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Abstract
Colour the edges of the complete graph with vertex set {1, 2, . . . , n} with an arbitrary
number of colours. What is the smallest integer f (l, k) such that if n > f (l, k) then
there must exist a monotone monochromatic path of length l or a monotone rainbow
path of length k? Lefmann, Rödl, and Thomas conjectured in 1992 that f (l, k) = lk−1

and proved this for l ě (3k)2k . We prove the conjecture for l ě k3(log k)1+o(1) and
establish the general upper bound f (l, k) ď k(log k)1+o(1) · lk−1. This reduces the
gap between the best lower and upper bounds from exponential to polynomial in k.
We also generalise some of these results to the tournament setting.
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1 Introduction

In 1930, Ramsey [8] showed that every k-colouring of the edges of a very large clique
contains a large monochromatic sub-clique. This classical theorem was the starting
seed for Ramsey theory, and there have been numerous extensions and generalisations
of it since then. One of the most important is the canonical Ramsey theorem of Erdős
and Rado [4], which considers colourings that allow an arbitrary number of colours. It
states that every colouring of the edges of a very large clique with an arbitrary number
of colours contains a large sub-clique with one of four types of colourings.

Theorem 1.1 (Erdős, Rado) There is a function f (k) such that every colouring of
the edges of the complete graph on {1, 2, . . . , f (k)} contains a complete k-vertex
subgraph whose colouring is of one of the following four canonical types:

• rainbow—no two edges have the same colour;
• monochromatic—all edges have the same colour;
• upper lexical—two edges have the same colour if and only if the larger vertices

coincide;
• lower lexical—two edges have the same colour if and only if the smaller vertices

coincide.

Lefmann and Rödl [6] gave the best current bounds for this result, showing that
we can take f (k) = kCk2 for some constant C . The canonical Ramsey theorem has
an immediate corollary for monotone paths. It implies that there is an integer f (l, k)

such that if n > f (l, k) then every colouring c : ([n]
2

) → N yields either:

• x0 < · · · < xl with c(x0x1), c(x1x2), . . . , c(xl−1xl) all the same (an l-flash), or
• y0 < · · · < yk with c(y0y1), c(y1y2), . . . , c(yk−1yk) all distinct (a k-rainbow).

Lefmann and Rödl’s bound implies that f (k, k) ď kCk2 .
In 1992, Lefmann,Rödl, andThomas [7] gave better bounds on f (l, k). Frombelow,

they provided a nice construction showing that f (l, k) ě lk−1: label the vertices with
strings from {1, 2, . . . , l}k−1 in lexicographic order and, for a pair of vertices u < v,
let c(uv) be any index at which u has a smaller value than v. This construction contains
no l-flash or k-rainbow1, and in fact it is best possible among all colourings that use at
most k − 1 colours. They made the attractive conjecture that this lower bound is tight
in general.

Conjecture 1.2 (Lefmann, Rödl, Thomas) For all positive integers l and k, f (l, k) =
lk−1.

Lefmann, Rödl, and Thomas gave support for their conjecture by proving that it
is true for the small cases l ď 2 or k ď 4 as well as when l is at least factorial in k
(specifically, when l ě (3k)2k). Our first result proves Conjecture 1.2 provided l is at
least polynomial in k (specifically, when l ě k3(log k)1+o(1)).

1 Only k −1 colours are used, so there is no k-rainbow. In a flash of colour a, the value at index a increases
from one vertex to the next. Since entries are between 1 and l, the longest flash has length l − 1.
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Theorem 1.3 For all ε > 0, there is Cε such that if l ě Cεk3(log k)1+ε, then f (l, k) =
lk−1.

The best general upper bound on f (l, k) was given by Jiang and Mubayi [5].

Theorem 1.4 (Jiang, Mubayi) For all integers l ě 1 and k ě 4,

f (l, k) ď
(
1 + 1√

l

)k−4

· lk−1.

This confirms Conjecture 1.2 asymptotically when l = ω(k2). However, for l fixed
and k large this differs from the lower bound by a factor exponential in k. We provide
an upper bound in which this factor is only polynomial in k.

Theorem 1.5 For all ε > 0, there is Dε such that for all positive integers l and k,

f (l, k) ď Dεk(log k)1+ε · lk−1.

Theorems 1.3 to 1.5 are each best in different ranges of values of l and k. For
l ě k3(log k)1+o(1), Theorem 1.3 is best possible, for l = O((k/ log k)2), Theorem 1.5
provides the best bound known, and Theorem 1.4 is best in the intermediate regime.

We further generalise flashes and rainbows to tournaments, where a tournament is
an orientation of a complete graph. A directed walk in a tournament is a sequence
of vertices x0, . . . , xl such that xi−1xi is a directed edge for all 1 ď i ď l (note that
walks are allowed to repeat vertices and edges).

