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Abstract
The study of ordered Ramsey numbers of monotone paths for graphs and hypergraphs
has a long history, going back to the celebratedwork by Erdős and Szekeres in the early
days of Ramsey theory. In this paper we obtain several results in this area, establishing
two conjectures of Mubayi and Suk and improving bounds due to Balko, Cibulka,
Král and Kynčl. For example, in the graph case, we show that the ordered Ramsey
number for a fixed clique versus a fixed power of amonotone path of length n is always
linear in n. Also, in the 3-graph case, we show that the ordered Ramsey number for a
fixed clique versus a tight monotone path of length n is always polynomial in n. As
a by-product, we also obtain a color-monotone version of the well-known Canonical
Ramsey Theorem of Erdős and Rado, which could be of independent interest.

Keywords Ordered Ramsey number · Monotone path · Power of path
Mathematics Subject Classification 05D10

1 Introduction

An ordered k-uniform hypergraph H is a hypergraph whose vertices have a fixed
ordering. The ordered Ramsey number R<(G, H) of ordered k-uniform hypergraphs
G and H is the minimum N such that every red/blue edge-coloring of the complete
k-uniform hypergraph on {1, . . . , N } has a red copy of G or a blue copy of H whose
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vertices appear in the correct ordering. One of the most well-studied hypergraphs in
this context is themonotone tight path P(k)

n , which is the ordered k-uniformhypergraph
with vertices 1, . . . , n and edges (i, i + 1, . . . , i + k − 1) for i = 1, . . . , n − k + 1.
We also write Pn := P(2)

n for the monotone graph path with n vertices.
The study of ordered Ramsey numbers dates back to the very beginning of Ramsey

theory, as some of the most foundational theorems in the field fall into this frame-
work. A key example is the celebrated Erdős–Szekeres lemma [7], whose proof gives
R<(Ps, Pn) = R<(Ks, Pn) = (s − 1)(n − 1) + 1.

A central feature of ordered Ramsey problems is that they often originate from and
have implications for problems in geometry. For example, the famous Erdős–Szekeres
cups-caps theorem [7] was used by Erdős and Szekeres (in the same paper [7]) to prove
the so-called Happy Ending Theorem, stating that every set of

(2n−4
n−2

) + 1 points in
the plane in general position contains n points in convex position. Moshkovitz and
Shapira [12] observed that the cups-caps theorem is a corollary of their result that
R<(P(3)

s , P(3)
n ) = (s+n−4

s−2

) + 1.
The happy ending theorem was later extended by several authors by replacing

“points" with “convex bodies". For example, Pach and Tóth [17] showed that there is
N = N (n) such that every family of N convex bodies in the plane in general position,
with any two bodies having at most two common boundary points, contains n bodies in
convex position. Fox, Pach, Sudakov and Suk [8] observed that this problem is related
to the 3-color Ramsey number of P(3)

n , and used this connection to improve the best
known bound for such an N (n). This led to the further study of the multicolor Ramsey
number of P(k)

n , and this Ramsey number was determined exactly by Moshkovitz and
Shapira [12] and Milans, Stolee and West [11].

Another motivation for studying Ramsey numbers of monotone tight paths comes
from the work of Mubayi and Suk [14], who observed that the k-uniform Ramsey
number R<(P(k)

s , K (k)
n ) is closely related to the multicolor (k − 1)-uniform Ramsey

number of cliques. Proving tight bounds for the latter is one of themajor open problems
in Ramsey theory (see [18] and its references for the latest results for the graph case,
i.e., k = 3).

A systematic study of ordered Ramsey numbers of graphs was initiated by Conlon
et al. [4] and Balko et al. [1]. One of the main problems considered in these works
is the Ramsey problem for powers of paths. Let Pt

n denote the t’th power of Pn ,
namely, the ordered graph with vertices 1, . . . , n and edge-set {(i, j) : i < j ≤
i + t}. Note that for P1

n = Pn , the Erdős–Szekeres lemma gives R<(Ks, P1
n ) =

(s − 1)(n − 1) + 1, which is linear in n for fixed s. Mubayi and Suk [16] recently
conjectured that R<(Ks, Pt

n) remains linear in n for all fixed s, t , and proved the bound
R<(Ks, Pt

n) = Os,t (n logs−2 n). Here, we confirm their conjecture, which can be seen
as an extension of the Erdős–Szekeres lemma.

Theorem 1.1 For s, t ≥ 1 and n > t , it holds that R<(Ks+1, Pt
n) ≤ (24 s3)st n.

Mubayi and Suk [16] also considered the “diagonal case" of Pt
n versus Kn , and

proved the quasipolynomial bound R<(Pt
n , Kn) ≤ 2Ot (log2 n). Here we improve this

to a polynomial bound.

