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Abstract
It is known that many different types of finite random subgraph models undergo quan-
titatively similar phase transitions around their percolation thresholds, and the proofs
of these results rely on isoperimetric properties of the underlying host graph. Recently,
the authors showed that such a phase transition occurs in a large class of regular high-
dimensional product graphs, generalising a classic result for the hypercube. In this
paper we give new isoperimetric inequalities for such regular high-dimensional prod-
uct graphs, which generalise the well-known isoperimetric inequality of Harper for
the hypercube, and are asymptotically sharp for a wide range of set sizes. We then use
these isoperimetric properties to investigate the structure of the giant component L1
in supercritical percolation on these product graphs, that is, when p = 1+ε

d , where d
is the degree of the product graph and ε > 0 is a small enough constant. We show
that typically L1 has edge-expansion �

( 1
d ln d

)
. Furthermore, we show that L1 likely

contains a linear-sized subgraph with vertex-expansion �
( 1
d ln d

)
. These results are

best possible up to the logarithmic factor in d. Using these likely expansion properties,
we determine, up to small polylogarithmic factors in d, the likely diameter of L1 as
well as the typical mixing time of a lazy random walk on L1. Furthermore, we show
the likely existence of a cycle of length �

( n
d ln d

)
. These results not only generalise,

but also improve substantially upon the known bounds in the case of the hypercube,

B Sahar Diskin
sahardiskin@mail.tau.ac.il

Joshua Erde
erde@math.tugraz.at

Mihyun Kang
kang@math.tugraz.at

Michael Krivelevich
krivelev@tauex.tau.ac.il

1 School of Mathematical Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel

2 Institute of Discrete Mathematics, Graz University of Technology, Steyrergasse 30, 8010 Graz,
Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00493-024-00089-0&domain=pdf


Combinatorica

where in particular the likely diameter and typical mixing time of L1 were previously
only known to be polynomial in d.

Keywords Bond percolation · Product graphs · Giant component · Isoperimetric
inequalities · Graph expansion

1 Introduction

1.1 Background andMotivation

In this paper we investigate the typical structure of the largest component after super-
critical percolation in a certain class of high-dimensional graphs. Of particular interest,
both in their own right, but also as a tool to study other structural properties, are the
isoperimetric properties of the largest component, which have proven to be key to
understanding the large-scale structure of the giant component in many percolation
models. Unsurprisingly, in order to understand the likely isoperimetric properties of
the giant component, it is first essential to study the isoperimetric properties of the
host graph.

Very generally, for any space which is endowedwith a notion of volume and bound-
ary, the isoperimetric problem is to determine which sets of fixed volume have the
smallest boundary. In the case of graphs, a natural notion of boundary to consider is
the edge-boundary. Given a graphG = (V , E) and a subset of the vertices S ⊆ V (G),
we write ∂(S) for the edge-boundary of S, that is, the set of edges with one endpoint
in S and one endpoint in V (G) \ S. The isoperimetric problem is then equivalent to
determining, for each k ∈ N, the parameter

ik(G) := min
S⊆V (G),|S|=k

{ |∂(S)|
k

}
,

and characterising the sets which achieve this minimum. Of particular interest is the
edge-isoperimetric constant of G, given by

i(G) := min
k≤|V (G)|/2{ik(G)}.

This is also sometimes called theCheeger constant, as it canbeviewedas adiscrete ana-
logue of the Cheeger isoperimetric constant of a compact Riemannian manifold [25].
It turns out that the Cheeger constant is a fundamental graph parameter, and can be
used to demonstrate deep links between the combinatorial, geometric, spectral and
stochastic properties of graphs. For this reason expander graphs, roughly speaking
graphs whose Cheeger constant is bounded from below by an absolute constant, have
turned out to be very important in diverse areas of discrete mathematics and computer
science. We refer the reader to [47] for a comprehensive survey on expander graphs
and their application.

Whilst in general it is NP-hard to determine even the edge-isoperimetric constant
of an arbitrary graph [38], much is known about the isoperimetric properties of partic-
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ularly well-structured graph classes. In particular, a classical result of Harper solves
the isoperimetric problem on the d-dimensional (binary) hypercube Qd , whose vertex
set is {0, 1}d , and in which two vertices are adjacent if and only if their Hamming
distance is one. Harper’s result implies the following isoperimetric inequality:

Theorem 1.1 ([40], see also [11, 43, 57]). Let d ∈ N. For every k ∈ [2d]

ik
(
Qd
)

≥ d − log2 k.

Furthermore, the only sets which achieve equality in the above estimate are subcubes.

The isoperimetric problem has also been solved, at least asymptotically, in many
other classes of lattice-like graphs, such as grids [1, 19], Cartesian powers of
graphs [15, 24], and Abelian Cayley graphs [8, 9, 55]. For further background, we
refer the reader to the surveys [13, 14, 42] on discrete isoperimetric problems.

On the other hand, the isoperimetric properties of particularly ‘unstructured’ graphs,
that is, graphs without any clear geometric structure, have also been well-studied. It
is known that Erdős-Rényi (binomial) random graphs [36, 48] and random d-regular
graphs [16] have typically good expansion properties, and one can view the well-
known Expander Mixing Lemma, due to Alon and Chung [5], as a bound on the edge-
isoperimetric constant of pseudo-random (n, d, λ)-graphs (see also [6]). Furthermore,
the isoperimetric properties of such graphs have been a key tool in the study of their
structural properties.

In this paper, we consider a mixture of these two paradigms. We study properties
of random subgraphs of graphs coming from a family of graphs which are quite
structured—arising from high-dimensional products of bounded graphs. As in other
percolation models, it turns out that the isoperimetric properties of these random
subgraphs are key to understanding their large-scale structure, and that in order to
understand the likely isoperimetric properties in the percolated subgraphs, it is useful
first to study the isoperimetric problem in the underlying product graphs.

Given a sequence of graphsG(1), . . . ,G(t), the Cartesian product ofG(1), . . . ,G(t),
denoted by G = G(1)� · · · �G(t) or G = �t

j=1G
( j), is the graph with the vertex set

V (G) =
{
v = (v1, v2, . . . , vt ) : v j ∈ V (G( j)) for all j ∈ [t]

}
,

and the edge set

E(G) =
{
uv : there is some j ∈ [t] such that u jv j ∈ E

(
G( j)

)

and um = vm for all m �= j

}
.

We call G( j) the base graphs of G. Note that if each G( j) is d j -regular, then G is
d-regular with d := ∑t

j=1 d j . Many well-studied families of graphs arise in this
manner. For example, the t-dimensional hypercube Qt is the t-fold Cartesian product
of a single edge. Other examples include tori, grids, Hamming graphs, and many
examples of Cayley graphs of groups arising from direct products.
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Wewill be interested in properties of random subgraphs of high-dimensional prod-
uct graphs, that is, we consider bond percolation on these graphs. Percolation theory
was initiated in 1957 by Broadbent and Hammersley [23] in order to model the flow of
fluid through amediumwith randomly blocked channels, and has become amajor area
of research. In (bond) percolation, given a host graph G and a probability p ∈ [0, 1],
we form the random subgraph Gp by including every edge of G independently with
probability p. Percolation has been studied extensively on various geometric ‘lattice-
like’ classes of graphs, and in particular on many of the families of graphs which arise
naturally as high-dimensional product graphs such as high-dimensional hypercubes [3,
18], tori [44, 45], or Hamming graphs [21, 22] (see [46, Chap. 13] for a survey on
many important results in these models). We refer the reader to the monographs [20,
39, 49] for a more comprehensive background on percolation theory.

There is an intrinsic connection between the phase transition in percolated graphs,
and the isoperimetric properties of the host graph. This connection can be seen, albeit
implicitly, already in the classical phase transition result of Erdős and Rényi [33].
In the case of percolated expander graphs, this connection is explicit in the work of
Alon, Benjamini and Stacey [4], and in the case of percolated pseudo-random graphs
in the work of Frieze, Krivelevich and Martin [37]. Ajtai, Komlós, and Szemerédi [3]
proved that Qd

p undergoes a phase transition quantitatively similar to the one which
occurs in G(n, p), and their work was later extended by Bollobás, Kohayakawa, and
Łuczak [18]—both of which explicitly rely on the isoperimetric properties of the
hypercube.

Furthermore, above the percolation threshold the connection between the isoperi-
metric properties of the host graph G, the expansion properties of the percolated
graph Gp, and the combinatorial properties of the resulting giant component in Gp

has beenmade explicit in several works. Tomention a few, Fountoulakis and Reed [34,
35], and, independently, Benjamini, Kozma and Wormald [10] study the asymptotic
mixing time of a random walk on the giant component of G(n, p) using the likely
expansion properties of connected sets (and, implicitly, the isoperimetric properties
of the complete graph); Riordan and Wormald [59] utilise likely expansion properties
in the giant component of G(n, p) in order to bound its typical diameter; and Erde,
Kang and Krivelevich [32] use the isoperimetric properties of Qd to show typical
expansion properties of the giant component of Qd

p, and derive from them the current
best known bounds on its likely circumference (that is, the length of a longest cycle),
typical diameter and asymptotic mixing time.

Recently, generalising the results of [3, 18] on Qd , the authors showed that any
high-dimensional product graph, whose base graphs are bounded in order and regular,
undergoes a phase transition in terms of its component structure around p = 1

d , where
d is the degree of the product graph, and that this phase transition is quantitatively
similar to that of G(n, p). Given a constant ε > 0, let us define y := y(ε) to be the
unique solution in (0, 1) of the equation

y = 1 − exp (−(1 + ε)y) . (1)

Theorem 1.2 (Theorem2 in [29]).LetC > 1 be a constant and let ε > 0 be sufficiently
small. For all j ∈ [t], let G( j) be a connected regular graph of degree d j such that
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1 <
∣∣V
(
G( j)

) ∣∣ ≤ C. Let G = �t
j=1G

( j), let n := |V (G)| and let p = 1+ε
d , where

d := d(G) =∑t
j=1 d j is the degree of G. Then,whp1, there exists a unique component

of order (1 + o(1)) yn in G p, where y = y(ε) is defined as in (1). Furthermore, whp,
all the remaining components of G p are of order Oε,C (d).

This can perhaps be viewed as an example of the universality of the phase transition
that G(n, p) undergoes—in many percolation models various aspects of the phase
transition close to the critical point seem to behave in a quantitatively similar manner,
under the right rescaling, independently of the host graph (see, for example [46]).
In this case, the proportion y of the host graph G which is covered by the giant
component is the same as arises in G(n, p) [33], but also in supercritical percolation
in the hypercube [3, 18], pseudo-random graphs [37], and many other percolation
models, see for example [17, 58].

Whilst the internal structure of the giant component in G(n, p) is reasonably well
understood, in other percolation models, such as hypercube percolation, many basic
questions about the structure of the giant component remain unanswered, although
in light of this universality phenomena there are natural conjectures suggested by
the structure in G(n, p). Since the expansion properties of the giant component in
G(n, p) have been key to understanding its likely structural properties, in order to
better understand the structure of the giant component in percolated high-dimensional
product graphs it is natural to ask about its expansion properties, and in order to answer
this question it seems crucial to understand first the isoperimetric properties of general
high-dimensional product graphs.

A well-known result of Chung and Tetali [26] (see also Tillich [60]) shows that,
at least on a broad scale, the isoperimetric properties of a product graph are closely
related to those of the base graphs.

Theorem 1.3 (Theorem 2 of [26]). Let G(1), . . . ,G(t) be such that |V (G( j)| > 1 for
all j ∈ [t]. Let G = �t

j=1G
( j). Then

min
j

{
i
(
G( j)

)}
≥ i(G) ≥ 1

2
min
j

{
i
(
G( j)

)}
.

However, on a finer scale we might expect smaller sets in a product graph to expand
by a larger factor than is suggested by Theorem 1.3. Indeed, in the case of the hyper-
cube, Theorem 1.3 gives a much weaker bound on the expansion of small sets than is
implied by Theorem 1.1, where the expansion of small sets is asymptotically optimal,
and this optimal expansion is critical to understanding the distribution of small per-
colation clusters in Qd

p. It is thus natural to ask whether similar isoperimetric results
hold on a finer scale for arbitrary product graphs.

1 With high probability, that is, with probability tending to 1 as t tends to infinity.
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1.2 Main Results

Our first main results are two edge-isoperimetric inequalities for high-dimensional
product graphs, under mild assumptions on the base graphs. The first concerns high-
dimensional product graphs whose base graphs are bounded and regular.

Theorem 1 Let C > 1 be an integer. For all j ∈ [t], let G( j) be a d j -regular graph
with 1 < |V (G( j))| ≤ C. Let G = �t

j=1G
( j), let n := |V (G)| and let d :=∑t

j=1 d j .
Then for any k ∈ [n],

ik(G) ≥ d − (C − 1) log2 k.

Observe that if log2 k � d, then Theorem 1 implies that ik(G) ≥ (1 − o(1))d
which, since G is d-regular, is asymptotically optimal. Furthermore, in the particular
case of Qd we have that C = 2, and this result recovers the tight bound for the
hypercube (Theorem 1.1). Note, however, that when the base graphs are larger, there
are k ∈ [n] with (C − 1) log2 k > d, for which Theorem 1 gives a trivial bound for
ik(G).