Definition 1.6 Let l and k be non-negative integers. An l-flash in a tournament is a
directed walk x0, . . . , xl with c(x0x1), . . . , c(xl−1xl) all the same. A k-rainbow is a
directed walk y0, . . . , yk with c(y0y1), . . . , c(yk−1yk) all distinct.

Note that a directed monochromatic cycle yields an l-flash for every l. Let t(l, k)

denote the smallest integer such that every colouring of the edges of any tournament
with more than t(l, k) vertices contains an l-flash or a k-rainbow. Conjucture 1.2 can
now be viewed as the restriction of this problem to transitive tournaments and thus
we have

t(l, k) ě f (l, k) ě lk−1.

We conjecture that the tournament strengthening of Conjecture 1.2 holds.

Conjecture 1.7 For all positive integers l and k, t(l, k) = lk−1.

We prove two upper bounds on t(l, k). The first, Theorem 1.8, is better when l
is large compared to k and confirms Conjecture 1.7 asymptotically for l = ω(k2).
Although the bound looks very similar to Theorem 1.4, the proof is quite different and
uses a probabilistic argument.

Theorem 1.8 For all positive integers l and k, t(l, k) ď (
1 + 2√

l

)k · lk−1.
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Our second upper bound, Theorem 1.9, is better when k is large compared to l and,
in particular, improves upon Theorem 1.8 for l = O((k/ log k)2). Note that it implies
Theorem 1.5.

Theorem 1.9 For every ε > 0, there is Dε such that for all positive integers l and k,

t(l, k) ď Dεk(log k)1+ε · lk−1.

Conjucture 1.7 posits that if one wants to colour the edges of a large tournament
while avoiding l-flashes and k-rainbows, then transitive tournaments are best in the
sense of having themost vertices. The following result shows that there are tournaments
that are strictly worse than transitive tournaments.

Theorem 1.10 For all l ě 2 and k ě 3, there is a tournament with f (l, k)−1 vertices
such that every colouring of its edges contains an l-flash or a k-rainbow.

Finally, it is interesting to ask how bad a tournament can be: how few vertices can
a tournament have if every colouring of its edges contains an l-flash or a k-rainbow?
The following provides a general lower bound showing that the number of vertices in
such a tournament must be within a factor l

√
k of lk−1.

Theorem 1.11 There is a constant C > 0 such that every tournament with at most
Clk−2/

√
k vertices has an edge colouring with neither l-flashes nor k-rainbows.

The rest of the paper is structured as follows. In Sect. 2 we consider arbitrary tour-
naments and prove Theorems 1.8 and 1.9. We then specialise to transitive tournaments
in Sect. 3 and provide a proof of Theorem 1.3. In Sect. 4 we explore the differences
between these two settings, proving Theorems 1.10 and 1.11, and we close by stating
some open problems in Sect. 5. Throughout this paper, l and k are positive integers.

2 Upper Bounds for Arbitrary Tournaments

In this section, we prove Theorems 1.8 and 1.9. For both, we rely on the following
observation: if a tournament contains no k-rainbow and a (k−1)-rainbow ends at some
vertex v, then v has at most k − 1 outgoing colours. Indeed, otherwise any (k − 1)-
rainbow ending at v could be extended to a k-rainbow. This will allow us to restrict
ourselves to tournaments where each vertex only has few outgoing (and incoming)
colours. In this setting, we show that the following lemma holds.

Lemma 2.1 Let T = (V , E) be an edge-coloured tournament containing no l-flash,
and assume that every vertex has at most c incoming colours and at most c outgoing
colours. Then,

|V | ď
(
1 + 2√

l

)c

· lc.
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We prove this result with a probabilistic argument. We will use the following defi-
nitions throughout the paper. For a vertex v, we write C−(v) = {c(uv) : uv ∈ E} for
the set of incoming colours of v, C+(v) = {c(vu) : vu ∈ E} for the set of outgoing
colours of v, andC(v) = C−(v)∪C+(v) for the set of colours incident to v.Moreover,
for every vertex v and colour a, let

la(v) =
{

l − 1 if a ∈ C−(v) \ C+(v),

length of the longest flash of colour a ending at v otherwise.

This is defined for every colour a in our colouring; however la(v) is only non-zero for
incoming colours of v. Note also that if an edge uv has colour a, then la(u) < la(v).
The first condition in this definition is only needed for convenience in the following
proof.

Proof of Lemma 2.1 Let p be the positive root of (l − 2)p2 + 2p = 1, so p = 1/(1+√
l − 1). For every colour a, choose la ∈ {0, . . . , l −1} independently at random such

that P(la = 0) = P(la = l −1) = p and P(la = i) = p2 for every i ∈ [l −2]. Define

U = {v ∈ V : la(v) = la for all a ∈ C(v)}.