Theorem 1.2 For t ≥ 2 and n > t , it holds that R<(Pt
n , Kn) ≤ 22t−1nt(2t−1).
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It is easy to see that this Ramsey number is at least R(Kt+1, Kn) ≥ �̃(n(t+2)/2)

(see [2, 19]), and therefore the exponent of n should grow in terms of t . It is worth
mentioning that powers of paths have also been studied in the context of tournaments.
For example, Draganić et al. [5] showed that any tournament on n vertices contains
the t’th power of a directed path on �t (n) vertices.

The dependence on t of the exponent of n in the previous result can be further
improved from quadratic to linear if instead of Kn one takes the second graph to
also be the path-power Pt

n . This problem was first considered by Conlon et al. [4],
who conjectured that the Ramsey number R<(Pt

n , P
t
n) is polynomial in n. Their actual

question concerned graphs with bounded bandwidth. But since every n-vertex ordered
graph with bandwidth t is a subgraph of Pt

n , this question reduces to the above conjec-
ture. Balko et al. [1] proved the conjecture by showing that R<(Pt

n , P
t
n) = Ot (n129t ).

In the case t = 2, Mubayi [13] improved the bound to R<(P2
n , P2

n ) = O(n19.5).
Here we obtain the improved bound R<(Pt

n , P
t
n) = Ot (n4t−2). For t = 2 this gives

R<(P2
n , P2

n ) = O(n6). In fact, Theorem 1.2 gives R<(P2
n , Kn) ≤ 8n6.

Theorem 1.3 For t ≥ 1 and n > t , it holds that R<(Pt
n , P

t
n) ≤ (400t3)t

2
n4t−2.

Wenowmoveon to3-uniformhypergraphs.Mubayi [13] showed that R<(K (3)
4 ,P(3)

n

) ≤ O(n21) and conjectured that R<(K (3)
s , P(3)

n ) is polynomial in n for every fixed s.
This conjecture was also reiterated by Mubayi and Suk [15]. Very recently, they [16]
proved the quasipolynomial bound R<(K (3)

s , P(3)
n ) ≤ 2Os (log2 n). Here we prove a

polynomial bound, establishing Mubayi’s conjecture.

Theorem 1.4 For every s ≥ 3, there is a constant C = C(s) such that
R<(K (3)

s , P(3)
n ) ≤ C · nC .

We will derive Theorem 1.4 from another result which might be of independent
interest. It can be viewed as an ordered version of the celebrated Canonical Ramsey
Theorem of Erdős and Rado [6] (here “ordered" refers to an order on the colors, as we
shall see). To state our theorem, we need the following definition:

Definition 1.5 Let χ : (N
2

) → N. A set x1 < · · · < xs is lexicographic if there are
colors c1, . . . , cs−1 ∈ N such that one of the following holds:

1. χ(xi , x j ) = ci for all 1 ≤ i < j ≤ s.
2. χ(xi , x j ) = c j−1 for all 1 ≤ i < j ≤ s.

The canonical Ramsey theorem [6] states that for every s, there is N = N (s) such
that in every edge-coloring of KN (with any number of colors), there is a clique of size
s which is either monochromatic, rainbow1 or lexicographic. It is natural to restrict the
number of colors to say n, and ask how large N should be to guarantee a lexicographic
s-clique. It is not hard to see that N = 1 + ∑s−2

i=0 n
i = O(ns−2) vertices are enough

for n colors. Indeed, the first vertex has degree at least 1 + ∑s−3
i=0 n

i in one of the
n colors, and one can then apply induction in its neighbourhood. Observe also that

1 A clique is rainbow if all of its edges have different colors.
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by combining this argument with the Erdős–Szekeres lemma, one can make sure that
the sequence of colors c1, . . . , cs−1 (from Definition 1.5) is monotone, namely that
c1 ≥ · · · ≥ cs−1 or c1 ≤ · · · ≤ cs−1. Indeed, taking N = O

(
n(s−1)2

)
, one first finds a

lexicographic set of size t = (s−1)2+2, and then applies the Erdős–Szekeres lemma
to c1, . . . , ct−1. The question becomesmuchmore interesting, however, if one requires
that c1 ≥ · · · ≥ cs−1. In this case we say that the lexicographic set is non-increasing.
The following theorem shows that polynomially many vertices are still enough to find
such a set. This can be viewed as an ordered version of the canonical Ramsey theorem.

Theorem 1.6 For every s ≥ 2, there is a constant C = C(s) such that every χ :(N
2

) → [n], N = CnC, admits a lexicographic non-increasing set of size s.

The idea of using non-increasing sets to bound R<(K (3)
s , P(3)

n ) is due to Mubayi and
Suk [16], see Sect. 2 for the details.