The second isoperimetric inequality holds for high-dimensional product graphs
whose base graphs are bounded and connected (and not necessarily regular), and
gives an effective bound for larger values of k.

Theorem 2 Let C > 1 be an integer. For all j ∈ [t], let G( j) be a connected graph
with 1 < |V (G( j))| ≤ C. Let G = �t

j=1G
( j) and let n := |V (G)|. Then for any

k ∈ [n],

ik(G) ≥ 1

C − 1
logC

(n
k

)
.

Note that, taking C = 2, Theorem 2 also implies the classical edge-isoperimetric
bound for the hypercube. Furthermore, in general Theorem 2 implies that ik(G) =
�
(
ln
( n
k

))
for all k ∈ [n], which recovers the asymptotic result of Tillich [60] on high-

dimensional Cartesian powers of graphs, which was proved using analytic methods
inspired by isoperimetric problems in Riemannian geometry. Let us also mention a
related result of Lev [55] which shows that ik(G) has the same asymptotic growth rate
in any Abelian Cayley graph, where the implicit constant depends on the exponent
of the underlying group. Moreover, for many different types of product graphs where
the isoperimetric problem has been studied, among them Hamming graphs [14] and
the d-dimensional torus graphs [24], the bound given by Theorem 2 is known to be
asymptotically tight up to a multiplicative constant. In fact, as we will discuss in
more detail in Sect. 7, it can be shown that Theorem 2 is asymptotically tight for any
high-dimensional product graph all of whose base graphs are isomorphic.

Using these new isoperimetric inequalities, we are able to derive several likely
expansion properties of the giant component after percolation in a high-dimensional
product graph whose base graphs are regular and of bounded order. These typical
expansion properties which we will present, and their consequences, not only gen-
eralise but also improve substantially upon the known typical bounds in Qd

p given
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in [32]. We note that while we present the results in the supercritical regime, that is
when ε > 0 is a small constant and p = 1+ε

d , the results naturally extend (with slight
adaptations in the statements) to the sparse regime, that is, when p = c

d for constant
c > 1.

Given a graph G, a subset S ⊆ V (G) and r ∈ N, we denote by Nr
G(S) the r -th

external neighbourhood of S in G, that is, the set of vertices in V (G) \ S which are
at distance at most r from S in G. When r = 1, we omit the superscript.

Theorem 3 Let C > 1 be an integer. For all j ∈ [t], let G( j) be a d j -regular connected
graph with 1 < |V (G( j))| ≤ C. Let G = �t

j=1G
( j), let n := |V (G)| and let

d :=∑t
j=1 d j . Let ε > 0 be a small enough constant and let p = 1+ε

d . Let L1 be the
largest component in G p. Then, there exists a positive constant c = c(ε) such that
whp,

(a) for all k ≤ 3εn
2 and all subsets S ⊆ V (L1) with |S| = k,

|∂Gp (S)| ≥ c|S|
d ln d

;

(b) for all ε2n ≤ k ≤ 3εn
2 and all subsets S ⊆ V (L1) with |S| = k,

|NGp (S)| ≥ c|S|
d ln d

.

We note that, since G is d-regular, Theorem 3(a) implies a lower bound of

�
(

1
d2 ln d

)
on the vertex-expansion of arbitrary subsets of L1. Theorem 3(b) then

improves this by a factor of d for linear-sized sets.
If we make the additional assumption that our subset S ⊆ V (L1) is connected, that

is, Gp[S] is connected, then we are able to give stronger bounds on the expansion.

Theorem 4 Let C > 1 be an integer. For all j ∈ [t], let G( j) be a d j -regular connected
graph with 1 < |V (G( j))| ≤ C. Let G = �t

j=1G
( j), let n := |V (G)| and let

d :=∑t
j=1 d j . Let ε > 0 be a small enough constant and let p = 1+ε

d . Let L1 be the
largest component in G p. Then, there exists a positive constant c = c(ε) such that
whp for all subsets S ⊆ V (L1) with |S| = k and G p[S] connected,
(a) for all 9 ln c·d

ε2
≤ k ≤ nε5 ,

|NGp (S)| ≥ c|S|;

(b) for all nε5 ≤ k ≤ 3εn
2 ,

|∂Gp (S)| ≥
c|S| ln

(
n
|S|
)

d ln d
.
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One interesting interpretation of Theorem 4, noting that the bound in Theorem 4(a)
implies the bound in Theorem 4(b) for the same range of k, is as a sparsification of
Theorem 2, and so in the particular case of the hypercube a sparsification of Harper’s
theorem. In other words, recalling that we are interested in percolationwith probability
p = �

( 1
d

)
, broadly Theorem 4 tells us that, if we restrict ourselves to connected

subsets which are not too small, then the naive isoperimetric inequality that holds in
expectation inGp by Theorem 2 for a given set, actually holdswhp up to a logarithmic
factor for all sets simultaneously. We note that the restriction to large connected sets
here is necessary, due to the likely existence of bare paths of length �(d) in Gp,
which can be shown by elementary arguments, which are connected but exhibit poor
expansion, and in fact the likely existence of a disjoint family of such paths of large
total volume.

Let us make a few clarifying remarks about Theorems 3 and 4. We note first that
Theorem 4 implies Theorem 3(a). Indeed, given such a (not necessarily connected)
set S, each component K of Gp[S] either has order at least 9d lnC

ε2
, and hence by

Theorem 4 whp has edge-boundary at least c |K |
d ln d , or has size at most 9d lnC

ε2
and at

least one edge in its boundary, since L1 is connected, and hence has edge-boundary of

order �
( |K |

d

)
. Since the edge-boundaries for different components are disjoint, the

claim follows.
We note further that the results in Theorems 3 and 4 are (almost-)optimal for

a wide range of choices of k. Indeed, since |NG(S)| ≤ |S|d for all subsets S, a
simple first-moment calculation shows that Theorem 4(a) is optimal up to the constant
factor. Moreover, Theorem 4(b) (and hence also Theorem 3(b)) are optimal up to the
logarithmic factor in d. Indeed, consider the particular example of Qd

p and let Q′ be
the subcube of Qd obtained by fixing the first log2 x coordinates to be 0, noting that
|V (Q′)| = n

x := k, and that every vertex in Q′ is adjacent to at most log2 x = log2
( n
k

)

vertices in Qd \ Q′. Therefore, by a Chernoff-type bound, whp the edge-boundary of

V (Q′) (and hence its vertex-boundary) in Qd
p has order O

(
k ln( n

k )
d

)
. In particular, if

log2 x � εd, then Q′
p is supercritical and contains a connected subset S of order�(k),

whose edge-boundary (and hence vertex-boundary) has size at most that of V (Q′),

and hence is of order O
(
k ln( n

k )
d

)
= O

( |S| ln
(

n
|S|
)

d

)
.

Finally, it is worth comparing Theorem 3 with the expansion properties of the giant
component of Qd

p, as given in [32]. There, it was shown that for any set S ⊆ V (L1),

whp |NGp (S)| = �
( |S|
d5

)
, and for linear-sized subsets Swhp |NGp (S)| = �

( |S|
d2 ln d

)
.

In comparison, as mentioned above, it follows from Theorem 3 that whp for any set

S ⊆ V (L1), |∂Gp (S)| = �
( |S|
d ln d

)
and |NGp (S)| = �

( |S|
d2 ln d

)
, and for linear-sized

subsets, whp |NGp (S)| = �
( |S|
d ln d

)
.

A particularly interesting consequence that we can derive fromTheorem 3(b) is that
typically L1 contains a linear-sized subgraph which is a good expander at all scales.

Theorem 5 Let C > 1 be an integer. For all j ∈ [t], let G( j) be a d j -regular connected
graph with 1 < |V (G( j))| ≤ C. Let G = �t

j=1G
( j), let n := |V (G)| and let
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d :=∑t
j=1 d j . Let ε > 0 be a small enough constant and let p = 1+ε

d . Let L1 be the
largest component in G p. Then, there exists a positive constant c = c(ε) such that
whp the following holds. There exists a subgraph H ⊆ L1 such that |V (H)| ≥ 3εn

2 ,

and for every S ⊆ V (H) with |S| ≤ |V (H)|
2 ,

|NH (S)| ≥ c|S|
d ln d

.

Remark 1.4 The fraction 3
2 in Theorem 5 can be replaced by any constant strictly

smaller than 2. In particular, since whp |V (L1)| = (
2ε − O(ε2)

)
n, we can choose

an H which covers almost all of the vertices of L1.

We note that, in the case of the hypercube, as shown in [32, Claim 5.2], whp
every linear-sized subgraph of the giant component in a supercritical Qd

p has edge-

expansion O
( 1
d

)
, and thus Theorem 5 is optimal up to the logarithmic factor in d.

In the case of G(n, p), Benjamini, Kozma and Wormald [10], and Krivelevich [50]
showed that in the supercritical regime there is typically a linear-sized subgraph H of
the giant component with a constant edge- and vertex-expansion (see also [28]). This
result and the accompanying structural description of the giant component in terms
of this expanding subgraph given by Benjamini, Kozma and Wormald [10], can be
used to determine the asymptotic order of many important structural parameters of the
giant component in G(n, p). An analogous description of the structure of the giant
component in a percolated high-dimensional product graph is likely to be useful for
determining its finer structure.

Using Theorems 4 and 3(b), we can obtain several interesting consequences on the
typical structure of L1.

Theorem 6 Let C > 1 be an integer. For all j ∈ [t], let G( j) be a d j -regular connected
graph with 1 < |V (G( j))| ≤ C. Let G = �t

j=1G
( j), let n := |V (G)| and let

d :=∑t
j=1 d j . Let ε > 0 be a small enough constant, let p = 1+ε

d , and let L1 be the
largest component of G p. Then whp,

(a) the diameter of L1 is O(d ln2 d);
(b) the mixing time of a lazy random walk on L1 is O(d2 ln2 d);
(c) the circumference of L1 is �

( n
d ln d

)
.

The bounds given in Theorem 6(a), (b), and (c) are close to optimal, up to a mul-
tiplicative factor of ln2 d in the first two cases and of d ln d in the latter case. In the
case of Theorem 6(c) this is immediate, and in the other two cases, this follows from
the likely existence in Gp of a bare path of length �(d). Furthermore, note that these
typical bounds not only generalise but also improve substantially upon the typical
bounds in Qd

p given in [32].
The structure of the paper is as follows. In Sect. 2, we provide an outline of the

proofs of our main results, stressing also the main challenges one needs to overcome,
our approach towards them and the key novelties of this paper. In Sect. 3, we present
and establish several lemmas that will be useful for us throughout the paper. In Sect. 4,
we prove Theorems 1 and 2 (the reader who is interested in the implications of our
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results for the hypercube can recall Harper’s inequality: ik(Qd) ≥ d − log2 k, think
of our base graphs as K2, and skip Sect. 4). In Sect. 5 we prove Theorems 3, 4 and 5.
In Sect. 6 we prove Theorems 6(c), (a) and (b). Finally, in Sect. 7 we mention some
questions and open problems.

2 Outline of the Proofs

For the proof of Theorem 1, since we assume that the graph is regular, it suffices to
bound from above the density of any set of a given size. To that end, we can use the
product structure of G to decompose it into disjoint projections of lower dimension.
Then, given a subset S ⊆ V (G), this decomposition of G induces a partition of S,
and we can express the density of S as a function of the density inside each partition
class and the density between the partition classes. Since each partition class lives in a
lower dimensional projection, we can bound its density inductively. However, whilst
our desired bound is subadditive, we require a stronger inequality (Corollary 4.2) to
account for the cross-partition density,whichweprove using a novel entropic argument
(Lemma 4.1).

The proof of Theorem 2 also utilises the entropy function. More explicitly, given
a subset S ⊆ V (G), we consider a uniformly chosen random vertex in S, which we
can consider as a random vector in the product space V (G). It can be shown that the
entropy of suitable projections of this random vector can be bounded in terms of the
edge boundary of S in a fixed direction. We can then combine these individual bounds
into a bound for ∂(S) in terms of |S| using Shearer’s inequality.

Moving to our results on typical expansion properties of the giant component L1,
for small enough sets, we can combine our almost tight isoperimetric inequality (The-
orem 1) with good bounds on the number of connected subsets of G (Lemma 3.3)
to argue via a first-moment calculation that it is unlikely that any small connected
subset of L1 does not expand well. This allows one to derive Theorem 4(a). In the
proof of Theorem 4(a) there is a trade-off, in (9), between the enumerative bound of
the number of connected sets of size k, and the probability bound that these sets have
small expansion, which is related to the isoperimetric inequality. For larger sets, the
strategy of Theorem 4(a) is ineffective because of the limitations of the isoperimet-
ric inequality, leading to a weaker probability bound, and for disconnected sets the
strategy is ineffective due to a weaker enumerative bound, as there are many more
disconnected sets than connected sets.