If T [U ] contains an edge uv, say of colour a, then a ∈ C(u)∩C(v) and la(u) < la(v),
contradicting the definition of U . Thus, |U | ď 1. Moreover, for every vertex v and
every colour a ∈ C(v) it holds that la(v) ∈ {0, l−1} if and only if a ∈ C−(v)�C+(v),
and so

P(v ∈ U ) = p|C−(v)�C+(v)|p2|C−(v)∩C+(v)| = p|C−(v)|+|C+(v)| ě p2c.

It follows that the expected size of U is at least p2c|V |, and since |U | ď 1 we have

|V | ď p−2c =
(
1 + √

l − 1
)2c =

(
l + 2

√
l − 1

)c ď
(
1 + 2√

l

)c

· lc.

�	
To obtain Theorem 1.8, wewill use induction to bound the number of verticeswhere

no (k − 1)-rainbow starts and no (k − 1)-rainbow ends. By the observation from the
beginning of this section, the number of remaining vertices can then be bounded via
the preceding lemma.

Proof of Theorem 1.8 For k ě 2, we claim that t(l, k) ď 2 · t(l, k −1)+ (l +2
√

l)k−1.
Indeed, let T = (V , E) be a tournament containing no l-flash and no k-rainbow.
Define

R = {v ∈ V : no(k − 1)-rainbow ends atv} and
S = {v ∈ V : no(k − 1)-rainbow starts atv}.
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Clearly |R|, |S| ď t(l, k − 1). Every vertex v ∈ V \ R has at most k − 1 outgoing
colours (or else any (k − 1)-rainbow ending at v could be extended to a k-rainbow),
and similarly every vertex in V \ S has at most k −1 incoming colours. By Lemma 2.1,
it follows that |V \ (R ∪ S)| ď (1 + 2/

√
l)k−1 · lk−1 and therefore

|V | ď |R| + |S| + |V \ (R ∪ S)| ď 2 · t(l, k − 1) + (l + 2
√

l)k−1.

This proves the claim. A straightforward induction on k with base case t(l, 1) = 1
yields

t(l, k) ď
k−1∑

i=0

(
2

l + 2
√

l

)i

(l + 2
√

l)k−1 ď 1

1 − 2
l+2

√
l

(l + 2
√

l)k−1

= l + 2
√

l

l + 2
√

l − 2

(
1 + 2√

l

)k−1

· lk−1 ď
(
1 + 2√

l

)k

· lk−1.

�	
Next, we prove Theorem 1.9. To this end, we will consider so-called ‘robust’ ver-

tices, which were introduced by Lefmann, Rödl, and Thomas [7] under a different
name. Loosely, we call a vertex v robust if we can find long rainbows ending and/or
starting at v that avoid any given colour.

Definition 2.2 Let r be a non-negative integer. A vertex v is r -in-robust if, for every
colour a, some r -rainbow without colour a ends at v.

In-robust vertices are very useful for constructing long rainbows. Indeed, assume
that u is an in-robust vertex with an edge of colour a to some other vertex v. Then, we
can pick a long rainbowwithout colour a ending at u and try to connect this rainbow to
some rainbow starting at v. Since the edge uv cannot interfere with the rainbow ending
at u, choosing an appropriate rainbow starting at v might result in a long rainbow.

Of course, in-robust vertices are only useful if they are forced to occur in large
enough tournaments. As above, it will suffice to consider tournaments with few incom-
ing and outgoing colours at each vertex. Therefore, let g(l, k, r) denote the smallest
integer such that if T is a tournament with more than g(l, k, r) vertices, then every
edge colouring of T with at most k − 1 outgoing colours at each vertex contains an
l-flash, a k-rainbow, or an r -in-robust vertex.

It turns out that g(l, k, r) is not much larger than t(l, r). Therefore, in large tourna-
ments we will be able to find r -in-robust vertices for large r , which we can then use to
find k-rainbows as outlined above. This strategy yields the following bound on t(l, k).

Lemma 2.3 For every k ě 2 and 1 ď r < k,

t(l, k) ď t(l, k − 1) + g(l, k, r − 1) + 1 + 2(k − 1)lr · t(l, k − r).
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Proof Let T = (V , E) be an edge-coloured tournament with no l-flash or k-rainbow.
Let

R = {v ∈ V : no(k − 1)-rainbow ends atv}.

Then |R| ď t(l, k − 1), and every vertex in V \ R has at most k − 1 outgoing colours.
Order the vertices in V \ R in a way that maximises the number of forward edges

of T [V \ R]. In particular, every vertex in V \ R has outgoing edges to at least
half of the vertices following it. Pick a minimal initial segment P ⊆ V \ R of this
ordering such that T [P] contains an (r − 1)-in-robust vertex v (if no such vertex
exists, then we already have |V | ď |R| + |V \ R| ď t(l, k − 1) + g(l, k, r − 1)).
Note that |P| ď g(l, k, r − 1) + 1. Since v has outgoing edges to at least half of
the vertices following it, its out-neighbourhood U = {u ∈ V : vu ∈ E} satisfies
|V \ (R ∪ P)| ď 2|U |.