The rest of this paper is organized as follows. Theorems 1.4 and 1.6 are proved in
Sect. 2. Theorems 1.2 and 1.3 are proved in Sect. 3. The proof of Theorem 1.1 is given
in Sect. 4, and the last section contains some concluding remarks and open problems.
Notation: For two subsets of vertices A, B in an ordered graph, we write A < B if
a < b for all a ∈ A, b ∈ B.

2 Proof of Theorem 1.4 and 1.6

Throughout this section, we consider functions χ : (N
2

) → [n]. We now define the
notion of a non-increasing set, which plays a key role throughout this section.

Definition 2.1 Let χ : (N
2

) → [n]. A triple x < y < z is called non-increasing if
χ(x, y) ≥ χ(y, z), and moreover χ(x, z) = χ(x, y) or χ(x, z) = χ(y, z). A set
x1 < · · · < xs is called non-increasing if every triple xi , x j , xk , 1 ≤ i < j < k ≤ s,
is non-increasing.

Let g(n, s) be the minimum N such that in every coloring χ : (N
2

) → [n], there is a
non-increasing set of size s. The following was observed by Mubayi and Suk [16] and
was their motivation for studying non-increasing sets. For completeness, we include
the proof.

Proposition 2.2 [16] For all s, n ≥ 3, it holds that R<(K (3)
s , P(3)

n ) ≤ g(n − 2, s).

Proof Fix a red/blue coloring of K (3)
N , N = g(n − 2, s), and suppose that there is

no blue monotone tight path with n vertices. For each pair of vertices x < y, let
χ(x, y) be the largest number of vertices in a blue monotone tight path ending at
x, y. So 2 ≤ χ(x, y) ≤ n − 1. Observe that if x < y < z with xyz blue, then
χ(x, y) < χ(y, z), because we can extend any longest path ending at x, y with the
edge xyz. Hence, a non-increasing set must be a red clique. Observe that there are
n−2 possible values of χ(x, y)’s. By the definition of g(n−2, s), there is a red clique
of size s. ��
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Remark 2.3 We note that the proof of Proposition 2.2 only uses that a non-increasing
triple x, y, z satisfies χ(x, y) ≥ χ(y, z), but does not use the full definition of a
non-increasing triple. Thus, one can replace g(n − 2, s) with the analogous function
corresponding to thisweaker notion of being non-increasing (only requiringχ(x, y) ≥
χ(y, z)), and potentially get stronger bounds on R<(K (3)

s , P(3)
n ) via Proposition 2.2.

Still, we decided to stick to the stronger notion given in Definition 2.1, because we
do not know of better bounds for the weaker notion of g-function (for general s), and
also because the stronger notion is needed to prove Theorem 1.6.

Wewill now prove the following theorem, which together with Proposition 2.2 implies
Theorem 1.4.

Theorem 2.4 For every s ≥ 2, there is a constant C = C(s) such that g(n, s) ≤ C ·nC .
To prove Theorem 2.4, we need to find a non-increasing set of size s. The proof is

via induction on s, and to this end, it turns out to be convenient to find the following
bigger structure. For s ≥ 2, t ≥ 1, let Hs,t be the ordered graph with vertices x1 <

· · · < xs = y1 < · · · < yt such that {x1, . . . , xs} is non-increasing, (y1, . . . , yt ) is
a monotone path, and χ(xs−1, xs) ≥ χ(y1, y2) ≥ · · · ≥ χ(yt−1, yt ). Let f (n; s, t)
be the minimum N such that every n-coloring χ of the edges of KN admits a copy
of Hs,t . As Hs,1 is just a non-increasing s-set, it holds that f (n; s, 1) = g(n, s). The
following gives a recursive bound on f (n; s, t).
Lemma 2.5 For s ≥ 3, t ≥ 1, it holds that f (n; s, t) ≤ f (n; s − 1, t + 1)s+t · ns−1.

Proof Put M = f (n; s − 1, t + 1) and N = Ms+t ns−1, and fix a coloring
χ : (N

2

) → [n]. Put h = s + t − 1 = |V (Hs−1,t+1)|. We use a standard double-
counting (supersaturation) argument to argue that there are many copies of Hs−1,t+1.
Indeed, by definition, every M vertices contain a copy of Hs−1,t+1. There are

(N
M

)

subsets of size M , each of which contains a copy of Hs−1,t+1, and every copy of
Hs−1,t+1 is contained in

(N−h
M−h

)
such subsets. Thus, by double-counting, there are

at least (NM)

(N−h
M−h)

= (Nh )

(Mh )
≥ (N/M)h copies of Hs−1,t+1. By the pigeonhole prin-

ciple, there is a choice of colors α1, . . . , αs−2, β ∈ [n], and a set H of at least
Nh