Thus, our key improvements come in the proof of Theorem 4(b) and Theorem 3,
and therein lie several novel techniques, embedded in two key lemmas: Lemma 5.3
and Lemma 5.7. We argue via a two-round exposure. Setting δ = δ(ε) � ε we define
p2 = δ

d and let p1 be such that (1 − p1)(1 − p2) = 1 − p, so that Gp has the same
distribution as Gp1 ∪ Gp2 , noting that p1 ≥ 1+ε−δ

d . By Theorem 1.2, we know that
whp Gp1 already contains a giant component of linear order, which we denote by L ′

1.
Furthermore, note that whp, L ′

1 will be a subgraph of L1, the giant component of Gp

(in fact, typically it will cover most of the vertices of L1). We thus informally refer to
L ′
1 as the early giant.
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Key ideas of [32], which we generalise to the setting of high-dimensional product
graphs, use an isoperimetric inequality (Theorem 2) to give a strong probability bound
for the event that a given subset of L ′

1 does not expand well after sprinkling (see
Lemma 5.2 and [32, Lemma 3.4]). However, a naive enumerative bound on the number
of subsets of L ′

1 is too weak to conclude that whp every subset of L ′
1 expands well,

using a union bound.
An essential contribution here is then a novel double counting argument to improve

this enumerative bound. Indeed, we only need to demonstrate an expansion property
for the subsets of L ′

1 which do not already expand inside L ′
1, where the required

expansion factor is od(1). In particular, for each such set S the size of its boundary
B in L ′

1 is significantly smaller than the size of S, and so naively, enumerating over
the set of possible boundaries should be more effective than enumerating over the sets
themselves. Of course, there may be many sets S with the same boundary, but we will
see that again the assumption that S does not expand well will allow us to give an
effective bound on the number of relevant S with boundary B (see Lemma 5.3).

Naturally, the subsets we consider can contain many vertices from the residue
L1 − L ′

1, and thus showing good expansion of subsets of the early giant L
′
1 in L1 does

not immediately imply good expansion in L1. Our second key contribution then lies
in the analysis of the typical structure of subsets in the residue, and in particular their
likely expansion into the early giant (see Lemmas 5.4 and 5.7). Having all these tools
at hand, we prove Theorems 3 and 4.

The proof of Theorem 5 uses ideas from [51] to move from expansion at a fixed
scale to expansion at all scales, together with our expansion result on large sets (Theo-
rem 3(b)). Having found a large expander subgraph, one can then derive the existence
of a long cycle (Theorem 6(c)) using techniques from [52]. For Theorem 6(a), we
analyse the growth rate of a ball of given radius. To obtain tight results, we use the
edge-expansion of connected sets given in Theorem 4, together with the fact that,
typically, connected subsets of the random subgraph Gp are not dense, and thus edge-
expansion is tightly connected to vertex expansion (see [54] for similar ideas). Finally,
Theorem 6(b) follows from a careful analysis of the method of Fountoulakis and Reed
together with our results on the expansion of connected sets (see [31, 35, 54] for
somewhat similar implementations).

3 Preliminary Lemmas

We will use the following standard Chernoff type bound on the tail probabilities of
the binomial distribution (see, for example, Appendix A in [7]):

Lemma 3.1 Let N ∈ N, let p ∈ [0, 1], and let X ∼ Bin(N , p). Then for any b > 0,

P (X ≥ bNp) ≤
( e
b

)bNp
.

We will also use the well-known Azuma–Hoeffding inequality (see, for example,
Chap. 7 in [7]),
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Lemma 3.2 Let X = (X1, X2, . . . , Xm) be a random vector with range � =∏
i∈[m] �i and let f : � → R be such that there exists D ∈ R+ such that for

every x, x ′ ∈ � which differ only in the j th coordinate,

| f (x) − f (x ′)| ≤ D.

Then, for every b ≥ 0,

P
[∣∣ f (X) − E [ f (X)]

∣∣ ≥ b
] ≤ 2 exp

(
− b2

2mD2

)
.

We require the following bound on the number of k-vertex trees in a d-regular graph
G, which follows immediately from Lemma 2 in [12].

Lemma 3.3 Let k ∈ N and let tk(G) be the number of trees on k vertices which are
subgraphs of an n-vertex d-regular graph G. Then

tk(G) ≤ n(ed)k−1.

In certain situations it will be useful to decompose a tree into connected parts of
roughly equal size. In [32, Lemma 2.2] and [53, Proposition 4.5], such a result is given
where the tree is decomposed into vertex-disjoint subsets, but where the gap between
the sizes of the subsets grows with the maximum degree of the tree. For our purposes,
we will require a similar result with tighter control over the size of the parts. To do
so, we instead decompose into edge-disjoint subsets, which allows us to bound the
difference in the sizes of the subsets independently of the tree.

Lemma 3.4 Let 	 > 0 be an integer. Let T be a tree with |V (T )| ≥ 	. Then, there exist
vertex sets A1, . . . As such that:

(a) V (T ) =⋃1≤i≤s Ai ;
(b) T [Ai ] is connected for all i ∈ [s];
(c) |Ai ∩

(⋃
j∈([s]\{i}) A j

)
| ≤ 1; and

(d) 	 ≤ |Ai | ≤ 3	 for all i ∈ [s].
Proof We prove the result by induction on m = |V (T )|. If 	 ≤ m ≤ 3	, the trivial
partition A1 = V (T ) satisfies the conclusion of the lemma. Suppose then thatm > 3	,
and that the statement holds for all trees T ′ where 	 ≤ |V (T ′)| < m. Let us choose
an arbitrary root w ∈ V (T ) for T . For each v ∈ V (T ), we write Tv for the subtree of
T rooted at v.

Let v be a vertex of maximal distance from w such that |V (Tv)| ≥ 	. Note that
by our choice of v, |V (Tx )| < 	 for every child x of v. Then, there exists a subset
of the children of v, X0 ⊆ V (T ), such that 	 − 1 ≤ ∑

x∈X0
|V (Tx )| ≤ 2	 − 2.

Set A1 = {v} ∪⋃x∈X0
V (Tx ), and note that 	 ≤ |A1| ≤ 2	 − 1 and that T [A1] is

connected. Set T ′ = T \ ⋃x∈X0
V (Tx ), and note that T ′ is connected with |T | >

|T ′| ≥ |T | − (2	 − 2) ≥ 	. We may thus apply the induction hypothesis to T ′,
producing A2, . . . , As satisfying properties (a) through (d) with respect to T ′.
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Consider the sets A1, A2, . . . , As with respect to T . Properties (a), (b) and (d) are
clear from the above construction. Since V (T ) ∩ V (T ′) = {v}, v is the only vertex
that can be shared by A1 and any A j with j > 1, and so property (c) is satisfied as
well. �

The following theorem will allow us to deduce the existence of a long cycle in a
graph with good vertex-expansion.

Theorem 3.5 [52, Theorem 1] Let a ≥ 1, b ≥ 2 be integers. Let G be a graph on more
than a vertices satisfying

|N (S)| ≥ b, for every S ⊆ V (G) with
a

2
≤ |S| ≤ a.

Then G contains a cycle of length at least b + 1.

Given a discrete random variable X taking values in some range X , the entropy of
X is given by

H(X) :=
∑

x∈X
−p(x) log2 p(x),

where p(x) := P(X = x) and we follow the convention that x log2 x = 0
for x = 0. Given discrete random variables X1, X2, . . . , Xt , the joint entropy
H(X1, X2, . . . , Xt ) is defined tobe the entropyof the randomvector (X1, X2, . . . , Xt ).
We denote by

H (X1, X2, . . . , Xt |Xt+1) := H (X1, X2, . . . , Xt+1) − H (Xt+1)

the conditional entropy of (X1, . . . , Xt ) given Xt+1.

Remark 3.6 Observe that if X1 determines X2, then by definition

H(X1|X2) = H(X1, X2) − H(X2) = H(X1) − H(X2). (2)

Furthermore, if X3 determines X2, then

H(X1, X2|X3) = H(X1, X2, X3) − H(X3) = H(X1, X3) − H(X3) = H(X1|X3).

(3)

Finally, given a random vector X = (X1, . . . , Xt ) and I ⊆ [t], we denote by XI

the random vector (Xi )i∈I .
We will require the following property of the entropy function due to Shearer (see,

for example, [7, Chap. 7]):
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Lemma 3.7 (Shearer’s inequality). Let X1, . . . , Xt be discrete random variables and
let A be a collection of (not necessarily distinct) subsets of [t], such that each i ∈ [t]
is in at least m members of A. Then

H(X1, . . . , Xt ) ≤ 1

m

∑

A∈A
H(XA).

Throughout the rest of the paper, unless explicitly mentioned otherwise, we assume
that C > 1 and G = �t

j=1G
( j) is a high-dimensional product graph, whose base

graphs G( j) are connected and d j -regular with 1 < |V (G( j)| ≤ C . Without loss of
generality we can assume that C := C (G) = max j∈[t]{|V (G( j))|}.

We follow the notation regarding product graphs as in [30]. Given a product
graph G = �t

j=1G
( j), we call the G( j) the base graphs of G. Given a vertex

u = (u1, u2, . . . , ut ) in V (G) and j ∈ [t] we call the vertex u j ∈ V (G( j)) the
j-th coordinate of G. Whenever confusion may arise, we will clarify whether the
subscript stands for the enumeration of the vertices of the set, or for their coordinates.
WhenG( j) is a graph on a single vertex, that is,G( j) = ({u}, ∅), we call it trivial (and
non-trivial, otherwise). We define the dimension of G = �t

j=1G
( j) to be the number

of base graphs G( j) of G which are non-trivial (we note that the dimension of G is not
an invariant of G, and in fact depends on the choice of the base graphs). We note that
G is also regular, and we write d := ∑t

j=1 d j , which can be seen to be the degree of
G, and let n := |V (G)|. Furthermore, we assume in what follows that ε > 0 is a small
enough constant, and let p = 1+ε

d . We denote by Gp the graph obtained by retaining
every edge of G independently with probability p.

Given a subgraph H ⊆ G, we denote by d(H) the average degree of the subgraph
H . Given two subsets A, B ⊆ V (G) with A ∩ B = ∅, we denote by e(A, B) the
number of edges between A and B. Furthermore, given a subset A ⊆ G, we let
e(A) := |E(G[A])|. Finally, given a vertex v ∈ V (G) and a subset A ⊆ V (G), we
denote by dA(v) the number of neighbours of v in A.

We close this section with two lemmas about the structure of percolated product
graphs. The first one is about large matchings in a random edge-subset, and is a fairly
straightforward generalisation of Lemma 2.9 in [32].

Lemma 3.8 Let G be a d-regular graph. Let c1 > 0 and 0 < δ < 1 be constants.
Let s ≥ c1d. Let F ⊆ E(G) be such that |F | ≥ s and let q = δ

d . Then, there exists
a constant c2 = c2(c1, δ) such that Fq , a random subset of F obtained by retaining
each edge independently with probability q, contains a matching of size at least c2s

d
with probability at least 1 − exp

(− c2s
d

)
.

Proof We may assume |F | = s. If the matching number of Fq is less than c2s
d , then

Fq contains a maximal (by inclusion) matching of size 	 < c2s
d . Let us then consider

the number of maximal matchings in Fq of size 	 < c2s
d .

There are at most
(|F |

	

) = (s
	

)
maximal matchings of size 	 in F . Given a fixed

matching M of size 	 in F , in order for it to be a maximal matching in Fq its edges
have to be retained, which happens with probability q	, and there are no other edges
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in Fq which are disjoint from M . Since G is d-regular, there are at most 2	d edges
which share a vertex with edges in M . Hence, there is a set of at least |F |− 2	d edges
which do not appear in Fq , which happens with probability at most

(1 − q)|F |−2	d ≤ exp

(
−δs(1 − 2c2)

d

)
.

Therefore, by the union bound, the probability that Fq contains a maximal matching
of size 	 < c2s

d is at most

c2s
d∑

	=0

(
s

	

)(
δ

d

)	

exp

(
−δs(1 − 2c2)

d

)
≤ exp

(
−δs(1 − 2c2)

d

)
⎛

⎜
⎝1 +

c2s
d∑

	=1

(
eδs

d	

)	

⎞

⎟
⎠ .

Since s ≥ c1d and for c2 = c2(c1, δ) small enough in terms of c1 and δ, the ratio

of consecutive terms
( eδs
d	

)	
is at least 2, and hence the sum is dominated by the final

term. Therefore,

exp

(
−δs(1 − 2c2)

d

)
⎛

⎜
⎝1 +

c2s
d∑

	=1

(
eδs

d	

)	

⎞

⎟
⎠ ≤ 3 exp

(
−δs(1 − 2c2)

d

)(
eδ

c2

) c2s
d

≤ exp
(
−c2s

d

)
,

for small enough c2. �
The second result bounds the typical number of high-degree vertices in Gp.

Lemma 3.9 Whp, there are at most n
d4

vertices of degree at least ln d in G p.

Proof Fix a vertex v ∈ V (G). The degree of v in Gp is distributed according to
Bin(d, p). Thus, by Lemma 3.1,

P
(
dGp (v) ≥ ln d

) ≤
(
e(1 + ε)

ln d

)ln d

≤ d− ln ln d
2 .

Hence, the expected number of vertices in Gp with degree at least ln d is at most

nd− ln ln d
2 . Therefore, by Markov’s inequality, whp there are at most n

d4
vertices of

degree at least ln d in Gp. �

4 Isoperimetric Inequalities

The proofs of Theorems 1 and 2 will both use discrete entropy as a tool, but in quite
different ways. For the proof of Theorem 1, we require the following lemma bounding
the entropy of a random variable from below.
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Lemma 4.1 Let C ≥ 2 be an integer and let X be a random variable supported on
[C]. For each i ∈ [C], let p(i) := P(X = i). Assume without loss of generality that
p(1) ≤ p(2) ≤ . . . ≤ p(C). Then

C

C − 1
(1 − p(C)) ≤ H(X).