For every colour a ∈ C+(v), let Ua = {u ∈ U : c(vu) = a}. Since v is (r − 1)-
in-robust, we can choose an (r − 1)-rainbow Wa without colour a that ends at v, and
extend it to each of the vertices in Ua by the edges of colour a. Let Ca be the set
containing a and the r − 1 colours appearing in Wa .

Next, for every m ∈ {0, . . . , l − 1}Ca define

U m
a = {u ∈ Ua : lb(u) = mb for all b ∈ Ca}.

If the colour of an edge uw in T [U m
a ] is b, then lb(u) < lb(w), and so b /∈ Ca . Thus, if

T [U m
a ] contained a (k −r)-rainbow starting at some vertex u, then this rainbowwould

use no colour fromCa and could therefore be extended by the r -rainbow ending at u to
a k-rainbow. It follows that T [U m

a ] contains no (k − r)-rainbow, so |U m
a | ď t(l, k − r)

and

|Ua | =
∑

m∈{0,...,l−1}Ca

|U m
a | ď

∑

m∈{0,...,l−1}Ca

t(l, k − r) ď lr · t(l, k − r).

Since v has at most k − 1 outgoing colours, this implies that

|U | =
∑

a∈C+(v)

|Ua | ď
∑

a∈C+(v)

lr · t(l, k − r) ď (k − 1)lr · t(l, k − r).

Putting everything together, we get

|V | = |R| + |P| + |V \ (R ∪ P)|
ď |R| + |P| + 2|U |
ď t(l, k − 1) + g(l, k, r − 1) + 1 + 2(k − 1)lr · t(l, k − r).

�	
To apply this lemma, we need a good bound on g(l, k, r). Fortunately, we can use

a strategy similar to that used in the preceding proof to obtain the following result.
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Lemma 2.4 For every r ě 1, it holds that

g(l, k, r) ď g(l, k, r − 1) + 1 + 2(k − 1)rl · t(l, r).

Proof Let T = (V , E) be an edge-coloured tournament with no l-flash, no k-rainbow,
no r -in-robust vertex, and at most k − 1 outgoing colours at each vertex. Order the
vertices of T in a way that maximises the number of forward edges, and pick a
minimal initial segment P ⊆ V of this ordering such that T [P] contains an (r − 1)-
in-robust vertex v. As before, |P| ď g(l, k, r − 1) + 1 and the out-neighbourhood
U = {u ∈ V : vu ∈ E} of v satisfies |V \ P| ď 2|U |. For each a ∈ C+(v), define
Ua , Wa , and Ca as in the previous proof.

Next, for every colour b ∈ Ca , define

Ua,b = {u ∈ Ua : every r -rainbow ending at u contains colour b}.

By assumption, no vertex is r -in-robust, but for each u ∈ Ua there is an r -rainbow
using only the colours of Ca ending at u. It follows that Ua = ⋃

b∈Ca
Ua,b. Finally,

for every m ∈ {0, . . . , l − 1}, let

U m
a,b = {u ∈ Ua,b : lb(u) = m}.

Now, if an edge uw in T [U m
a,b] has colour b, then lb(u) < lb(w) which gives a

contradiction. Thus, if T [U m
a,b] contained an r -rainbow ending at some vertex u, then

this rainbowwould not use the colour b, contradicting u ∈ Ua,b. It follows that T [U m
a,b]

contains no r -rainbow, so |U m
a,b| ď t(l, r) and

|Ua | ď
∑

b∈Ca

|Ua,b| =
∑

b∈Ca

∑

m∈{0,...,l−1}
|U m

a,b| ď
∑

b∈Ca

∑

m∈{0,...,l−1}
t(l, r) = rl · t(l, r).

Since v has at most k − 1 outgoing colours, this implies |U | ď (k − 1)rl · t(l, r), and
so

|V | = |P| + |V \ P| ď |P| + 2|U | ď g(l, k, r − 1) + 1 + 2(k − 1)rl · t(l, r).

�	
Finally, to obtain numerical bounds on t(l, k) and g(l, k, r), we apply these recur-

sive bounds repeatedly. This is handled by the following corollary, which proves
Theorem 1.9 and gives an upper bound on g(l, k, r) that will be useful in Sect. 3.