Mhns−1 copies (x1, . . . , xs−1 = y1, . . . , yt+1) of Hs−1,t+1, with the property that
χ(xi , xs−1) = αi for every 1 ≤ i ≤ s − 2, and χ(y1, y2) = β. By the definition of
Hs−1,t+1, χ(xs−2, xs−1) ≥ χ(y1, y2) and the triple xi , xi+1, xs−1 is non-increasing
for all 1 ≤ i ≤ s − 3. Thus, α1 ≥ α2 ≥ · · · ≥ αs−2 ≥ β. By averaging, there is a
choice of x1, . . . , xs−2, y2, . . . , yt+1 and a set X of size |X | ≥ N

Mhns−1 = M , such that

vspace*-3pt (x1, . . . , xs−2, x, y2, . . . , yt+1) ∈ H for all x ∈ X . By the definition of
M , X contains a copy of Hs−1,t+1, say on the vertices u1, . . . , us−1 = v1, . . . , vt+1.
We now consider two cases:
Case 1: χ(v1, v2) ≤ β. Then, we have αs−2 ≥ β ≥ χ(v1, v2) ≥ · · · ≥
χ(vt , vt+1). We claim that x1, . . . , xs−2, v1, v2, v3, . . . , vt+1 form a copy of Hs,t

with s-clique {x1, . . . , xs−2, v1, v2} and path v2, . . . , vt+1. It suffices to show that
{x1, . . . , xs−2, v1, v2} is non-increasing. For convenience, write xs−1 := v1 and
xs := v2. Let 1 ≤ i < j < k ≤ s. If ( j, k) �= (s − 1, s), then xi , x j , xk is non-
increasing because {x1, . . . , xs−2, v1} and {x1, . . . , xs−2, v2} are non-increasing, as
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v1, v2 ∈ X . And for ( j, k) = (s − 1, s), we have χ(xi , xs−1) = χ(xi , xs) = αi

and χ(xs−1, xs) = χ(v1, v2) ≤ β ≤ αs−2 ≤ αi , meaning that xi , xs−1, xs is non-
increasing.
Case 2: χ(v1, v2) ≥ β. Then χ(us−2, us−1) ≥ χ(v1, v2) ≥ β, where the first inequal-
ity is by the definition of Hs−1,t+1. Also, χ(ui , y2) = β for all 1 ≤ i ≤ s − 1
because u1, . . . , us−1 ∈ X . We claim that u1, . . . , us−1, y2, y3, . . . , yt+1 make a
copy of Hs,t with s-clique {u1, . . . , us−1, y2} and path y2, . . . , yt+1. First, note
that χ(us−1, y2) = β ≥ χ(y2, y3) ≥ · · · ≥ χ(yt , yt+1). So it remains to check
that {u1, . . . , us−1, y2} is non-increasing. For convenience, write us := y2. Let
1 ≤ i < j < k ≤ s. If k ≤ s − 1, then the triple ui , u j , uk is non-increasing because
{u1, . . . , us−1} is non-increasing (by the definition of Hs−1,t+1). And for k = s, we
haveχ(ui , us) = χ(u j , us) = β andχ(ui , u j ) ≥ χ(ui , us−1) ≥ χ(us−2, us−1) ≥ β,
where the first two inequalities use that the triples {ui , u j , us−1} and {ui , us−2, us−1}
are non-increasing. This completes the proof of the lemma. ��
The following theorem implies Theorem 2.4, as f (n; s, 1) = g(n, s).

Theorem 2.6 For every s ≥ 2, t ≥ 1, there is a constant C = C(s, t) such that
f (n; s, t) ≤ Os,t (nC ). Moreover, one can take C(s, t) = (s + t)s−1 − 3(s + t)s−2 +∑s−3

i=0 (s − 1 − i)(s + t)i .

Proof The proof is by induction on s, starting with the base case s = 2. Observe that
H2,t is just a monotone path of length t with non-increasing χ -labels. By a result of
Chvatal and Komlós [3], in every edge-coloring χ of an ordered KN , N >

(p+q−2
p−1

)
,

there are vertices y1 < · · · < yp+1 with χ(y1, y2) ≥ χ(y2, y3) ≥ · · · ≥ χ(yp, yp+1)

or vertices y1 < · · · < yq+1 with χ(y1, y2) < χ(y2, y3) < · · · < χ(yq , yq+1). Apply
this with p = t, q = n+1, assuming N >

(n+t−1
t−1

)
. The second outcome is impossible

because there are only n colors. And the first outcome gives a copy of H2,t . Hence,
we can take C(2, t) = t − 1 for all t ≥ 1. It is easy to see that this coincides with the
choice of C(s, t) in the statement of the theorem.

Now let s ≥ 3. By Lemma 2.5 and the induction hypothesis, we have

f (n; s, t) ≤ f (n; s − 1, t + 1)s+t · ns−1 ≤ Os,t

(
n(s+t)·C(s−1,t+1)+s−1

)
,

so one can take C(s, t) = (s + t) ·C(s − 1, t + 1) + s − 1. It is easy to check that the
choice of C(s, t) in the statement of the theorem also satisfies this recursion. ��

Next we prove Theorem 1.6. This theorem follows by combining Theorem 2.4 with
the following proposition:

Proposition 2.7 For s ≥ 3, every non-increasing set of size 22s−3 contains a lexico-
graphic set of size s.

