−1

be the degree sequence of G ′. There are degG(v) ways to choose the neighbour of
v in the path. If this neighbour is v′ ∈ V (G ′), we can use our induction hypothesis
to conclude that there are at most d ′

1 . . . d ′
a−2 paths on a − 1 vertices in G ′ starting

with v′. Hence, the number of paths on a vertices in G starting with v is at most
dG(v) · (d ′

1 . . . d ′
a−2) ≤ d1 . . . da−1, finishing the proof. ��

Hence, the number of ways to embed the non-leaf vertices of T is at most n ·
d1 . . . da−1. Suppose that the non-leaf vertices of T are already embedded in G, and
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their images are v1, . . . , va . Then the number of ways to choose the leaves of T is at
most

degG(v1)
k−1 . . . degG(va)

k−1 ≤ (d1 . . . da)
k−1.

Therefore, the total number of copies of T in G is at most

n · (d1 . . . da)
k ≤ n ·

(
d1 + · · · + da

a

)ak

≤ n ·
(
2m

a

)ak

,

where the first inequality is due to the AM-GM inequality. ��

2.4 Piecing the Trees Together

In this section, we present our main technical lemma, which implies both Theorems
1.2 and 1.4 after substituting the right parameters. Before we state this lemma, we
show that if a graph G contains many copies of a balanced caterpillar with the same
set of leaves, then G cannot be (ρ, r)-sparse. Recall that if T is a tree with t vertices
and a non-leaf vertices, then ρT = t−1

a .

Lemma 2.11 Let ρ > 0 and let k be a positive integer. Let T be a balanced caterpillar
with t vertices, a non-leaf vertices, and maximum degree at most k. Assume that
t < r ≤ n and ρ ≤ (1 − t

r−t )ρT . Let G be an n-vertex graph containing at least

r( 2ρra )ak copies of T with the same set of leaves. Then G is not (ρ, r)-sparse.

Proof Assume, for contradiction that G is (ρ, r)-sparse. Let T be a collection of at
least r( 2ρra )ak copies of T in G with the same set of leaves. Let R0 ⊂ V (G) be the set
of vertices spanned by the elements of T . First, observe that we must have |R0| ≥ r .
Otherwise, as G is (ρ, r) sparse, G[R0] has at most m = ρ|R0| < ρr edges, so by
Lemma 2.10, it contains less than r( 2ρra )ak copies of T , a contradiction.

Therefore, we can take a subcollection T ′ ⊂ T such that the union of the trees in
T ′ spans at least r − t and at most r vertices. Let R be the set of vertices in G spanned
by the union of the trees in T ′. By Lemma 2.4, e(G[R]) ≥ (|R| − q)ρT , where q is
the number of leaves in T . Hence,

e(G[R])
|R| ≥ |R| − q

|R| ρT ≥ r − t − q

r − t
ρT

≥ r − 2t

r − t
ρT =

(
1 − t

r − t

)
ρT ≥ ρ.

Since |R| ≤ r , this contradicts the assumption that G is (ρ, r)-sparse, and the proof
is complete. ��

Now we are ready to state the promised main technical lemma.

Lemma 2.12 Let ρ > 1 and let c0 = c0(ρ, �2ρ� + 1) given by Lemma 2.9. Let G
be an n-vertex graph with average degree d ≥ c−1

0 . Assume that there are positive
integers r , t and a such that the following inequalities are satisfied.
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1. ρ ≤ (1 − t
r−t )

t−1
a ,

2. t
a ≤ 2ρ,

3. 2(�2ρ� + 3)t ≤ r ≤ n and
4. (c0d)t−1 ≥ ( n

t−a

) · r · (
2ρr
a )3t .

Then G is not (ρ, r)-sparse.

Since there are many parameters and conditions to keep track of, it may be helpful
to note that condition 2 is just a technicality and the main ones are 1, 3 and 4. One
should think of them as ρ � t

a , t ≤ r and (c0d)t−1 � ( n
t−a

)
, respectively. Let us

briefly and informally explain where they come from. We will take a balanced tree T
with roughly t edges and roughly a non-leaf vertices as in Lemma 2.11. Then we want
to find many copies of T with the same leaf set and argue that their union is a subgraph
on at most r vertices with large average degree. Clearly, since T has about t vertices,
such a union will have at least t vertices, explaining the necessary condition t ≤ r . In
view of Lemma 2.4 and using condition 1, the union of many copies of T has average
degree at least about 2ρT ≈ 2t

a � 2ρ, provided that this union spans much more than
t vertices. If the union spans not much more than t vertices, it does not follow from
Lemma 2.4 that it has average degree close to 2ρ, but we can still use Lemma 2.11 to
argue that if many copies of T have the same leaf set, then we get a small subgraph
with average degree about 2ρ. Hence, it remains to ensure that we indeed have many
copies of T with the same leaf set. By Lemma 2.9, the number of copies of T is at
least (c0d)t−1. On the other hand, T has about t − a leaves, so there are roughly

( n
t−a

)

ways to choose the leaf set. Therefore, condition 4 is just saying that there are many
copies of T with the same leaf set.