Corollary 2.5 For every ε > 0, there is Dε such that for r < k

t(l, k) ď Dεk(log k)1+ε · lk−1 and g(l, k, r) ď 4Dεk3(log k)1+ε · lr .
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Proof From Lemma 2.3 and Lemma 2.4, we can obtain the inequalities

t(l, k) ď t(l, k − 1) + g(l, k, r − 1) + 2klr · t(l, k − r) and

g(l, k, r) ď g(l, k, r − 1) + 2k2l · t(l, r)

for k ě 2 and 1 ď r < k.
Let k0 ě 2 be such that 8(3 log k + 5)(log(3 log k + 5))1+ε ď (log k)1+ε for all

k ě k0. By Theorem 1.8, there is Dε such that t(l, k) ď Dεk(log k)1+ε · lk−1 for all
k < k0.

We prove the corollary by induction on k. Assume that we have already proved it
for all k′ < k. We may also assume that l ě 2 since t(1, k) = g(1, k, r) = 1. Then,
for r < k, a simple induction on r with base case g(l, k, 0) = 0 yields

g(l, k, r) ď g(l, k, r − 1) + 2k2l · t(l, r)

ď 4Dεk3(log k)1+ε · lr−1 + 2Dεk3(log k)1+ε · lr l 2ď 4Dεk3(log k)1+ε · lr .

To bound t(l, k), we may assume that k ě k0 by our choice of Dε. Note that

t(l, k − 1) ď Dεk(log k)1+ε · lk−2 l 2ď Dεk(log k)1+ε · lk−1

2
.

Choose

r =
⌊

k − 2 log k + log 16

log l

⌋
,

then

g(l, k, r − 1) ď 4Dεk3(log k)1+ε · lk−1− 2 log k+log 16
log l = Dεk(log k)1+ε · lk−1

4
.

Also,

r ě k − 2 log k + log 16

log l
− 1 ě k − 2 log k + log 16

log 2
− 1 ě k − (3 log k + 5)

and so, using the fact that k ě k0, we have

8(k − r)(log(k − r))1+ε ď 8(3 log k + 5)(log(3 log k + 5))1+ε ď (log k)1+ε.

It follows by induction that

2klr · t(l, k − r) ď 2k Dε(k − r)(log(k − r))1+ε · lk−1 ď Dεk(log k)1+ε · lk−1

4
.
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Combining, we obtain

t(l, k) ď t(l, k − 1) + g(l, k, r − 1) + 2klr · t(l, k − r)

ď
(
1

2
+ 1

4
+ 1

4

)
Dεk(log k)1+ε · lk−1

= Dεk(log k)1+ε · lk−1.

�	

3 Upper Bounds for Transitive Tournaments

In this section we prove Theorem 1.3, that is, we show that f (l, k) = lk−1 if l is
sufficiently large in terms of k. We will follow a similar strategy to that used by
Lefmann, Rödl, and Thomas [7] when they showed this equality for l ě (3k)2k , but
our bounds and arguments from the previous section will allow us to improve the
dependence on k.

The idea of the proof is to find a strongly (k − 2)-robust vertex, that is, a vertex v

such that there exists a set C of k − 1 colours which contains all colours incident to v

and which has the property that for all a ∈ C , there is a (k − 2)-rainbow with colour
set C \ {a} that ends at v, and also one that starts at v. The existence of such a vertex
will allow us to show that every 2-flash in the entire tournament takes its colour from
C , which will in turn allow us to reduce the problem to the l = 2 case, for which
Lefmann, Rödl, and Thomas [7] have already shown that the result holds.

Theorem 3.1 (Lefmann, Rödl, Thomas) For all positive integers k, f (2, k) = 2k−1.

This final ingredient, Theorem 3.1, is the only part of the proof where we need our
tournament to be transitive: our arguments will show that if t(2, k) = 2k−1 for all k,
then Theorem 1.3 holds with t(l, k) in place of f (l, k). For this reason, we will state
and prove most of the results in this section for arbitrary tournaments.

We begin by explaining how the fact that few colours appear in 2-flashes allows us
to reduce the problem to the l = 2 case. Write Cm-flash(v) for the set of colours a such
that there exists an m-flash of colour a containing v.

Lemma 3.2 Let 1 ď m ď l, let T = (V , E) be an edge-coloured tournament con-
taining no l-flash or k-rainbow, and suppose that |Cm-flash(v)| ď c for every vertex v.
Then,

|V | ď t(m, k)

(
l

m

)c

.

Wewill use a probabilistic argument similar to that used to prove Lemma 2.1. Here,
it suffices if la(v) simply denotes the length of the longest flash of colour a ending at
v.
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Proof For every colour a, choose a subset La ⊆ {0, . . . , l − 1} of size m uniformly
and independently at random. Define

U =
{
v ∈ V : la(v) ∈ La for all a ∈ Cm-flash(v)

}
,

and note that T [U ] contains no m-flash v0, . . . , vm in any colour a. Indeed, otherwise
la(v0) < · · · < la(vm) with a ∈ Cm-flash(vi ) for every i , so La has size at least m + 1,
which is a contradiction. Hence, |U | ď t(m, k). On the other hand, for every vertex v

we have P(v ∈ U ) = (m/l)|Cm-flash(v)| ě (m/l)c, and so

|V |
(m

l

)c ď
∑

v∈V

P(v ∈ U ) = E(|U |) ď t(m, k),

which implies that |V | ď t(m, k) (l/m)c. �	
Next, we show how the existence of a strongly (k − 2)-robust vertex implies that

few colours occur in 2-flashes.