It remains to prove Proposition 2.7. To this end, we need the following recursive
definition.

Definition 2.8 (weakly lexicographic) A set of size two is weakly lexicographic. For
s ≥ 3, a set x1 < · · · < xs is weakly lexicographic if one of the following holds:
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1. There is a color c ∈ [n] such that χ(x1, xi ) = c for all 2 ≤ i ≤ s, and x2, . . . , xs
is weakly lexicographic.

2. There is a color c ∈ [n] such that χ(xi , xs) = c for all 1 ≤ i ≤ s − 1, and
x1, . . . , xs−1 is weakly lexicographic.

Let us say that a set x1 < · · · < xs is forward lexicographic if x1, . . . , xs satisfies Item
1 in Definition 1.5, i.e., if there are colors c1, . . . , cs−1 such that χ(xi , x j ) = ci for all
1 ≤ i < j ≤ s. Similarly, x1, . . . , xs is backward lexicographic if x1, . . . , xs satisfies
Item 2 inDefinition 1.5, i.e., if there are colors c1, . . . , cs−1 such thatχ(xi , x j ) = c j−1
for all 1 ≤ i < j ≤ s. By definition, x1, . . . , xs is lexicographic if and only if it is
forward lexicographic or backward lexicographic. Thus, the following lemma shows
that every weakly lexicographic set contains a large lexicographic subset.

Lemma 2.9 Let s, t ≥ 2. Every weakly lexicographic set of size s + t − 2 contains a
forward lexicographic set of size s or a backward lexicographic set of size t .

Proof By induction on s + t . The base case is s = 2 or t = 2. This case is evident
because every set of size 2 is both forward and backward lexicographic. Suppose now
that s, t ≥ 3. Let x1 < · · · < xs+t−2 be a weakly lexicographic set. Suppose without
loss of generality that Item 1 in Definition 2.8 holds. By induction, x2, . . . , xs+t−2
contains a forward lexicographic set of size s − 1 or a backward lexicographic set of
size t . In the latter case, we are done; in the former case, by adding x1 we get a forward
lexicographic set of size s (so again we are done). ��
Lemma 2.10 Every non-increasing set of size 2s−1 contains a weakly lexicographic
set of size s.

Proof By induction on s. For s = 2 this is clear. Let s ≥ 3 and let x1 < · · · < xk ,
be a non-increasing set with k = 2s−1. For each 2 ≤ i ≤ k − 1, it holds that
χ(x1, xi ) = χ(x1, xk) or χ(xi , xk) = χ(x1, xk) because the triple x1, xi , xk is non-
increasing. Suppose, without loss of generality, that at least (k − 2)/2 = 2s−2 − 1 of
the 2 ≤ i ≤ k − 1 satisfy χ(x1, xi ) = χ(x1, xk) =: c. Let I be the set consisting
of these 2 ≤ i ≤ k − 1 and the element k. Then χ(x1, xi ) = c for all i ∈ I , and
|I | ≥ 2s−2. By induction, {xi : i ∈ I } contains a weakly lexicographic set of size
s − 1, which together with x1 forms a weakly lexicographic set of size s. ��
Proposition 2.7 follows by combining Lemmas 2.9 and 2.10 (where we apply Lemma
2.9 with s = t).

3 Proof of Theorem 1.2 and 1.3

Definition 3.1 (t-clique chain) In an ordered graph, a t-clique chain consists of t-
cliques (cliques of size t) X1, . . . , Xm such that for every 1 ≤ i ≤ m−1, |Xi∩Xi+1| =
1 and the last element of Xi is the first element of Xi+1.

See Fig. 1 for an example of a 4-clique chain.
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X1 X2 X3 X4 X5

Fig. 1 An example of a 4-clique chain X1, . . . , X5

Lemma 3.2 For n,m, t ≥ 1, the following holds:

1. Every red/blue edge-coloring of KN , N = (R(Kt , Kt ) − 1) · m2 + 1, contains a
monochromatic t-clique chain with m cliques.

2. Every red/blue edge-coloring of KN , N = (R(Kt , Kn) − 1) · m + 1, contains a
blue Kn or a red t-clique chain with m cliques.