Proof of Lemma 2.12 Conditions 1 and 3 imply that t − 1 > a, so Lemma 2.6 shows
that there is a balanced caterpillar T with a non-leaf vertices, t−1 edges andmaximum
degree at most k = �t/a� + 1 ≤ �2ρ� + 1. Note that ka < 3t . Assume that G is
(ρ, r)-sparse. Condition 3 implies that t ≤ r

2(k+2) , so it follows by Lemma 2.9 that

G contains at least (c0d)t−1 copies of T . Since T has t − a leaves and G has
( n
t−a

)

subsets of size t − a, it follows from condition 4 and the pigeonhole principle that
there is a collection of at least r( 2ρra )3t > r · ( 2ρra )ka copies of T in G which share the
same set of leaves. Note that T has t − 1 edges and a non-leaf vertices, so ρT = t−1

a
and condition 1 gives ρ ≤ (1− t

r−t )ρT . Hence, we can apply Lemma 2.11 to conclude
that G is not (ρ, r)-sparse, a contradiction. ��

2.5 Completing the Proofs

In this section, we put everything together to conclude the proofs of our main results.
First, we prove Theorem 1.2 in the following equivalent form.

Theorem 2.13 For every ρ > 1, there is a constant C = C(ρ) such that the following
holds for every sufficiently large d. Let G be an n-vertex graph with average degree

at least d, where d ≤ n
ρ−1
ρ . Then G is not (ρ, nd− ρ

ρ−1 (log d)C )-sparse.

Note that this indeed implies Theorem 1.2 with s = 2ρ whenever d is sufficiently
large compared to s. To see that Theorem 1.2 holds also when d is bounded by some
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function of s (but is at least s), note that we may choose C = C(s) in a way that
nd− s

s−2 (log d)C ≥ n, and then we may take R = V (G).
Before turning to the formal proof of Theorem 2.13, let us give an informal sketch.

Setting r ≈ nd− ρ
ρ−1 , we want to show that G is not (ρ, r)-sparse. Since we want to

apply Lemma 2.12, we need to verify that there exist choices for t and a satisfying
the key conditions ρ � t

a , t ≤ r and (c0d)t−1 � ( n
t−a

)
from that lemma. Let us take

t ≈ r ≈ nd− ρ
ρ−1 and a ≈ t/ρ. Then the conditions ρ � t

a and t ≤ r hold trivially,
and

(
n

t − a

)
≤

(
en

t − a

)t−a

≈
(
d

ρ
ρ−1

)t−a ≈ dt ,

so indeed (c0d)t−1 �
( n
t−a

)
. Hence, Lemma 2.12 implies that G is not (ρ, r)-sparse.

We now give the formal proof of Theorem 2.13.

Proof of Theorem 2.13 LetC be sufficiently large with respect to ρ, let d be sufficiently

large with respect to ρ and C , let f = (log d)C and let r = 	nd− ρ
ρ−1 f 
. Then r ≤ n,

and by the conditions of the theorem, r ≥ 	(log d)C
. Let ε = 1
log d , t = � rε8 � and let

a = � t
ρ
(1 − ε)�. Then t ≥ 20ρ log d, assuming that C and d are sufficiently large. It

suffices to prove that the four conditions in Lemma 2.12 are satisfied.
Note that

aρ

t − 1
≤ t

ρ
·
(
1 − ε

2

)
· ρ

t − 1
= t

t − 1

(
1 − ε

2

)

≤
(
1 + 1

10 log d

) (
1 − ε

2

)
≤ 1 − ε

4
≤ 1 − t

r − t
,

where the last inequality follows from t = � rε8 �. Hence, we have ρ ≤ (1 − t
r−t )

t−1
a

and condition 1 is satisfied.
Conditions 2 and 3 are immediate from the definitions of t and a. Hence, it remains

to verify condition 4, that is

(c0d)t−1 ≥
(

n

t − a

)
· r ·

(
2ρr

a

)3t

. (2)

First, since a < t
ρ
, note that

(
n

t − a

)
≤

(
en

t − a

)t−a

≤
(

en

t − t/ρ

)t−a

≤
(

e

1 − 1/ρ

)t

·
(n
t

)t−a
.

Also,

(n
t

)t−a ≤
(
8n

εr

)t−a

≤
(
9d

ρ
ρ−1

ε f

)t−a

≤
(
9d

ρ
ρ−1

ε f

)t− t
ρ
+ tε

ρ
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≤
(
9d1+

ε
(ρ−1) · (ε f )−1+ 1

ρ
− ε

ρ

)t
.

Using that dε = d1/ log d = 2, this implies that

(
n

t − a

)
≤ (

c1d · (ε f )−1+ 1−ε
ρ

)t

holds for some c1 = c1(ρ) > 0. On the other hand, we have (
2ρr
a )3t ≤ ( c2

ε3
)t for some

c2 = c2(ρ). Hence, in order to prove (2), it suffices to show that

(c0d)1−
1
t ≥ c1c2 · d · r 1

t · ε
−4+ 1−ε

ρ · f −1+ 1−ε
ρ . (3)

As t > 10 log d and d is sufficiently large, we have (c0d)1− 1
t > c0d

2 . Also, t ≥
r

8 log d > log r , so r
1
t < 3. Finally, recalling that f = (log d)C and ε = 1

log d , we get
that (3) holds whenever C and d are sufficiently large in terms of ρ. This completes
the proof of the theorem. ��

Finally, we prove the following equivalent version of Theorem 1.4.