Proof Weprove the result by induction onC . ForC = 2we note that 0 ≤ p(1) ≤ p(2)
and p(1) + p(2) = 1, and so in particular p(1)p(2) ≤ 1

4 . It follows that

H(X) = p(1) log2
1

p(1)
+ p(2) log2

1

p(2)
≥ p(1)

(
log2

1

p(1)
+ log2

1

p(2)

)

= p(1)

(
log2

1

p(1)p(2)

)
≥ p(1) log2 4 ≥ 2p(1) = 2 (1 − p(2)) .

Suppose that C > 2. Let Y be the indicator random variable of the event that
X = C . Note that because X determines Y , by Remark 3.6,

H(X) = H(X ,Y ) = H(Y ) + H(X |Y ).

Let q(1) := P(Y = 1) = p(C) and q(0) := P(Y = 0) =∑C−1
i=1 p(i).

If q(1) ≥ q(0), then by the induction hypothesis applied to Y we can conclude that

H(X) ≥ H(Y ) ≥ C

C − 1
(1 − q(1)) = C

C − 1
(1 − p(C)) ,

as claimed.
Otherwise, again by the induction hypothesis applied to Y , we have that

H(Y ) ≥ C

C − 1
(1 − q(0)) .

Thus, we obtain that

H(X) = H(Y ) + H(X |Y )

≥ C

C − 1
(1 − q(0)) + P(Y = 1)H(X |Y = 1) + P(Y = 0)H(X |Y = 0).

However, on the event {Y = 1} we have X = C , and so the second term is 0, and by
the induction hypothesis applied to the random variable X conditional on {Y = 0},
which is supported on [C − 1], we can conclude that

H(X |Y = 0) ≥ C − 1

C − 2

(
1 − p(C − 1)

q(0)

)
.
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It follows that

H(X) ≥ C

C − 1
(1 − q(0)) + C − 1

C − 2
q(0)

(
1 − p(C − 1)

q(0)

)

= C

C − 1
− C

C − 1
q(0) + C − 1

C − 2
q(0) − C − 1

C − 2
p(C − 1)

≥ C

C − 1
(1 − p(C)) .

�
An immediate corollary of Lemma 4.1 is the following inequality which is key to

the proof of Theorem 1.

Corollary 4.2 Let C ≥ 2 be an integer and let 0 ≤ k1 ≤ · · · ≤ kC and k = ∑C
i=1 ki .

Then

C

C − 1
(k − kC ) +

C∑

i=1

ki log2 ki ≤ k log2 k.

Proof Let X be a random variable supported on [C] with p(i) = P(X = i) = ki
k for

each i ∈ [C]. Then, by the previous lemma,

C

C − 1

(
1 − kC

k

)
≤ H(X) =

C∑

i=1

ki
k
log2

k

ki

=
C∑

i=1

ki
k
log2 k −

C∑

i=1

ki
k
log2 ki

= log2 k −
C∑

i=1

ki
k
log2 ki ,

which rearranges to give the claimed inequality. �
As will be seen in the proof of Theorem 1, the inequality proven in Corollary 4.2

allows us to inductively bound the density of certain sets by considering an appropriate
collection of projections. Using the regularity of the graph we can relate this density
bound to an isoperimetric inequality.

Proof of Theorem 1 Let k := |S|, and we may assume that k ≥ 2. We claim that

∑

v∈S
dG[S](v) ≤ (C − 1)k log2 k. (4)

Then, assuming that (4) holds, since G is d-regular we obtain that

|∂S| = |S| (d − d(G[S])) ≥ k(d − (C − 1) log2 k),

123



Combinatorica

as required.
We prove (4) by induction on the dimension t of the product graph G. For t = 1,

since 2 ≤ k ≤ C , we indeed have that

∑

v∈S
dG[S](v) ≤ k(k − 1)

2
≤ (C − 1)k log2 k.

Assume that (4) holds for all graphs of dimension t ′ < t . We may assume that,
without loss of generality, V (G(1)) = {v1, . . . , vC }. Let H1, . . . , HC be pairwise
disjoint projections of G, such that Hi is obtained by fixing the first coordinate of
G to be vi ∈ V (G(1)). Let Si = S ∩ V (Hi ) and set ki := |Si |. Note that we have∑C

i=1 ki = k, and we may assume without loss of generality that k1 ≤ k2 ≤ . . . ≤ kC .
Since each Hi has dimension t − 1, by the induction hypothesis, for all 1 ≤ i ≤ C ,

∑

v∈Si
dG[Si ](v) =

∑

v∈Si
dHi [Si ](v) ≤ (C − 1)ki log2 ki .

Furthermore, observe that each vertex in Hi has at most one neighbour in each Hj

for j �= i . In particular, since k1 ≤ k2 ≤ . . . ≤ kC , it follows that e(Si , S j ) ≤ ki
whenever i ≤ j . Thus,

∑

v∈S
dG[S](v) =

C∑

i=1

⎛

⎝
∑

v∈Si
dG[Si ](v) +

∑

j �=i

e(Si , S j )

⎞

⎠

≤
C∑

i=1

⎛

⎝(C − 1)ki log2 ki + (C − i)ki +
∑

j<i

k j

⎞

⎠

≤
C∑

i=1

(
(C − 1)ki log2 ki + (C − i)ki + (i − 1)ki−1

)

≤ C (k − kC ) + (C − 1)
C∑

i=1

ki log2 ki .

Therefore, we have by the above and by Corollary 4.2 that

∑

v∈S
dG [S](v) ≤ (C − 1)

(
C

C − 1
(k − kC ) +

C∑

i=1

ki log2 ki

)

≤ (C − 1)k log2 k,

as claimed. �
The proof of Theorem 2 will also utilise the entropy function, specifically Shearer’s

Lemma (Lemma 3.7) in a key way.

Proof of Theorem 2 Given S ⊆ V (G), let X be a uniformly distributed randomvariable
on S, so that H(X) = log2 |S|. Observe that we may consider X as a random vector
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X = (X1, . . . , Xt ), where the random variables Xi are given by the coordinates of
the vertex X ∈ V (G(1)) × · · · × V (G(t)). For each i ∈ [t] let A−i := [t] \ {i} and let
us set

X−i := XA−i = (X1, . . . , Xi−1, Xi+1, . . . , Xt ).

Note that each i ∈ [t] appears in exactly t − 1 members of the family A =
{A−i : i ∈ [t]}.

Thus, by Lemma 3.7,

H(X) ≤ 1

t − 1

t∑

i=1

H(X−i ). (5)

Therefore, observing that X determines X−i and Xi , we have by the above and by
Remark 3.6 that

H(X)
(5)≥

t∑

i=1

(H(X) − H(X−i ))
(2)=

t∑

i=1

H(X |X−i ) =
t∑

i=1

H(Xi , X−i |X−i )

(3)=
t∑

i=1

H(Xi |X−i ). (6)

By definition,

H(Xi |X−i ) =
∑

x−i

P(X−i = x−i )H(Xi |X−i = x−i ) =:
∑

x−i

w(x−i ), (7)

where the sum ranges over the vectors x−i in the range of X−i .
Given such a point x−i , there are 1 ≤ r(x−i ) ≤ Ci := |V (G(i))| vertices in S

whose projection is x−i , where P(X−i = x−i ) = r(x−i )
|S| . Then, since X is uniformly

distributed on S,

H(Xi |X−i = x−i ) = log2 r(x−i ).

It follows that for each x−i ,

w(x−i ) = r(x−i ) log2 r(x−i )

|S| ≤ r(x−i ) log2 Ci

|S| =: w′(x−i ),

with equality if and only if r(x−i ) = Ci .
However, since each G(i) is connected, for each x−i in the range of X−i where

r(x−i ) < Ci there is at least one edge in the edge-boundary of S in direction i . In
particular, there are at most |∂i (S)| many vectors x−i such that r(x−i ) < Ci , where
∂i (S) denotes the edges in the edge-boundary of S in the i th direction, that is, that are
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obtained by changing the i th coordinate of some v ∈ S. Furthermore, for each x−i

with r(x−i ) < Ci ,

w′(x−i ) − w(x−i ) ≤ w′(x−i ) ≤ (C − 1) log2 C

|S| .

Thus, by (7)

H(Xi |X−i ) =
∑

x−i

w(x−i )

=
∑

x−i

w′(x−i ) +
∑

x−i
r(x−i )<Ci

(
w(x−i ) − w′(x−i )

)

≥ log2 Ci − |∂i (S)| (C − 1) log2 C

|S| . (8)

Therefore, by (6) and (8),

log2 |S| = H(X) ≥
t∑

i=1

H(Xi |X−i )

≥
t∑

i=1

(
log2 Ci − |∂i (S)| (C − 1) log2 C

|S|
)

≥ log2 |V (G)| − |∂(S)| (C − 1) log2 C

|S| .

Rearranging, we obtain

|∂(S)|
|S| ≥ log2 |V (G)| − log2 |S|

(C − 1) log2 C
= 1

C − 1
logC

( |V (G)|
|S|

)
,

as claimed. �

5 Expansion and Expanders

We begin with the proof of the first part of Theorem 4. We note that the proof includes
several elements similar to the proof of Lemma 3.8.

Proof of Theorem 4(a) We will assume that c ≤ ε4. Given 7Cd
ε2

≤ k ≤ nε5 , let Ak be
the event there exists a set S ⊆ V (L1) of order k such that S is connected in Gp and
|NGp (S)| < c|S|. Since S is connected in Gp it contains a spanning tree. Therefore,
if Ak occurs, then there is some tree T whose vertex set is S, all of whose edges are
in Gp. By Lemma 3.3, there are at most n(ed)k−1 ways to choose the tree T , and the
edges of T are present in Gp with probability pk−1.
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Now, consider the auxiliary random bipartite graph 
(S, p), whose one side is
S, the other side is NG(S), and we retain every edge of G between S and NG(S) in

(S, p) independently with probability p. We then have that |NGp (S)| ≥ ν (
(S, p)),
where ν(H) is the matching number of H . Thus, it suffices to bound the probability
that a maximum matching in 
(S, p) is smaller than ε4k, that is,

P (Ak) ≤
∑

S⊆V (G),|S|=k
T a tree,V (T )=S

P

((
E(T ) ⊆ E(Gp)

) ∧
(
ν (
(S, p)) ≤ ε4k

))

≤ n(edp)k−1
P

(
ν (
(S, p)) ≤ ε4k

)
. (9)

Let us first bound the probability that ν (
(S, p)) = i . This is, at most, the proba-
bility that 
(S, p) has an inclusion-maximal matching of size i . We have at most

(kd
i

)

ways to choose a matching M of size i , and we then need to include the edges of the
matching, which occurs with probability pi . Due to the maximality of M , every edge
of G between S and NG(S) disjoint from M is not in 
(S, p). Thus, we have at least
|∂(S)| − 2id edges that do not fall into 
(S, p). Since n ≤ Cd , by Theorem 1

|∂(S)| ≥ k
(
d − (C − 1) log2 k

) ≥ k
(
d − (C − 1) · log2 C · ε5d

)
≥ (1 − ε4)kd.

Hence, by the union bound,

P (ν (
(S, p)) = i) ≤
(
kd

i

)
pi (1 − p)(1−ε4)kd−2id .

All in all, we obtain that

P (Ak) ≤ n(ed)k−1 pk−1
ε4k∑

i=0

(
kd

i

)
pi (1 − p)(1−ε4)kd−2id

= n(edp)k−1(1 − p)(1−ε4)kd
ε4k∑

i=0

(
kd

i

)
pi (1 − p)−2id

≤ n
(
(1 + ε) exp

(
1 − (1 + ε)(1 − ε4)

))k

×
⎛

⎝1 +
ε4k∑

i=1

(
k(1 + ε)e

i

)i
exp (2(1 + ε)i)

⎞

⎠

≤ n
(
(1 + ε) exp

(
−ε + 2ε4

))k
⎛

⎝1 +
ε4k∑

i=1

(
e4k

i

)i
⎞

⎠ .
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Observe that the ratio of consecutive terms of
(
e4k
i

)i
is at least 2, and hence the sum

is dominated by the last term. That is,

P (Ak) ≤ 2n
(
(1 + ε) exp

(
−ε + 2ε4

))k ( e4

ε4

)ε4k

≤ 2n
(
(1 + ε) exp

(
−ε + ε3

))k
.

Using 1 + x ≤ exp
(
x − x2

3

)
for small enough x > 0, together with ln n ≤ lnC · d

(since n ≤ Ct ≤ Cd ) and our assumption that k ≥ 9 ln c·d
ε2

, we obtain that

P (Ak) ≤ 3n exp

(
−ε2k

4

)
= o(1/n).