Proof We first prove Item 1. Suppose that the assertion does not hold. For each vertex
v, let χr (v) (resp. χb(v)) be the largest number of t-cliques in a red (resp. blue) t-
clique chain ending at v. Then 0 ≤ χr (v), χb(v) ≤ m − 1 for all v. By the pigeonhole
principle, there are values 0 ≤ cr , cb ≤ m − 1 and a set U with |U | ≥ N/m2 >

R(Kt , Kt ) − 1, such that χr (v) = cr and χb(v) = cb for all v ∈ U . As |U | ≥
R(Kt , Kt ), there is a monochromatic t-clique x1 < · · · < xt in U . Suppose without
loss of generality that this clique is red. Then χr (xt ) > χr (x1), because any longest
red t-clique chain ending at x1 can be extended using the t-clique {x1, . . . , xt }. This
is a contradiction to χr (x1) = χr (xt ) = cr .

The proof of Item 2 is similar to that of Item 1. Suppose that the statement does not
hold, and let 0 ≤ χr (v) ≤ m − 1 be defined as above. By the pigeonhole principle,
there is 0 ≤ cr ≤ m − 1 and a vertex-set U , |U | ≥ N/m, such that χr (v) = cr for all
v ∈ U . We have |U | ≥ R(Kt , Kn) by the choice of N . If U contains a blue Kn then
we are done, and else U contains a red t-clique x1 < · · · < xt . As in the previous
item, we have χr (xt ) > χr (x1), in contradiction to χr (x1) = χr (xt ) = cr . ��

Proof of Theorem 1.3 Put R = R(Kt , Kt ) and N = 2R2t−1n4t−3 · R<(Kt , Pt
n), and

note that N < (400t3)t
2
n4t−2, using Theorem 1.1 and R(Kt , Kt ) ≤ 4t . Fix a red/blue

coloring of KN , and suppose by contradiction that there is no monochromatic copy of
Pt
n . For eachmonochromatic t-clique x1, . . . , xt , letχ(x1, . . . , xt ) be the largest � such

that there is a monochromatic Pt
� which ends at x1, . . . , xt . Then t ≤ χ(x1, . . . , xt ) ≤

n − 1. A good pair is a pair of monochromatic t-cliques X ,Y in the same color, such
that the last element of X is the first element of Y , and χ(X) ≥ χ(Y ).

Claim 3.3 There are at least N2t−1

R2t−1n4t−4 good pairs.

Proof First, we observe that every set of (R − 1)n2 + 1 vertices contains a good pair.
Indeed, by Item 1 of Lemma 3.2, every (R−1)n2+1 vertices contain amonochromatic
t-clique chain with n cliques X1, . . . , Xn . There must exist an 1 ≤ i ≤ n−1 such that
χ(Xi ) ≥ χ(Xi+1), because χ(Xi ) ∈ {1, 2, . . . , n − 1} for every i . Then (Xi , Xi+1)

is a good pair.
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Now, every set of Rn2 vertices contains at least n2 good pairs (by repeatedly finding
a good pair and deleting one of its vertices). By double counting, there are at least

n2 ·
( N
Rn2

)

( N−2t+1
Rn2−2t+1

) = n2 ·
( N
2t−1

)

( Rn2
2t−1

) ≥ N 2t−1

R2t−1n4t−4

good pairs. ��
By Lemma 3.3 and averaging, there are vertices x1 < · · · < xt−1 < z1 <

· · · < zt−1 and a set Y ′ of vertices xt−1 < y < z1 such that |Y ′| ≥
N

R2t−1n4t−4 ≥ 2n · R<(Kt , Pt
n), and such that for every y ∈ Y ′, {x1, . . . , xt−1, y}

and {y, z1, . . . , zt−1} form a good pair. Without loss of generality, for at least half
of the vertices y ∈ Y ′, the t-cliques {x1, . . . , xt−1, y}, {y, z1, . . . , zt−1} are red.
Also, by the pigeonhole principle over the value of χ , there exists a set Y ⊆ Y ′,
|Y | ≥ |Y ′|/(2n) = R<(Kt , Pt

n), and there exists a value t ≤ c ≤ n − 1, such
that χ(x1, . . . , xt−1, y) = c and {x1, . . . , xt−1, y}, {y, z1, . . . , zt−1} are red for all
y ∈ Y . Note that χ(y, z1, . . . , zt−1) ≤ c for all y ∈ Y , by the definition of a
good pair. As |Y | = R<(Kt , Pt

n) and Y contains no blue Pt
n , it must contain a red

clique y1 < · · · < yt . Now take a red Pt
c ending at x1, . . . , xt−1, y1, and extend it

by adding the vertices y2, . . . , yt , z1, . . . , zt−1, using that x1, . . . , xt−1, z1, . . . , zt−1
are connected to y1, . . . , yt in red, and that y1, . . . , yt is a red clique. It fol-
lows that χ(yt , z1, . . . , zt−1) > χ(x1, . . . , xt−1, y1) = c, in contradiction to
χ(yt , z1, . . . , zt−1) ≤ c. ��
Proof of Theorem 1.2 The proof is similar to that of Theorem 1.3. Put M = R(Kt , Kn)

and N = (2Mn)2t−1. As R(Kt , Kn) ≤ (n+t−2
t−1

) ≤ nt−1 (by the Erdős–Szekeres

bound [7]), we have N ≤ 22t−1nt(2t−1). Fix a red/blue coloring of KN , and suppose
by contradiction that there is no red Pt

n and no blue Kn . For each red t-clique x1, . . . , xt ,
let χ(x1, . . . , xt ) be the largest � such that there is a red Pt