Lemma 3.3 Let k ě 2 and let T = (V , E) be an edge-coloured tournament containing
no k-rainbow. Suppose that T contains a strongly (k − 2)-robust vertex. Then at most
k − 1 colours occur in 2-flashes.

Proof Let u be a strongly (k − 2)-robust vertex in T , and let C be the corresponding
set of k −1 colours. Suppose for a contradiction that there exists a 2-flash v0, v1, v2 of
some colour b /∈ C in T . Consider the case that the edge between u and v1 is directed
towards v1, and let a ∈ C be the colour of that edge. Since u is strongly (k −2)-robust,
some (k −2)-rainbowwith colour setC \{a} ends at u. Extending this (k −2)-rainbow
to v1 and v2 yields a k-rainbow in T , which is a contradiction. The case that the edge
between u and v1 is directed towards u is similar. Hence, no 2-flash of a colour not in
C can exist in T . Since |C | = k − 1, the result follows. �	

The last step will be to show that every sufficiently large tournament with no l-flash
or k-rainbow contains a strongly (k − 2)-robust vertex. The proof of this result is
similar to the proofs of Lemmas 2.3 and 2.4.

Lemma 3.4 Let k ě 2 and let T = (V , E) be an edge-coloured tournament containing
no l-flash and no k-rainbow with

|V | ě t(l, k − 1) + g(l, k, k − 2) + 2(k − 1)
(

t(l, k − 1) + 2(k − 1)l · t(l, k − 2)
)

+ 2.

Then T contains a strongly (k − 2)-robust vertex.

Proof Define

R = {v ∈ V : no (k − 1)-rainbow ends at v}.
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Then |R| ď t(l, k − 1), and every vertex in V \ R has at most k − 1 outgoing colours.
Order the vertices in V \ R in a way that maximises the number of forward edges

of T [V \ R], and pick a minimal initial segment P ⊆ V \ R of this ordering such that
T [P] contains a (k − 2)-in-robust vertex v. Then |P| ď g(l, k, k − 2) + 1 and the
out-neighbourhood U = {u ∈ V : vu ∈ E} of v satisfies 2|U | ě |V \ (R ∪ P)|. So,

2|U | ě |V | − |R| − |P| ě 2(k − 1)
(

t(l, k − 1) + 2(k − 1)l · t(l, k − 2)
)

+ 1

which implies that

|U | ě (k − 1)
(

t(l, k − 1) + 2(k − 1)l · t(l, k − 2)
)

+ 1.

For every colour a ∈ C+(v), let Ua = {u ∈ U : c(vu) = a}. Since v has at most k −1
outgoing colours, there must exist a colour a such that |Ua | ě |U |/(k − 1) and so

|Ua | ě t(l, k − 1) + 2(k − 1)l · t(l, k − 2) + 1.

Since v is (k − 2)-in-robust, we can choose a (k − 2)-rainbow W without colour a
that ends at v, and extend it to each of the vertices in Ua by the edges of colour a. Let
C be the set containing a and the k − 2 colours appearing in W . Then, every outgoing
colour of every vertex u ∈ Ua must be a colour from C . In particular, all edges in
T [Ua] have one of the k − 1 colours from C .

Define

S = {u ∈ Ua : no (k − 1) − rainbow inT [Ua] starts at u}.

Then |S| ď t(l, k − 1). For every vertex u ∈ Ua \ S, some (k − 1)-rainbow in T [Ua]
starts at u. Since every edge in T [Ua] has a colour from C , this (k − 1)-rainbow uses
only colours from C , and so every incoming colour of u in T must be a colour from
C .

Next, for every colour b ∈ C , define

Ua,b = {u ∈ Ua : every (k − 2)-rainbow in T [Ua] ending at u contains colour b} and

Va,b = {u ∈ Ua : every (k − 2)-rainbow in T [Ua] starting at u contains colour b}.

For every m ∈ {0, . . . , l − 1}, let

U m
a,b = {u ∈ Ua,b : lb(u) = m}.

If an edge uw in T [U m
a,b] has colour b, then lb(u) < lb(w)which gives a contradiction.

Thus, T [U m
a,b] contains no (k − 2)-rainbow, so |U m

a,b| ď t(l, k − 2) and |Ua,b| ď
l · t(l, k − 2). Similarly, |Va,b| ď l · t(l, k − 2).
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Finally, consider U ′
a = Ua \ (S ∪ ⋃

b∈C (Ua,b ∪ Va,b)), so

|U ′
a | ě |Ua | − |S| −

∑

b∈C

(|Ua,b| + |Va,b|) ě 1.