Taking a union bound over the less than n different values of k completes the proof. �
Throughout the rest of the section, we assume that ε > 0 is a small enough constant

and let δ = δ(ε) ≤ ε3 be a positive constant. We define p2 = δ
d and let p1 be such

that (1 − p1)(1 − p2) = 1 − p. We form Gpi , i ∈ {1, 2}, by including every edge of
G independently and with probability pi . We set G1 = Gp1 and G2 = Gp2 ∪ G1, so
that G2 has the same distribution as Gp. We note that by Theorem 1.2, whp Gp1 has
a unique giant component, which we denote by L ′

1, and that whp Gp has a unique
giant component which we denote by L1, where L ′

1 ⊆ L1.

5.1 Expansion of Subsets of the Early Giant

We begin by showing likely expansion properties of subsets of the early giant. We will
require the following density result.

Lemma 5.1 (Lemma 4.7 in [29], rephrased). There exists a constant c = c(ε) > 0
such that whp every v ∈ V (G) is at distance (in G) at most two from at least cd2

vertices in L ′
1.

The following lemma, which uses Lemma 5.1 together with an edge-isoperimetric
inequality for G (Theorem 2) and a result on large matchings in a random edge-subset
of G (Lemma 3.8), gives a good bound on the probability that subsets of the early
giant expand well after sprinkling.

Lemma 5.2 There exists a constant c = c(δ) > 0 such that the following holds.
Let A ∪ B = V (L ′

1) be a partition of V (L ′
1) with min {|A|, |B|} = k. Then, with

probability at least

1 − exp

(

−ck ln
( n
k

)

d

)

,
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Fig. 1 An illustration of the sets and matchings in Lemma 5.2. The matchings M1 through M5, in purple,
are ordered according to the order they are constructed in the proof. In dark blue, one can see the properties
of vertices in A2, B2, A1 and B1, with respect to their set of neighbours in A1, B1, A and B, respectively.
Observe that if the first matching M1 had many endpoints in A′ \ A2 (or B′ \ B2), we could continue in the
same manner with fewer matchings required

there exists a family of
ck ln( n

k )
d vertex-disjoint A − B paths of length at most five in

G p2 .

Proof By Lemma 5.1, there exists a constant c′ > 0 such that whp every v ∈ V (G) is
at distance (in G) at most two from at least c′d2 vertices in L ′

1. We work on the event
that every v ∈ V (G) is at distance (in G) at most two from at least c′d2 vertices in L ′

1.
Throughout the proof, wewill introduce constants c1 up to c8, under the assumption

that each ci is sufficiently small in terms of δ and all c j with j < i .
By assumption, every v ∈ V is at distance at most two from at least c′d2 vertices

in L ′
1. Let us now define four sets inductively:

A1 :=
{
v ∈ V \ (B ∪ A) : dA(v) ≥ c′d

10

}
,

B1 :=
{
v ∈ V \ (B ∪ A ∪ A1) : dB(v) ≥ c′d

10

}
,

A2 :=
{
v ∈ V \ (B ∪ A ∪ A1 ∪ B1) : dA1(v) ≥ c′d

10

}
,

B2 :=
{
v ∈ V \ (B ∪ A ∪ A1 ∪ B1 ∪ A2) : dB1(v) ≥ c′d

10

}
.

Let us set A′ = A ∪ A1 ∪ A2, and B ′ = B ∪ B1 ∪ B2. Observe that V = A′ � B ′.
Indeed, it is clear by the definition of the sets that A′ ∩ B ′ = ∅. Suppose towards
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contradiction that v /∈ A′ ∪ B ′, and let us consider the number of vertices in L ′
1 that

are the endpoints of paths of length at most two starting from v. There are at most d
vertices in L ′

1 that are neighbours of v. As for paths of length exactly two, they are
of the form vux . If u ∈ A1, then since v /∈ A′, and in particular v /∈ A2, we have at
most c′d2

10 possible choices for the path. Similarly, if u ∈ B1, then since v /∈ B ′, and
in particular v /∈ B2, we have at most c′d2

10 possible choices for the path. Finally, if

u /∈ A1 ∪ B1, since v /∈ A1 ∪ B1, we have at most c′d2
5 possible choices for the path.

Altogether, we have at most 2c′d2
5 + d < c′d2 vertices in L ′

1 that are at distance at
most two from v—a contradiction.

Since A′ � B ′ = V , by Theorem 2,

e(A′, B ′) ≥ k

C − 1
logC

(n
k

)
≥ c1k ln

(n
k

)
=: s.

By Lemma 3.8, with probability at least 1 − exp
(− c2s

d

)
, there exists a matching of

size at least c2s
d between A′ and B ′ in Gp2 . We continue under the assumption that

at least c2s
3d of the edges in the matching have endpoints in both A2 and B2, as the

other cases follow more easily, with fewer matching edges required (see Figure 1
for an illustration). Let us denote these endpoints of the matching by Ã2 and B̃2,
respectively.

Now, every v ∈ A2, and in particular in Ã2, has at least c
′d
10 neighbours in A1. Hence,

with probability at least 1− exp
(− c2s

d

)
we have a set of at least c2s

3d · c′d
10 = c3s edges

between Ã2 and A1. Thus, by Lemma 3.8, with probability at least 1 − exp
(− c4s

d

)

there exists a matching of size at least c4s
d between Ã2 and A1. Denote by Ã2 and

Ã1 the corresponding vertices in Ã2 and A1 of this matching. Since every v ∈ A1,
and in particular in Ã1, has at least c′d

10 neighbours in A, with probability at least

1− exp
(− c4s

d

)
there are at least c4s

d · c′d
10 = c5s edges between Ã1 and A. Once again,

by Lemma 3.8, with probability at least 1 − exp
(− c6s

d

)
, there exists a matching of

size at least c6s
d between Ã1 and A. Denote the endpoints of this matching in A by Ã.

Altogether, we obtain with probability at least 1− exp
(− c7s

d

)
a family of at least c7s

d
vertex-disjoint paths of length three between B̃2 ⊆ B2 and Ã ⊆ A.

Working similarly in B ′, we define B̃1 ⊆ B1 and B̃ ⊆ B, and find with probability
at least 1 − exp

(− c8s
d

)
a family of at least c8s

d vertex-disjoint paths of length at most

five, starting from Ã ⊆ A, going through Ã1 ⊆ A1, Ã2 ⊆ A2, B̃2 ⊆ B2, and B̃1 ⊆ B1
to B̃ ⊆ B (see Figure 1 for an illustration). Choosing c ≤ c8 completes the proof. �

The following lemma is then key to the proof of Theorem 3. We effectively
enumerate the number of subsets of L ′

1 which do not expand well using a novel
double-counting argument to enumerate them in terms of their boundaries, which by
assumption are significantly smaller than the sets themselves. This allows us to apply
the probability bound from Lemma 5.2 to conclude that whp all subsets of L ′

1 expand
relatively well after sprinkling.
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Lemma 5.3 There exists a constant c = c(δ) > 0 such that whp for any S ⊆ V (L ′
1)

the following hold.

(a) If n
d ≤ |S| ≤ 3εn

2 , then either

|NL ′
1
(S)| ≥ c|S|

d ln d
,

or there exists a family of at least c|S|
d vertex disjoint paths of length at most five

between S and V (L ′
1) \ S in G p2 ;

(b) If |S| = ω(d) and |S| ≤ 3εn
2 , then either

|∂L ′
1
(S)| ≥

c|S| ln
(

n
|S|
)

d ln d
,

or there exists a family of at least c|S|
d vertex disjoint paths of length at most five

between S and V (L ′
1) \ S in G p2 .

Wenote that the assumption that |S| = ω(d) in 5.3(b) can be strengthened, however
it suffices for our usage and allows for a simpler proof.

Proof We argue via two-round exposure, beginning by exposing Gp1 . By Lemma 5.1,
whp every v ∈ V (G) is at distance at most two from at least c1d2 vertices in L ′

1,
for some c1 = c1(ε, δ) > 0. Finally, by Lemma 3.9, whp there are at most n

d4
vertices with degree larger than ln d. We continue assuming that these properties hold
deterministically.

We begin with part (a). Given n
d ≤ |S| ≤ 3εn

2 , let k := |S| and let b1 := |NL ′
1
(S)|.

As we aim to bound the expansion of the set S, we may assume that b1 < ck
d ln d ,

as otherwise the claim holds. In order to facilitate a union bound argument, let us
estimate the number of subsets S of size k in L ′

1 such that |NL ′
1
(S)| = b1. Let e1 =

∂L ′
1
(NL ′

1
(S)). Since there are at most n

d4
vertices with degree larger than ln d, we have

that e1 ≤ n
d3

+ b1 ln d. Since L ′
1 is connected, there are at most e1 + 1 components in

L ′
1 \ NL ′

1
(S). Furthermore, since S has no neighbours outside NL ′

1
(S), it must be the

union of components in L ′
1 \ NL ′

1
(S). Hence, the number of ways to choose such an

S is at most
( n
b1

) · 2e1+1. Thus, there are at most

ck
d ln d∑

b1=1

(
n

b1

)
2

n
d3

+b1 ln d+1 ≤
(

en
ck

d ln d

) ck
d ln d

2
2ck
d

≤ exp

(
ck

d ln d

(
ln

(
end ln d

ck

)
+ 2 ln d

))

≤ exp

(
2ck

d ln d

(
ln
(n
k

)
+ 2 ln d

))
≤ exp

(
6ck

d

)
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sets S ⊆ V (L ′
1) with |NL ′

1
(S)| < ck

d ln d , where we used the fact that k ≥ n
d in the first

and last inequalities.
We now turn to facilitate a union bound argument for part (b). Given S ⊆ V (L ′

1)

with |S| = k ≤ 3εn
2 , we may assume that |∂L ′

1
(S)| <

ck ln( n
k )

d ln d , as otherwise the claim

holds. Let us then estimate the number of sets S such that |∂L ′
1
(S)| <

ck ln( n
k )

d ln d .

Let e2 := |∂L ′
1
(S)| <

ck ln( n
k )

d ln d and let b1 := |NL ′
1
(S)| as before. If we write m

for the number of components in Gp1 [S], then, since L ′
1 is connected, m ≤ e2 + 1.

Moreover, since S has no neighbours outside NL ′
1
(S), it must be the union of precisely

m components of L ′
1 \ NL ′

1
(S).

Hence, since L ′
1 \NL ′

1
(S) has at most n components, the number of ways to choose

such an S is at most
( n
b1

)(n
m

)
. Thus, since b1 ≤ e2, there are at most

e2∑

b1=1

e2+1∑

m=1

(
n

b1

)(
n

m

)
≤
⎛

⎝ en
ck ln( n

k )
d ln d

⎞

⎠

2
ck ln( n

k )
d ln d

≤ exp

(
2ck ln

( n
k

)

d ln d
ln

(
end ln d

ck ln
( n
k

)

))

≤ exp

(
2ck

d
· ln
( n
k

)

ln d
·
(

ln
(n
k

)
+ 2 ln

(
d ln d

ln
( n
k

)

)))

≤ exp

(
3ck

d

)

sets S ⊆ V (L ′
1) with |∂L ′

1
(S)| <

ck ln( n
k )

d ln d .
Fix S ⊆ V (L ′

1) with |S| = k. By Lemma 5.2, with probability at least

1− exp
(
− c1k ln( n

k )
d

)
, there exists a family of at least

c1k ln( n
k )

d vertex disjoint paths of

length at most five between S and V (L ′
1) \ S in Gp2 , where c1 is the constant from

Lemma 5.2. We note that we used our assumption that every v ∈ V (G) is at distance
at most two from at least c′d2 vertices in L ′

1 in order to invoke Lemma 5.2.
Recalling that k ≤ 3εn

2 , the probability there is a set S violating the statement of
part (a) is then at most

exp

(
6ck

d
− c1k ln

( n
k

)

d

)

≤ exp

(
k

d
(6c − c1)

)
.

Once again, the probability that there is a set S violating the statement of part (b) is at
most

exp

(
3ck

d
− c1k

d

)
= exp

(
k

d
(3c − c1)

)
.

Under our assumption that k := |S| = ω(d) and for c small enough with respect to c1,
by the union bound the probability having a set S violating the statement of part (a)
or (b) is o(1). �
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5.2 Structure of Subsets in the Residue

As we mentioned, we also require some control over the typical structure of subsets in
the residue L1− L ′

1 and their likely expansion into the early giant after sprinkling. Let
us begin with the following lemma, showing how the vertices in L ′

1 are embedded in
L1, which generalises Lemma 3.2 in [32]. Given a vertex v ∈ V (L ′

1), let Cv be the set
of vertices which are contained in components of L1 − L ′

1, such that there is a vertex
adjacent to v in G2 in these components. Also, given a subset S ⊆ L ′

1, we denote by
CS = ∪v∈SCv .

Lemma 5.4 There exists a constant K2 := K2(C, ε) > 0 such that whp |Cv| ≤ K2d
for every v ∈ V (L ′

1).

Proof Note that G2 has the same distribution as Gp, and that p1 = 1+ε−δ+o(1)
d .

Furthermore, observe that by Theorem 1.2, there exists a constant K1 := K1(C, ε)

such that whp every component of Gp1 , besides L
′
1, is of order at most K1d (although

technically the K1 given by Theorem 1.2 might depend on δ, it is easy to check from
the proof that, since δ � ε, we may choose K1 only as a function of ε and C).