Theorem 2.14 For every ρ > 1 and 0 < ε < 1, there is a positive integer r such
that the following holds for all sufficiently large n. Let G be an n-vertex graph with

average degree d ≥ n1−
1
ρ
+ε. Then G is not (ρ, r)-sparse.

Proof Assume that r is sufficiently large in terms of ρ and ε. Let t = � 4ρ
ε

� and let
a = 	 t

ρ

 − 1. It suffices to prove that the four conditions in Lemma 2.12 are satisfied.

Note that

aρ

t − 1
≤ (t/ρ − 1)ρ

t − 1
= t − ρ

t − 1
= 1 − ρ − 1

t − 1
≤ 1 − t

r − t
,

where the last inequality follows from the assumption that r is sufficiently large in
terms of ρ and ε. Hence, we have ρ ≤ (1 − t

r−t )
t−1
a and condition 1 is satisfied.

Condition 3 is immediate from the definition. Also by definitions of a and t , we
have t

ρ
≥ 4 and hence a ≥ t

ρ
− 2 ≥ t

2ρ , verifying condition 2.

Now let us verify condition 4. We have d ≥ n1−
1
ρ
+ε and

( n
t−a

) ≤ nt−a . Hence, it
is enough to prove that

(c0n
1− 1

ρ
+ε

)t−1 ≥ nt−a · r ·
(
2ρr

a

)3t

.

Note that n is sufficiently large compared to the other parameters, so it suffices to
prove the corresponding inequality for the exponents of n on both sides, i.e., that
(1 − 1

ρ
+ ε)(t − 1) > t − a. By the definition of t , εt ≥ 4ρ > 4. Hence
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(
1 − 1

ρ
+ ε

)
(t − 1) = (t − 1) − t−1

ρ
+ ε(t − 1) ≥ t − t

ρ
+ εt − 2 ≥ t − a

+εt − 4 > t − a,

and the proof is complete. ��

3 Concluding Remarks

3.1 Regular Subgraphs

In this paper, we proved nearly optimal bounds on the order of the smallest subgraph
G[R] of average degree at least s in a graph G of given order and average degree. As
mentioned in the introduction, in case s is an integer, we believe that the strengthening
of our results in which the average degree ofG[R] is replacedwith itsminimumdegree
should also hold. Moreover, one can further strengthen this by requiring that G[R]
contains an s-regular subgraph.

Conjecture 3.1 For every integer s ≥ 3, there is a constant C = C(s) such that
the following holds for every sufficiently large n. Let G be an n-vertex graph with

average degree at least d, whereC log log n ≤ d ≤ n
s−2
s . ThenG contains an s-regular

subgraph on at most nd− s
s−2 (log n)C vertices.

Note that in the special case where d ≤ (log n)C(s−2)/s , Conjecture 3.1 asserts the
existence of an s-regular subgraph, without a requirement on its order. This is the
well studied Erdős–Sauer problem which was resolved very recently in [21]. It was
shown there that for largeC = C(s), every n-vertex graph with average degree at least
C log log n has an s-regular subgraph. This is tight, as an old construction of Pyber,
Rödl and Szemerédi [30] shows that there is some c > 0 such that there are n-vertex
graphs with average degree at least c log log n and no s-regular subgraph.

On the other hand,whend is very large andweare looking for a subgraphof bounded
order, we have the following conjecture generalizing Theorem 1.4. This conjecture
quantifies Problem 7.1 from [22].

Conjecture 3.2 For every integer s ≥ 3 and ε > 0, there is a positive integer t such that
the following holds for all sufficiently large n. Let G be an n-vertex graph of average

degree at least n1− 2
s +ε. Then G contains an s-regular subgraph on at most t vertices.

As we remarked earlier, Conjecture 3.2 is known to be true if s is even [19], or
s = 3 [20].

3.2 Uniform Hypergraphs

Another interesting direction one may explore is the analogous question for uniform
hypergraphs, which was also considered by Feige and Wagner [15].
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Problem 3.3 Let r , n be positive integers, and s, d > 1 be real numbers. Determine the
asymptotic value of the smallest t = tr (n, d, s) such that every r-uniform hypergraph
on n vertices of average degree at least d contains a subhypergraph on at most t
vertices of average degree at least s.

This problem is closely related to another well known conjecture of Feige [14]
about even covers of hypergraphs. An even cover of a hypergraph is a non-empty
subhypergraph in which each vertex is contained in an even number of edges. Feige
conjectured that every r -uniform hypergraph with n vertices and average degree d

contains an even cover on at most nd− 2
r−2 polylog(n) vertices, which was recently

settled by Guruswami, Kothari, and Manohar [18]. Indeed, in order to find a small
even cover, one needs to first guarantee a small subhypergraph of average degree at
least 2.
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