� that ends at x1, . . . , xt ; so
t ≤ χ(x1, . . . , xt ) ≤ n − 1. A good pair is a pair of red t-cliques X ,Y such that the
last element of X is the first element of Y , and χ(X) ≥ χ(Y ).

Claim 3.4 There are at least N2t−1

22t−1M2t−2n2t−2 good pairs.

Proof First, we observe that every set of (M − 1)n + 1 vertices contains a good pair.
Indeed, by Item 2 of Lemma 3.2, every set of (M − 1)n + 1 vertices contains a blue
Kn or a red t-clique chain with n cliques X1, . . . , Xn . In the latter case, there must be
1 ≤ i ≤ n − 1 such that χ(Xi ) ≥ χ(Xi+1), which gives a good pair.

Now, every set of 2Mn vertices contains at least Mn good pairs (by repeatedly
finding a good pair and deleting one of its vertices). By double counting, there are at
least

Mn ·
( N
2Mn

)

( N−2t+1
2Mn−2t+1

) = Mn ·
( N
2t−1

)

(2Mn
2t−1

) ≥ N 2t−1

22t−1M2t−2n2t−2

good pairs. ��
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By Lemma 3.4 and averaging, there are vertices x1 < · · · < xt−1 < z1 < · · · < zt−1
and a setY ′ of vertices xt−1 < y < z1 such that |Y ′| ≥ N

22t−1M2t−2n2t−2 ≥ Mn, and such
that for all y ∈ Y ′, {x1, . . . , xt−1, y} and {y, z1, . . . , zt−1} form a good pair. By the
pigeonhole principle over the value of χ , there exists a set Y ⊆ Y ′, |Y | ≥ |Y ′|/n = M ,
and a value t ≤ c ≤ n − 1, such that χ(x1, . . . , xt−1, y) = c for all y ∈ Y . Then
χ(y, z1, . . . , zt−1) ≤ c for all y ∈ Y , by the definition of a good pair. As |Y | = M =
R(Kt , Kn) andY contains no blue Kn , it must contain a red clique y1 < · · · < yt . As in
the proof of Theorem 1.3, we get c ≥ χ(yt , z1, . . . , zt−1) > χ(x1, . . . , xt−1, y1) = c,
a contradiction. ��

4 Proof of Theorem 1.1

We begin with a brief sketch. Our strategy for upper bounding R(Ks+1, Pt
n) is to find

a certain structure which we call an s-red-net (see Definition 4.3). We will show (see
Lemma 4.12) that this structure implies the existence of a red Ks+1 or a blue Pt

n .
To find an s-red-net, we will first find blue cliques V1 < · · · < VM , each of large
constant size, and partition each Vi into s consecutive equal-sized parts. For each i
and 0 ≤ j ≤ s − 2, we will define χ j (i) as the largest � such that there exists a blue
Pt

� whose last t vertices belong to the first (s − 1 − j) parts in the partition of Vi .
The key point is that if i1 < i2 and χ j (i1) ≥ χ j (i2), then the bipartite graph between
certain parts of Vi1 and certain parts of Vi2 must be almost red. Using this, we can
reduce the task of finding an s-red-net to the task of finding a certain structure in the
functions χ0, . . . , χs−2. We call this structure a (χ0, . . . , χs−2)-forest, see Definition
4.4 and Lemma 4.5.

We now introduce some definitions. We will consider rooted trees and forests, and
use the following terminology.

Definition 4.1 A rooted forest is a collection of rooted trees. The depth of a vertex is
the distance from the root (of the corresponding tree). A rooted forest is balanced if
all leaves have the same depth.

We always consider forests F with V (F) ⊆ [M] for some integer M , so that there is
a natural ordering on V (F).

Definition 4.2 Let F be a rooted forest with a linear order on its vertices. We say that
F is pre-ordered if each vertex comes before all of its descendants, and for every two
vertices y < y′ that are at the same depth, the descendants of y come before y′, and
thus before all the descendants of y′.