Suppose that there is some v ∈ V (L ′
1) such that |Cv| ≥ K2d. Note that Cv ∪ {v}

is connected in G2, and that Cv is the disjoint union of some sets {C1, . . . ,Cr } where
Ci is the vertex set of some component of G1, each of which has order at most K1d.
It follows there must be some subset Ĉ ⊆ Cv such that Ĉ ∪ {v} is connected in G2, Ĉ
is the union of some subset of {C1, . . . ,Cr } and K2d ≤ |Ĉ | ≤ (K2 + K1)d.

In particular, there is some spanning tree T of Ĉ ∪ {v}, all of whose edges are in
G2, and no edge in the edge-boundary of V (T ) \ {v} is present in G1.

Let us bound the probability that such a tree of order k exists in G2 for each
K2d + 1 ≤ k ≤ (K2 + K1)d + 1. By Lemma 3.3, there are at most n(ed)k−1 such
trees. A spanning tree T has k−1 edges inG2, which happens with probability at most
pk−1. Furthermore, since |V (T ) \ {v}| = k − 1, by Theorem 1 there are at least (k −
1)
(
d − (C − 1) log2(k − 1)

)
edges in the edge-boundary of V (T )\{v}, none ofwhich

are in G1, which happens with probability at most (1 − p1)(k−1)(d−(C−1) log2(k−1)).
Whilst these two events are not necessarily independent, they are negatively correlated.
Thus, by the union bound, the probability that such a tree of order k exists in G2 is at
most

n(ed)k−1 pk−1(1 − p1)
(k−1)(d−(C−1) log2(k−1)).

Therefore, the probability that such a tree exists for k ∈ I := [K2d + 1, (K2 +
K1)d + 1] is at most

n
∑

k∈I
exp

(
(k − 1)

(
1 + ln(1 + ε) − (1 + ε − 2ε3)

))

≤ n
∑

k∈I
exp

(
−ε3(k − 1)

)
= o(1),
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where we used the fact that ln(1 + ε) ≤ ε − 3ε3 for small enough ε > 0, and we
assume that K2 ≥ 2 lnC

ε3
, recalling that n ≤ Ct ≤ Cd and hence ln n ≤ lnC · d. �

In order to obtain our results, we will require further information about the likely
expansion of subsets in the residue into the early giant. We will require the following
density lemma.

Lemma 5.5 (Lemma 4.6 of [29], rephrased). There exists a constant c2 > 0 such that
for any fixed constants K , c1 > 0, whp every subset M ⊆ V (G), with |M | = Kd and
G[M] connected, contains at most c1d vertices v ∈ M such that |NG(v) ∩ V (L ′

1)| <

c2d.

We will make use of the following probabilistic lemma, which utilises Lemma 3.4.

Lemma 5.6 There exist positive constants K , K ′ := K ′(K ) and c := c(δ) such that
the following holds. Let S ⊆ V (L ′

1) and B ⊆ V (G)\V (L ′
1) be such that |S∪B| ≥ Kd

and G[S ∪ B] is connected and |B| ≥ K ′|S|. Then, there exists a matching in G p2 of
size at least c|B| between B and V (L ′

1) \ S with probability at least 1− exp (−c|B|).
Proof By Lemma 5.5, there exists a constant c2 > 0 such that for any fixed constants
K , c1 > 0, whp every subset M ⊆ V (G), with |M | = Kd and G[M] connected,
contains at most c1d vertices v ∈ M such that |NG(v) ∩ V (L ′

1)| < c2d. Let us
fix some K � c1 and continue assuming the above holds deterministically for the
corresponding c2.

Since G[S ∪ B] is connected, it has a spanning tree T . By Lemma 3.4, applied
with 	 = Kd, there exist subsets A1, . . . , As ⊆ V (T ) satisfying properties (a)–(d)
of that lemma. In particular, since for all i ∈ [s] we have Kd ≤ |Ai | ≤ 3Kd, by
Theorem 1 we have that e(Ai ) ≤ (C − 1)3Kd log2(3Kd) ≤ 6CKd log2 d. Thus, by
our assumption, for all i ∈ [s] we have that

eG(Ai , L
′
1 \ Ai ) ≥ (Kd − c1d)c2d − 12CKd log2 d.

Thus, defining Âi := Ai \
(⋃

j∈([s]\{i}) A j

)
, we have that e( Âi , L ′

1 \ Âi ) ≥ e(Ai , L ′
1 \

Ai ) − d, and the edge sets E( Â1, L ′
1 \ Â1), . . . , E( Âs, L ′

1 \ Âs) are disjoint. Hence,
since K is sufficiently large with respect to c1, we can choose c3 := c3(c1, c2) > 0
small enough such that

e
(
S ∪ B, L ′

1 \ (S ∪ B)
) ≥ |S| + |B|

3Kd

(
(Kd − c1d)c2d − 12CKd log2 d

)

− |S| + |B|
Kd

· d
≥ (|S| + |B|) c3d.

Therefore, as long as K ′ := K ′(c1, c2) is large enough, there exists c4 := c4(c1, c2) >

0 such that

e(B, L ′
1 \ S) ≥ |B|c3d − 2|S|d ≥

(
c3 − 2

K ′

)
|B|d ≥ c4|B|d.
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Thus, by Lemma 3.8, there exists a constant c(δ) > 0 such that with probability at
least 1 − exp (−c|B|) there exists a matching M in Gp2 of size at least c|B| between
B and L ′

1 \ S. �
From Lemmas 5.6 and 5.5, we can derive the following statement, complementing

Lemma 5.3.

Lemma 5.7 There exist constants K , K ′, c > 0 such that whp, for every S1 ⊆
V (L ′

1), S1 �= ∅, and for every S2 ⊆ CS1 such that |S2| ≥ K ′|S1|, |S1 ∪ S2| ≥ Kd
and G[S1 ∪ S2] connected, the following holds. Either

|NL ′
1
(S1)| ≥ c|S2|

d
, or |NG2(S1 ∪ S2)| ≥ c|S2|

d
.

Proof We begin by exposing Gp1 , and let us fix ∅ �= S1 ⊆ V (L ′
1). Let us now expose

all the edges in Gp2 which are either inside V (G) \ V (L ′
1) or lie between S1 and

V (G) \ V (L ′
1). Denote by G ′

1 the graph G1 together with these edges, noting that
G1 ⊆ G ′

1 ⊆ G2 and that G ′
1 determines CS1 .

Let us choose c1 > 0 a small enough constant, and choose K a sufficiently large
constant. Then by Lemma 5.5 there exists c2 > 0 such that whp every connected
subset M ⊆ V (G) of size Kd has at most c1d vertices with less than c2d neighbours
in L ′

1. Furthermore, by Lemma 5.6 there exist constants K ′, c′ > 0 (from Lemma 5.5)
that the conclusion of the lemma holds for K , c1, c2 and S1, noting that the event in
the lemma depends only on edges in Gp2 between CS1 and V (L ′

1) \ S1, which we
have not yet exposed. We further note that we may choose K ′ sufficiently large. We
continue assuming these properties hold deterministically.

Let us fix S2 ⊆ CS1 satisfying the conditions of the lemma and let k1 := |S1| and
k2 := |S2|. By Lemma 5.6 the probability that S2 has less than c′|S2| neighbours in
V (L ′

1) \ S1 in Gp2 is at most exp
(−c′|S2|

)
. Furthermore, the event that S2 has at least

c′|S2| neighbours in V (L1) \ S1 in Gp2 clearly implies that |NG2(S1 ∪ S2)| ≥ c|S2|
d ,

for any constant c > 0.
Let us now facilitate a union bound argument. Let us choose c := c(C, c′) suf-

ficiently small and suppose that b1 := |NL ′
1
(S1)| < ck2

d , as otherwise the claim
holds. Let us further fix k2 for now. Let us write m for the number of components in
G1 \ NL ′

1
(S1). Since L ′

1 is connected and G is d-regular, we have m ≤ d · b1 + 1.
Hence, since S1 has no neighbours in G1 outside NL ′

1
(S1), it must be the union of

some components of G1 \ NL ′
1
(S1), and so the number of ways to choose such an S1

is at most
( n
b1

)
2m . Thus, there are at most

ck2
d∑

b1=1

ck2∑

m=1

(
n

b1

)
2m ≤

(
en
ck2
d

) ck2
d

· 2ck2+1 ≤ exp

(
ck2
d

(
ln

(
end

ck2

)
+ 2d

))

≤ exp (5 lnC · ck2)

sets S1 ⊆ V (L ′
1) with |NL ′

1
(S1)| < ck2

d , where we used the assumption that ln n ≤
lnC · d and that k2 ≥ d, since we may choose K ≥ 2 and K ′ large enough.
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Now, let us consider the number of ways to choose S2 ⊆ CS1 , noting that having
determined S1, choosing S1∪ S2 determines S2. We may assume that b2 := |NG ′

1
(S1∪

S2)| ≤ ck2
d , sinceG ′

1 ⊆ G2. SinceG ′
1[S1∪ S2] is connected, and has all its neighbours

in NG ′
1
(S1 ∪ S2), exactly one of the at most n components in G ′

1 \ NG ′
1
(S1 ∪ S2) is

S1 ∪ S2. Since S1 is fixed, we can identify this component. Hence, the number of ways
to choose S1 ∪ S2 with |NG ′

1
(S1 ∪ S2)| ≤ ck2

d is at most the number of ways to choose

a set of size at most ck2
d in V (G ′

1). That is at most

ck2
d∑

b2=1

(
n

b2

)
≤
(
en
ck2
d

) ck2
d

≤ exp (4 lnC · ck2) .

Therefore, for fixed k2, the probability of an event violating the statement of the
lemma is at most

exp (9 lnC · ck2) exp
(−c′k2

) = o(1/n),

for c small enough in terms of C and c′. Union bound over the at most n choices of
k2 completes the proof. �

5.3 Proof of Theorems 4(b) and 3(b)

Proof of Theorem 4(b) and 3(b) Let S1 = S ∩ V (L ′
1) and S2 = S ∩ (V (L1) \ V (L ′

1)
)
.

Let c5.3 be the constant whose existence is asserted in Lemma 5.3, and let K5.7, K ′
5.7

and c5.7 be the constants whose existence is asserted in Lemma 5.7. Let c > 0 be
sufficiently small in terms of c5.3, K

′
5.7 and c5.7.

4(b) Recall that we assume that K5.7d ≤ nε5 ≤ |S| ≤ 3εn
2 and Gp[S] is con-

nected. Suppose |S1| ≥ |S2|
K ′
5.7

. Then, |S1| = �(d ln d) = ω(d) and so by

Lemma 5.3(b) whp either

|∂L ′
1
(S1)| ≥

c5.3|S1| ln
(

n
|S1|
)

d ln d
≥ c|S| ln ( nk

)

d ln d
,

or there is a family of at least
c5.3|S1|

d ≥ c|S|
d vertex-disjoint paths from S1 to

V (L ′
1) \ S1 ⊆ V (L1) \ S. However, since each such path contributes a unique

vertex to the neighbourhood of S in V (L1) (the first vertex along the pathwhich
is not in S), in the latter case |NGp (S)| ≥ c|S|

d , and so the result follows.
Otherwise, |S2| ≥ K ′

5.7|S1| and so by Lemma 5.7 whp either |NL ′
1
(S1)| ≥

c5.7|S2|
d , or |NL1(S)| ≥ c5.7|S2|

d . In the first case, |∂L1(S)| ≥ |NL ′
1
(S1)| ≥ c|S|

d

and, similarly to before, in the second case |∂L1(S)| ≥ |NL1(S)| ≥ c|S|
d .
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3(b) We now assume that K5.7d ≤ ε2n ≤ |S| ≤ 3εn
2 . Note that, since

∣∣|V (L1)| −
|V (L ′

1)|
∣∣ ≤ 4ε3n, it follows that |S1| ≥ 2|S|

3 . Thus, by Lemma 5.3(a), whp
either

|NL ′
1
(S1)| ≥ c5.3|S1|

d ln d
≥ c|S|

d ln d
,

or there is a family of at least
c5.3|S1|

d ≥ c|S|
d vertex-disjoint paths from S1 to

V (L ′
1) \ S1 ⊆ V (L1) \ S, and each such path contributes a unique vertex to

the neighbourhood of S in L1. As before, in either case |NGp (S)| ≥ c|S|
d ln d .

�
The proof of Theorem 5 will follow from key ideas from [51] together with our

expansion result on large sets (Theorem 3(b)).

Proof of Theorem 5 Let c be the constant whose existence is asserted in Theorem 4.
Let M ⊆ V (L1) be a maximal set such that |M | ≤ εn

10 and |NGp (M)| ≤ c|M|
d ln d . Let

H = L1 − M . Assume that there is some subset B ⊆ V (H) such that |B| ≤ |V (H)|
2

and |NH (B)| ≤ c|B|
d ln d . Then,

|NGp (M ∪ B)| ≤ |NGp (M)| + |NH (B)| <
c|M |
d ln d

+ c|B|
d ln d

= c|M ∪ B|
d ln d

.

Thus, by the maximality of M , we obtain that |M ∪ B| ≥ εn
10 . However, by Theo-

rem 3(b), every subset S ⊆ V (L1) with ε2n ≤ |S| ≤ 3εn
2 has |NGp (S)| ≥ c|S|

d ln d .
Hence, |M ∪ B| ≥ 3εn

2 .
On the other hand, by our choice of B and M , we have that

|M ∪ B| ≤ |M | + |V (L1)| − |M |
2

= |V (L1)| + |M |
2

≤ |V (L1)|
2

+ εn

20
.