Let u ∈ U ′
a be arbitrary. For every colour b ∈ C , there is a (k − 2)-rainbow in T [Ua]

without colour b that ends at u, and also one that starts at u. Since every edge in T [Ua]
has a colour from C , the colour set of these (k − 2)-rainbows is C \ {b}. This shows
that u is strongly (k − 2)-robust in T . �	

We can now combine the preceding three lemmas and insert the bounds from the
previous section to prove the following.

Corollary 3.5 For every ε > 0, there is Cε such that for all k ě 2,

t(l, k) ď max

{

Cεk3(log k)1+ε · lk−2, t(2, k)

(
l

2

)k−1
}

.

Proof Let Dε be given by Corollary 2.5, and letCε = 12Dε. Suppose that T = (V , E)

is an edge-coloured tournament containing no l-flash and no k-rainbow with |V | ě
Cεk3(log k)1+ε · lk−2. Then, we have

|V | ě 12Dεk3(log k)1+ε · lk−2

ě 4Dεk3(log k)1+ε · lk−2 + 2k · Dεk(log k)1+ε · lk−2

+ 4k2l · Dεk(log k)1+ε · lk−3 + 2

ě g(l, k, k − 2) + (2(k − 1) + 1)t(l, k − 1) + 4(k − 1)2l · t(l, k − 2) + 2

= t(l, k − 1) + g(l, k, k − 2)

+ 2(k − 1)(t(l, k − 1) + 2(k − 1)l · t(l, k − 2)) + 2.

Hence, by Lemma 3.4, T contains a strongly (k − 2)-robust vertex. Applying
Lemma 3.3 yields that at most k − 1 colours appear in 2-flashes in T , and the result
now follows from Lemma 3.2. �	

Specialising these proofs to transitive tournaments, the preceding corollary tells
us that f (l, k) ď max{Cεk3(log k)1+ε · lk−2, f (2, k)(l/2)k−1}. We can now prove
Theorem 1.3.

Proof of Theorem 1.3 Let Cε be given by Corollary 3.5. The result is trivial for k = 1
so assume that k ě 2. If l ě Cεk3(log k)1+ε, then Cεk3(log k)1+ε · lk−2 ď lk−1,
and by Theorem 3.1 we know that f (2, k)(l/2)k−1 = lk−1. Therefore, Corollary 3.5
implies that f (l, k) ď lk−1. �	

4 Colourings of Arbitrary Tournaments

In this section, we ask how small a tournament can be while still having the property
that every colouring of its edges contains an l-flash or a k-rainbow. For k = 2, any
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non-transitive tournament is an example of this: if the tournament has a directed cycle,
this cycle either contains two consecutive edges with different colours, creating a 2-
rainbow, or the cycle is monochromatic, creating flashes of arbitrary lengths. For l ě 2
and k ě 3, we show that there are tournaments on fewer than f (l, k) vertices with the
desired property.

Proof of Theorem 1.10 Set n = f (l, k) and let T be the “increasing” transitive tour-
nament on [n − 1] with the edge from 1 to n − 1 reversed, that is V (T ) = [n − 1]
and

E(T ) = {uv : 1 ď u < v ď n − 1, uv �= (1, n − 1)} ∪ {(n − 1, 1)}.

Suppose that T has an edge colouring c with neither l-flashes nor k-rainbows. Define
an edge colouring c′ of the “increasing” transitive tournament T ′ on the vertex set
{0} ∪ [n] as follows. For any edge uv of T with uv �= (n − 1, 1), let c′(uv) = c(uv).
Next, for any v ∈ [n − 1], let c′(0, v) be the colour of any incoming edge of v in T ,
and let c′(v, n) be the colour of any outgoing edge of v in T (every vertex in T has
an incoming and outgoing edge). Finally, let c′(1, n − 1) and c′(0, n) be distinct and
entirely new colours.

Note first that the edge (0, n) is not contained in an l-flash or k-rainbow since it
is in no walk of length greater than 1. Next, the edge (1, n − 1) is not contained in
an l-flash in T ′ since there are no other edges with the same colour. It is also not
contained in a k-rainbow since the only 3-walk containing that edge is 0, 1, n − 1, n,
but c′(0, 1) = c(n − 1, 1) = c′(n − 1, n). On the other hand, for every walk w in T ′
containing neither (0, n) nor (1, n − 1), there is a walk in T with the same colours.
Indeed, if w uses the edge (0, v) for v ∈ [n − 1], then by the construction of c′ this
can be replaced by an edge of T incident to v of the same colour, and the same holds
for edges (v, n). Since T contains no l-flash and no k-rainbow, it follows that T ′ also
contains no l-flash and no k-rainbow. However, T ′ is a transitive tournament with
n + 1 = f (l, k) + 1 vertices, contradicting the definition of f (l, k). �	

In the positive direction, we prove that all tournaments with O(lk−2/
√

k) vertices
can be coloured in a way that avoids l-flashes and k-rainbows. Our construction is very
similar to the construction from the introduction which showed that f (l, k) ě lk−1.
However, it only uses those strings whose entries sum to a fixed value. This ensures
that no matter how an edge is directed, we can always pick an index where the first
string has a smaller value than the second string.

Proof of Theorem 1.11 Let

X =
{

x ∈ [l]k−1 :
k−1∑

i=1

xi =
⌊

l(k − 1)

2

⌋}

.

A result of Anderson [1] says that there is a constant C > 0 (independent of l and k)
such that |X | ě Clk−2/

√
k. Let T = (V , E) be a tournament with at most Clk−2/

√
k

vertices.

123



Combinatorica

As |V | ď |X |, we can assign to every vertex v a unique x(v) ∈ X . Define an edge
colouring of T by picking, for an edge uv ∈ E , a colour c(uv) ∈ [k − 1] such that
x(u)c(uv) < x(v)c(uv). By the construction of X , this is always possible.

Since this edge colouring uses at most k − 1 colours, there is no k-rainbow. If
there were an l-flash v0, . . . , vl of colour a, then x(v0)a < x(v1)a < · · · < x(vl)a ,
implying x(vl)a > l, which is a contradiction. Thus this gives an edge colouring of T
without l-flashes and k-rainbows. �	

Note that X is the largest antichain in the grid poset [3] and so Clk−2/
√

k is
the best bound that can be attained by this simple strategy. With additional work, it is
possible to slightly strengthenTheorem1.11.We sketch the argument,which combines
our proof with an argument from Bucić, Letzter, and Sudakov [2] and improves the
bound to Clk−2(log l)1/(k−1)/

√
k. The idea is to partition a tournament of size n into

O(n/ log l) transitive tournaments of size O(log l) each. From the introduction, we
know that each of the transitive tournaments can be coloured with k −1 colours and no
a-flash if ak−1 = �(log l). Moreover, the previous proof provides a way to colour the
edges between the transitive tournaments with k − 1 colours and no b-flash provided
bk−2/

√
k = �(n/ log l). The tournament will then contain no (ab)-flash, so we need

ab ď l, and this is satisfied if n = O(lk−2(log l)1/(k−1)/
√

k).

5 Open Problems

We have proved that Lefmann, Rödl, and Thomas’s conjecture, Conjecture 1.2, holds
for l ě k3(log k)1+o(1), but the conjecture remains openwhen l is small compared to k.
The case l = 3 (that is, proving f (3, k) = 3k−1) is already of significant interest. In this
setting, there are edge-coloured transitive tournaments with more than lk−1 vertices
that contain no l-flash and no k-rainbow starting at the first vertex. The existence of
k-rainbows starting at the first vertex was a crucial ingredient in Lefmann, Rödl, and
Thomas’s proof that f (2, k) = 2k−1.

Conjucture 1.7 remains wide open for any l ě 2 and k ě 3. Establishing this
conjecture for l = 2 would be very useful as our results would then imply that the
conjecture also holds for l ě k3(log k)1+o(1).

In terms of general upper bounds on f (l, k) and t(l, k), an interesting next step
would be to reduce the gap between the upper and the lower bounds to a multiplicative
factor that is sublinear in k. All of our arguments relied on certain vertices having at
most k − 1 outgoing colours, which always added a factor of at least k to our upper
bounds.

Problem 5.1 For positive integers l and k, is it true that f (l, k) = o(k) · lk−1?

We have also constructed a tournament with f (l, k)−1 vertices, every edge colour-
ing of which contains an l-flash or a k-rainbow. Are there tournaments with o( f (l, k))

vertices that satisfy this? We believe random tournaments are good candidates.

Problem 5.2 What is the minimal n such that, for a uniformly random tournament
on n vertices, with high probability every edge colouring contains an l-flash or a
k-rainbow?
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Finally,wedefinedflashes and rainbows in tournaments to bewalks, but it is possible
to consider the same problemwith paths instead. This adds some technical difficulties.
For example, when we split a set of vertices according to the longest flash of colour
a ending in those vertices, it is no longer guaranteed that each resulting set contains
no edge of colour a: the vertices in a directed cycle of colour a could all end up in the
same set. However, Conjecture 1.7 could still hold in this more restrictive setting.

Conjecture 5.3 Let l and k be positive integers and let T be a tournament with lk−1+1
vertices. Then every edge colouring of T contains a directed monochromatic path of
length l or a directed rainbow path of length k.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anderson, I.: A variance method in combinatorial number theory. Glasg. Math. J. 10, 126–129 (1969).
https://doi.org/10.1017/S0017089500000677
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