By Theorem 1.2, whp |V (L1)| ≤ 2εn, and hence |M ∪ B| ≤ 21εn
20 < 3εn

2 —a
contradiction. Hence, whp H has the desired expansion properties. Furthermore, by
Theorem 1.2 whp

|V (H)| = |V (L1)| − |M | ≥ 19εn

10
− εn

10
≥ 3εn

2
.

�

6 Consequences of Expansion in the Giant Component

We begin with the likely existence of a long cycle, which follows immediately from
Theorem 3(b) together with Theorem 3.5.
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Proof of Theorem 6(c) By Theorem 3(b), there exists a constant c < 0 such that whp
for all ε2n ≤ k ≤ 3εn

2 and all subsets S ⊆ V (L1) with |S| = k,

|NGp (S)| ≥ c|S|
d ln d

.

Thus, applying Theorem 3.5 with a = 3εn
2 and b = 3cεn

4d ln d , we obtain that whp L1

contains a cycle of length �
( n
d ln d

)
. �

Note that, due to the comment after Theorem 5, up to a logarithmic factor in d
this is the best bound that can be given with such an argument based solely on the
expansion of L1.

We now turn to Theorem 6(a) and (b). For these two theorems, the following two
lemmas will be useful. The first is a variant of a lemma from [31], bounding the
typical number of edges incident to connected subsets in Gp, whose proof we include
for completeness.

Lemma 6.1 Whp, for all S ⊆ V (L1) such that G p[S] is connected,

eG p (S) + eGp (S, SC ) ≤ max {10|S|, 20 lnC · d} . (10)

Proof Let us begin by considering connected sets S such that |S| = k ≥ lnC ·d. Since
any connected set in Gp has a spanning tree, it is sufficient to show that (10) holds
whenever S is the vertex set of a tree in Gp of order k ≥ d in Gp. By Lemma 3.3,
there are at most n(ed)k−1 trees on k vertices in G and the probability that each such
tree is contained Gp is pk−1. Since each set of k vertices is incident to at most kd
edges in G, there are most

(kd
9k

)
ways to choose an additional 9k edges incident to this

set of vertices, and these edges are in Gp with probability p9k . Hence, by the union
bound, the probability that (10) fails to hold is at most:

n(ed)k−1 pk−1
(
kd

9k

)
p9k ≤ n · (2e)k−1

(
2e

9

)9k

≤ n exp(−2k) = o(1/n),

since k ≥ lnC · d ≥ ln n. Taking a union bound over the at most n possible values
of k, it follows that whp for all subsets S ⊆ V (L1) with |S| ≥ lnC · d and Gp[S]
connected, e(S) + e(S, SC ) ≤ 10|S|.

We now turn to connected sets S with |S| < lnC · d. Since L1 is connected, and
by Theorem 1.2 we have that whp |V (L1)| ≥ εn, there exists a connected set S′ ⊇ S
such that |S′| = d ln d. Note that 2e(S) + e(S, Sc) ≤ 2e(S′) + e(S′, S′C ), and so in
particular by the above whp

e(S) + e(S, SC ) ≤ 2e(S) + e(S, SC ) ≤ 2
(
e(S′) + e(S′, S′C )

)
≤ 20 lnC · d,

completing the proof. �

123



Combinatorica

We also require a bound on the typical number of edges in L1. While this can
be calculated quite accurately, the following naive, yet simple to prove bound will
suffice for our goals, and utilises the Depth First Search (DFS) algorithm (see [52]
for definition and application of the DFS algorithm in random graphs). Recall that the
excess of a connected graph H is defined as |E(H)| − (|V (H)| − 1).

Lemma 6.2 Whp, e(L1) < 3εn.

Proof We begin by running a DFS algorithm with nd
2 random bits Xi , to expose a

spanning forest of Gp. We first claim that if there is a connected component S of
order k with k ≥ d2, then we have queried at least 2kd

3 of the edges incident to S.
Indeed, otherwise, there would have been an interval of length at most 2kd

3 where we
receive k positive answers. By a typical Chernoff-type bound, the probability that a
fixed interval of length 2kd

3 contains k positive answers is at most

P

(
Bin

(
2kd

3
,
1 + ε

d

)
≥ k

)
≤ exp

(
− k

30

)
≤ exp

(
−d2

30

)
.

In particular, taking a union bound over the at most nd intervals of length 2kd
3 and at

most n different values of k completes the proof of the claim.
By Theorem 1.2,whp this algorithm discovered a unique giant component L1, with

|V (L1)| < 2εn, and in doing so queried at least 2|V (L1)|d
3 of the at most |V (L1)|d

edges incident to V (L1). However, since we exposed a spanning tree of L1, at most
|V (L1)| − 1 edges of L1 were exposed during the algorithm. Since there are at most
|V (L1)|d

3 queries left and whp |V (L1) < 2εn, the number of excess edges in L1 is
stochastically dominated by a binomial randomvariable Bin

( 2εnd
3 , 1+ε

d

)
. In particular,

by a standard Chernoff-type bound, whp L1 has at most εn excess edges and hence in
total e(L1) ≤ |V (L1)| − 1 + εn < 3εn. �

6.1 Proof of Theorem 6(a)

Proof of Theorem 6(a) We note that by Theorem 1.2 and Lemma 6.2, whp, εn <

|E(L1)|, |V (L1)| < 3εn, andwe assume inwhat follows that this holds.Given a vertex
v ∈ V (L1), let B(v, r) denote the ball of radius r around v in L1. Since L1 is connected
and has size at least εn, for any v ∈ V (L1) we have that |B(v, d ln d)| ≥ d ln d.
Furthermore, by Lemma 6.1,whp for any B(v, r) ⊆ V (L1)with |B(v, r)| ≥ lnC ·d,

e (B(v, r))

10
≤ |B(v, r)| ≤ e(B(v, r)) − 1,
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where the lower bound holds since B(v, r) is connected. By Theorem 4(a) and (b),
whp for any B(v, r) ⊆ V (L1) with |B(v, r)| ≥ d ln d,

e(B(v, r + 1)) = e(B(v, r)) + ∂Gp (B(v, r))

≥ min

⎧
⎨

⎩
3εn

2
− 1, e(B(v, r)) +

c ln
(

n
|B(v,r)|

)

d ln d
|B(v, r)|

⎫
⎬

⎭
.

By the above, whp

e(B(v, r)) +
c ln

(
n

|B(v,r)|
)

d ln d
|B(v, r)| ≥

⎛

⎝1 +
c ln

(
n

e(B(v,r))−1

)

10d ln d

⎞

⎠ e(B(v, r))

≥
⎛

⎝1 +
c′ ln

(
n

e(B(v,r))

)

10d ln d

⎞

⎠ e(B(v, r)),

for some constants c, c′ > 0, and hence whp

e(B(v, r + 1)) ≥ min

⎧
⎨

⎩
3εn

2
− 1,

⎛

⎝1 +
c′ ln

(
n

e(B(v,r))

)

10d ln d

⎞

⎠ e(B(v, r))

⎫
⎬

⎭
. (11)

We continue assuming the above holds deterministically.
Let v be an arbitrary vertex in L1. We let B0 := B(v, d ln d), and define inductively

Bi := B(v, d ln d + i).
Let C ′ > 0 be such that n = exp

(
C ′d
)
. Given 1

d < α ≤ 1, we define

I (α) :=
{
i ∈ N : exp

(
(1 − α)C ′d

) ≤ e(Bi ) ≤ exp
((

1 − α

2

)
C ′d
)}

.

Using (11) we can bound the size of I (α). For each i ∈ I (α), we have that
c′ ln

(
n

e(B(i))

)

10d ln d ≥ c′C ′α
20 ln d := c′′α

ln d . Thus by (11),

|I (α)| ≤ log
1+ c′′α

ln d

(
exp

((
1 − α

2

)
C ′d
)

exp ((1 − α)C ′d)

)

= αC ′d

2 ln
(
1 + c′′α

ln d

) = O(d ln d).

Let imax be the smallest index such that e(Bi ) > 3εn
2 − 1, let α0 = 1 and let α j = α0

2 j .
Then, there is a smallest index jmax such that

[imax] =
jmax⋃

j=1

I (α j ).
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Furthermore, there is some constant C ′′ such that if we let αmax = C ′′ ln
(
1
ε

)

d , then
exp

(
(1 − αmax)C ′d

) = 3εn
2 . Since αi = α0

2i
, it follows that

jmax ≤
⌈
log2

(
d

C ′′ ln
( 1

ε

)

)⌉
= O(ln d).

Thus,

imax ≤ jmax · max
j≤ jmax

|I (α j )| = O(d ln2 d).

Therefore it follows that there is some constant K > 0 such that for every v ∈
V (L1),

e
(
B(v, Kd ln2 d)

)
≥ e

(
B(v, (K − 1)d ln2 d)

)
≥ 3εn

2
− 1 ≥ |E(L1)|

2
.

Since L1 is connected, we have that e
(
B(v, Kd ln2 d + 1)

)
>

|E(L1)|
2 .

Thus, we can cover more than half of E(L1)within a ball of radius O(d ln2 d) from
any vertex v ∈ V (L1), and therefore the diameter of L1 is O(d ln2 d). �

6.2 Proof of Theorem 6(b)

We start with some definitions and brief background (see [56] for a more compre-
hensive introduction to Markov chains and mixing time). Given a graph G, the lazy
simple random walk on G is a Markov chain starting at a vertex v0 chosen according
to some distribution σ , such that for any vertex v ∈ V (G) the walk stays at v with
probability 1

2 , and otherwise moves to a uniformly chosen random neighbour u of v.
Hence, the transition probability from v to u satisfies P(v → u) = 1

2d(v)
. If G is con-

nected, then this Markov chain is irreducible and ergodic and as such has a stationary
distribution, which we call the stationary distribution π , which can be seen to be given
by π(v) = d(v)

2e(G)
for each v ∈ V (G). We are interested in estimating how quickly this

Markov chain converges to its limit distribution. For that, recall that the total variation
distance dT V between two distributions p1 and p2 on V (G) is defined by

dTV (p1, p2) := max
A⊂V (G)

∣
∣∣∣p1(A) − p2(A)

∣
∣∣∣.

Let Pt (v, ·) denote the distribution on V (G) given by starting the lazy randomwalk at
v ∈ V (G) and running for t steps. If we define d(t) := maxv∈V (G) dTV

(
Pt (v, ·), π),

then the mixing time of the lazy random walk is then defined as tmix :=
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min
{
t : d(t) ≤ 1

4

}
. Now, for any S ⊆ V (G), let

π(S) :=
∑

v∈S
π(v) = 2e(S) + e(S, SC )

2e(G)
and

Q(S) :=
∑

v∈S,u∈SC
π(v)P(v → u) = e(S, SC )

4e(G)
.

The conductance �(S) of S is then given by

�(S) := Q(S)

π(S)π(SC )
= e(S, SC )

2
(
2e(S) + e(S, SC )

)
π(SC )

,

where we note that since Q(S) = Q(SC ), we have that �(S) = �(SC ). Let πmin =
minv∈V (G) π(v). For ρ > πmin, we define

�(ρ) := min {�(S) : S ⊆ V (G), ρ/2 ≤ π(S) ≤ ρ,S is connected in G} ,

if there is no such subset S, we set �(ρ) = 1. The following theorem due to Foun-
toulakis and Reed [34] bounds the mixing time through the conductance of connected
sets:

Theorem 6.3 (Theorem 1 of [34]). There exists an absolute constant K > 0 such that

tmix ≤ K

log2 π−1
min∑

j=1

�−2
(
2− j
)

.

Throughout the rest of this section, we consider the mixing time of the lazy random
walk on the giant component L1 ofGp. Below, e(S)will stand for eGp (S) and e

(
S, SC

)

will stand for
∣∣∂Gp (S)

∣∣.
We now aim to bound �(ρ). We begin with the following simple observation.

Lemma 6.4 Whp, for any S ⊆ V (L1) such that G p[S] is connected and π(S) ≥
100 ln c·d

ε3n
, we have that |S| ≥ 10d lnC

ε2
.

Proof Given S satisfying the conditions of the lemma, it follows that 2e(S) +
e(S, SC ) = 2e(L1)π(S) ≥ 100 ln c·d

ε3n
e(L1). Since L1 is connected, by Theorem 1.2

whp e(L1) ≥ |V (L1)| − 1 ≥ εn. In particular, whp 2e(S) + e(S, SC ) ≥ 200 ln c·d
ε2

,
and so by Lemma 6.1, whp

200 ln c · d
ε2

≤ 2e(s) + e(S, SC ) ≤ 2
(
e(S) + e(S, SC )

)
≤ max{20|S|, 40 ln c · d}.

Since ε is sufficiently small, |S| ≥ 10 ln c·d
ε2

, as required. �
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We now show that for wide ranges of ρ, we can apply Theorem 4(a) and (b). We
begin by relating bounds on π(S) to those on �(S).

Lemma 6.5 There exists a constant c > 0 such that whp, for every S ⊆ V (L1) with
G p[S] connected and 100 ln c·d

ε3n
≤ π(S) ≤ 1

2 ,

�(S) ≥
c ln

(
n
|S|
)

d ln d
.

Proof Since π(S) = 2e(S)+e(S,SC )
2e(L1)

≤ 1
2 , it follows that e(S) ≤ e(L1)

2 , as otherwise

we have π(S) > 1
2 . Furthermore, by Lemma 6.2, whp e(L1) < 3εn and thus whp

e(S) < 3εn
2 . Since Gp[S] is connected, we have that |S| ≤ 1 + e(S). Therefore,

whp |S| ≤ 3εn
2 . On the other hand, since π(S) ≥ 100 lnCd

ε3n
, by Lemma 6.4 whp

|S| ≥ 10d lnC
ε2

.

Altogether, we have that whp 10 ln c·d
ε2

≤ |S| ≤ 3εn
2 . Thus, by Theorem 4(a) and (b),

there exists a constant c′ > 0 such thatwhp e(S, SC ) ≥ c′ ln
(

n
|S|
)
|S|

d ln d , and by Lemma 6.1
we have that whp 2e(S) + e(S, SC ) ≤ 2

(
e(S) + e(S, SC )

) ≤ 20|S|. Therefore, with
c = c′

20 , whp

�(S) = e(S, SC )

2
(
2e(S) + e(S, SC )

)
π(SC )

≥
c′ ln

(
n
|S|
)

|S|
d ln d · 20|S| ≥

c ln
(

n
|S|
)

d ln d
.

�

Before applying Theorem 6.3, we estimate �(2− j ) for wide ranges of values of j
using Lemma 6.5.

Lemma 6.6 Let j be an integer such that 200 ln c·d
ε3n

≤ 2− j ≤ 1
2 . Then there exists a

constant c > 0 such that whp

�(2− j ) ≥ cj

d ln d
.

Proof Let S = {
S ⊆ V (L1), 2− j−1 ≤ π(S) ≤ 2− j , L1[S] is connected}. Since

2− j ≥ 200 ln c·d
ε3n

, for all S ∈ S, π(S) ≥ 100 ln c·d
ε3n

and so by Lemma 6.5, whp

�(S) ≥
c′ ln

(
n
|S|
)

d ln d
,
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for c′ := c6.5,where c6.5 is the constantwhose existence is guaranteed byLemma6.5.
It follows that whp

�
(
2− j
)

= min {�(S) : S ∈ S} ≥ min

⎧
⎨

⎩

c′ ln
(

n
|S|
)

d ln d
: S ∈ S

⎫
⎬

⎭
. (12)

However, for all S ∈ S, since π(S) ≥ 100 ln c·d
ε3n

it follows from Lemma 6.4 that

|S| ≥ 10d lnC
ε2

. Hence, by Lemma 6.1, whp for all S ∈ S, π(S) = 2e(S)+e(S,SC )
2e(L1)

≥ |S|
εn

and so
|S| ≤ εnπ(S) ≤ 2− jεn. (13)

Therefore, by (12) and (13) whp

�
(
2− j
)

≥
c′ ln

(
2 j

ε

)

d ln d
= cj

d ln d
.

�
We are now ready to prove the Theorem 6(b).

Proof of Theorem 6(b) By Theorem 6.3, we have that there exists an absolute constant
K > 0 such that

tmix ≤ K

log2 π−1
min∑

j=1

�−2
(
2− j
)

. (14)

Let jmax be the largest integer such that 2− jmax ≥ 200d lnC
ε3n

, noting that jmax ≤
log2(ε

3n) ≤ d. Then by Lemma 6.6, whp for 1 ≤ j ≤ jmax, we have that

�−2
(
2− j
) ≤ d2 ln2 d

c2 j2
. Thus,

log2 π−1
min∑

j=1

�−2
(
2− j
)

=
jmax∑

j=1

�−2
(
2− j
)

+
log2 π−1

min∑

j= jmax

�−2
(
2− j
)

≤
d∑

j=1

d2 ln2 d

c2 j2
+

log2 π−1
min∑

j= jmax

�−2
(
2− j
)

. (15)

We note that

d∑

j=1

d2 ln2 d

c2 j2
= O(d2 ln2 d), (16)
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since
∑d

j=1
1
j2

= O(1) for d → ∞. Let us now estimate
∑log2 π−1

min
j= jmax

�−2
(
2− j
)
. Since

L1 is connected, and by Lemma 6.2whp e(L1) < 3εn,whp for every S ⊆ V (L1) we
have that

�(S) = �(Sc) ≥ 1

4e(L1)π(S)
≥ 1

12εnπ(S)
.

Hence, whp for any S with π(S) ≤ 2− j , �(S) ≥ 2 j

12εn , and so �
(
2− j
) ≥ 2 j

12εn .
Therefore, whp

log2 π−1
min∑

j= jmax

�−2
(
2− j
)

≤ 2

(
12εn

2 jmax

)2

≤ 2

(
12εn · 200d lnC

ε3n

)2

= O(d2). (17)

Altogether, by (14), (15), (16) and (17) we obtain

tmix ≤ K

⎛

⎜
⎝

d∑

j=1

d2 ln2 d

c2 j2
+

log2 π−1
min∑

j= jmax

�−2
(
2− j
)
⎞

⎟
⎠ = O(d2 ln2 d) + O(d2) = O(d2 ln2 d).

�

7 Discussion and Open Questions

In this paper, we give edge-isoperimetric bounds for high-dimensional product graphs,
fromwhichwe are able to derive almost-tight bounds on the likely expansion properties
of the giant component in supercritical percolation on these graphs, as well as almost-
tight several structural consequences of these expansion properties. However, there
are many interesting open questions that remain, both in terms of the isoperimetric
properties of these graphs, as well as in terms of the typical structure of the giant
component, and we mention a few of these below.

7.1 Isoperimetry in Product Graphs

Asmentioned in the introduction, Theorems 1 and 2 generalise the edge-isoperimetric
inequality of the hypercube, and are tight in this case for sets of size 2k . In fact, more
generally, Theorem 1 is tight in general for small sets up to a (1+o(1)) multiplicative
factor, and the consequence of Theorem 2 that ik(G) = �

(
ln
( n
k

))
recovers up to a

constant multiplicative factor known tight isoperimetric inequalities for many of the
families of product graphs for which the edge-isoperimetric problem has been studied
(see [14]).

Moreover, it is not too hard to see that, under the assumption that the base graphs
are all isomorphic, ik(G) = �

(
ln
( n
k

))
for all k. Indeed, it is easy to verify that for

k = Ci , i-dimensional projections of G—that is, induced subgraphs on a vertex set
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of the form V1 × V2 × · · · × Vt where each Vj is either V (G( j)) or a singleton vertex
{v j } ⊆ V (G( j))—will have order k and edge-boundary of order O

(
k ln

( n
k

))
. With a

slightly more careful inductive argument, it can be shown that such a bound holds for
intermediary k as well. It is thus natural to ask about the leading constant.

Question 7.1 Let H be a connected regular graph, and for all j ∈ [t], let G( j) = H.
Let G = �t

j=1G
( j) and let n := |V (G)|. Are there constants c := c(H) and K :=

K (H) such that for all 1 ≤ k ≤ n
2 ,

ik(G) = (1 + o(1))c log2
(n
k

)
± K ?

A natural conjecture, given the edge-boundary of i-dimensional projections of G,
would be that we can take c = d(H), which would agree with the known bounds in
the case of the hypercube.

More generally, and very ambitiously, since we are interested in the asymptotics as
t → ∞, and for any fixedC there is only a finite set {H1, . . . , Hm} of graphs on atmost
C vertices, we could ask the analogue of Question 7.1 in the limit as the proportion of
the number of base graphs G(i) that are equal to a particular graph Hi converges to a
limit αi for each i , although it seems likely that this is a difficult optimisation problem.

In the case of the hypercube the edge-isoperimetric problem has in fact been fully
solved—for each k ≤ 2d it is known precisely which k-sets S minimise its edge-
boundary ∂(S), and it is even known that one can choose a nested sequence of optimal
sets, which then interpolate between subcubes of dimension k for each k ≤ d. This
is known to hold more generally for many other product graphs, see [14], although
there are examples, such as the d-dimensional torus for cycles of length larger than
five [24], where there is no nested sequence of optimisers.

For more general high-dimensional product graphs, again restricting ourselves first
to the case of identical base graphs for simplicity’s sake, it is natural to ask if optimal
sets are given again by appropriately chosen projections of G.

Question 7.2 Let H be a connected regular graph and for all j ∈ [t], let G( j) = H.
Let G = �t

j=1G
( j). Given k ≤ t , under what conditions on H is there a choice of

vertices vk,1, . . . , vk,k such that the minimal edge-boundary of a subset of size Ct−k

in G is achieved by a set of the form

Sk = {vk,1} × {vk,2} × · · · × {vk,k} × V (H) × V (H) × · · · × V (H)?

Furthermore, under what conditions on H can the vertices {vk, j : j ≤ k} be chosen
such that vk, j = vk′, j for all k, k′ ≥ j , so that the Sk form a nested family?

Finally, the vertex-isoperimetric problem has also been fully solved in the hyper-
cube, see [41], where optimal sets are given by Hamming balls. It is less easy to give
an explicit lower bound for the vertex-boundary of a set of size k as in Theorem 1.1,
but roughly the vertex-expansion factor is a decreasing function of k, which is �(d)

for small sets and shrinks to �
(

1√
d

)
for linear-sized sets. It would be interesting
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to determine if the solution to the vertex-isoperimetric problem in high-dimensional
regular product graphs has similar asymptotic behaviour.

Question 7.3 Let C > 1 be an integer. For all j ∈ [t], let G( j) be a d j -regular
connected graph with 1 < |V (G( j))| ≤ C. Let G = �t

j=1G
( j), let n := |V (G)| and

let d :=∑t
j=1 d j .

• Is it true that for all sets S ⊆ V (G) of size |S| ≤ n
2 , |NG(S)| = �

( |S|√
d

)
?

• How does the function îk(G) := min
S⊆V (G),|S|=k

{ |NG(S)|
|S|

}
behave for general k?

7.2 Percolation in High-Dimensional Product Graphs

Moving on to the topic of percolation, as mentioned in the introduction, it has been
shown [29] that for a large class of high-dimensional product graphs the phase tran-
sition that they undergo around the percolation threshold is quantitatively similar to
that which occurs in the binomial random graph G(n, p), a phenomenon that has been
observed in many other random subgraph models and which can be viewed as a sort
of universality property of G(n, p). Using the standard notation of �̃ to denote the
� Landau notation while suppressing logarithmic factors, in this paper we show that
as in the giant component of G(n, p), in percolation on a high-dimensional product
graph with degree d and order n the typical mixing time of a lazy random walk on L1
is �̃(d2) = �̃((log n)2), and the likely diameter of L1 is �̃(d) = �̃(log n). From this
point of view it is natural to ask what other parameters of these models, when appro-
priately scaled, resemble those in G(n, p). In particular, a well-known result of Ajtai,
Komlós, and Szemerédi [2] states that whp a supercritical binomial random graph
G(n, p) contains a path and cycle of length �(n). Indeed, in a recent work, it was
shown [27] that Qd

1
2+ε

contains whp a Hamiltonian cycle. Finding a cycle spanning a

linear fraction of the vertices in the case of a supercritical subgraph of the hypercube
remains open. Note that [27] poses several questions about a typical maximum length
of a cycle in Qd

p for various regimes of p := p(d).

Question 7.4 Let G = �t
j=1G

( j) be a product graph all of whose base graphs are
connected, regular and of bounded order. Let d := d(G), n := |V (G)|, ε > 0 and let
p = 1+ε

d . Does G p whp contain a cycle or a path of length �(n)?

Remark 7.5 We note that finding a path of length �(n) in Qd
p implies the likely exis-

tence of a cycle of the same order of magnitude in Qd
p. Indeed, one can start by taking

a path P0 of length �(n) in the giant component of (Q0)p, where Q0 is the subcube
of Qd obtained by fixing the first coordinate to be 0. Considering the projection of the
first and last |P0|

10 vertices of this path into the subcube of Qd obtained by fixing the
first coordinate to be 1, Q1, one can utilise similar methods to Lemmas 5.1 and 5.2
to show that at least one of the first |P0|

10 vertices and one of the last |P0|
10 vertices of

this path will belong whp to the giant component in (Q1)p, and thus will have a path
connecting them, closing a cycle of length �(n) with most of the vertices of P0. This
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argument generalises easily to a product graph all of whose base graphs are connected,
regular and of bounded order.

Theorem 6(c) shows that L1 contains whp a cycle of length �(nd−1 log−1 d), and
by the comment after Theorem 5, up to the logarithmic factor in d, this result is the
best possible that one can derive directly from the expansion properties of L1. It seems
likely that to settle this question, even in the case of the hypercube, new methods will
be required.

Finally, it would be interesting to determine whether the logarithmic factors in d
that appear in our bounds for the asymptotic mixing time and the likely diameter
are necessary, or whether they can be removed, thus mirroring the picture in the
supercritical G(n, p), or improved. It is worth noting that unlike the application of
the methods of [35] in G(tn, p), in randomly perturbed graphs [54], and in pseudo-
random graphs [31], the bottleneck on our bound on the mixing time here comes
from our bound on the typical expansion of large connected subsets, rather than small
subsets.
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