Note that if F is pre-ordered then for every two components (trees) T1, T2 in F , we
have T1 < T2 or T2 < T1. Also, if x is the root of a component T , y1 < · · · < yk are the
children of x , and Si is the subtree rooted at yi (1 ≤ i ≤ k), then x < S1 < · · · < Sk ,
and each Si is pre-ordered. Observe that if F is balanced pre-ordered forest of depth
d, and x1, . . . , xm are the roots of the components (trees) of F , then after deleting
x1, . . . , xm we get a balanced pre-ordered forest of depth d −1 (the trees in this forest
are the subtrees rooted at the children of x1, . . . , xm). We write |F | for the number of
vertices in a forest F .
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X1 X2 X3 X4 X5 X6 X7

X1 X2 X4 X6X3 X5 X7 X8 X9 X10 X11

Fig. 2 An example of a 2-red-net (top) and a 3-red-net (bottom). In the top example V (F) = {1, . . . , 7}
and in the bottom example V (F) = {1, . . . , 11}. An edge between Xi and X j indicates that there is an
edge between i and j in F

1 2 3 4 5 6 7 8

(7, 2) (2, 2) (4, 3) (5,3( )5, 1) (2, 1) (6, 4) (5, 3)

9 10 11

(9, 7) (7, 6) (10, 4)

Fig. 3 An example of a (χ0, χ1)-forest on vertex set {1, 2, . . . , 11}: the number above each node is its
index, and the pair below node i is (χ0(i), χ1(i))

We are now ready to define the notion of an s-red-net, which will play a key role
in the proof.

Definition 4.3 Consider a red/blue edge-coloring of KN . Let s ≥ 1. An s-red-net of
order r is a pair (F, (Xv)v∈V (F)), where F is a balanced pre-ordered forest of depth
s − 1, and for each v ∈ V (F), Xv ⊆ [N ] is a blue clique (in KN ) of size r , such that
the following holds:

1. For v, u ∈ V (F), if v < u then Xv < Xu .
2. For every v ∈ V (F) and every descendant u of v, there is no blue Kt,t with one

part in Xv and the other in Xu .

See figure 2 for an example of an s-red-net for s = 2, 3.We note that since there is a
total order of the vertices of F , there is also a corresponding total order of (Xv)v∈V (F).

4.1 Finding s-Red-nets

Asmentioned above, we will find an s-red-net by finding a certain structure in a family
of functions χ0, . . . , χq−1 : [M] → [n]. We now define this structure.

Definition 4.4 Let χ0, . . . , χq−1 : [M] → [n] be q functions. A (χ0, . . . , χq−1)-
forest is a pre-ordered balanced forest F of depth q with V (F) ⊆ [M], such that the
following holds: For every 0 ≤ d ≤ q − 1 and a ∈ V (F) at depth d, it holds that
χd(a) ≥ χd(a′) for every child a′ of a. We denote by L(F) the set of leaves of F .

Note that in the case q = 1, a (χ0)-forest simply consists of elements x1, . . . , xm
(the roots of the trees in the forest) and sets Y1, . . . ,Ym (the sets of leaves of the
trees) such that x1 < Y1 < · · · < xm < Ym and χ0(xi ) ≥ χ0(y) for all y ∈ Yi and
1 ≤ i ≤ m. See figure 3 for an example when q = 2.

Lemma 4.5 For every q ≥ 1 and functions χ0, . . . , χq−1 : [M] → [n], there is a
(χ0, . . . , χq−1)-forest F with |L(F)| ≥ M/2q−1 − n.
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x1 x2 x3 x4

1 N

y1 y2 y3 y4 y5

Z1
Z2

Z3

Fig. 4 An example for the proof of Lemma 4.5 where q = 2, k = 4 and � = 5. Every red (dashed) circle
stands for a component of F ′ rooted at some yi . Also, J0 = {1, 2, 3}, so Z j is defined for j = 1, 2, 3

Proof The proof is by induction on q. First, define a sequence x1, x2, . . . as follows.
Set x1 = 1, and for each i ≥ 2, let xi be the smallest x > xi−1 with χ0(x) > χ0(xi−1).
Let x1 < · · · < xk be the resulting sequence. As χ0(x1) < · · · < χ0(xk), we have
k ≤ n.

First, we handle the base case q = 1. In this case, put Yi = {xi + 1, . . . , xi+1 − 1}
for 1 ≤ i ≤ k − 1, and Yk = {xk + 1, . . . , M}. By the definition of the sequence (xi )i ,
we have that χ0(xi ) ≥ χ0(y) for every y ∈ Yi and 1 ≤ i ≤ m. Now, write I for the
set of i ∈ [k] with Yi �= ∅. For i ∈ I , let Ti be the tree of depth 1 with root xi and
leaf-set Yi . Let F be the forest with components Ti , i ∈ I . Then F is pre-ordered and
balanced of depth 1. Also, |L(F)| = |Y1| + · · · + |Yk | = M − k ≥ M − n. So F is
the required (χ0)-forest.

Suppose now that q ≥ 2. Apply the induction hypothesis for q − 1 to the functions
χ1, . . . , χq−1 and to [M]\{x1, . . . , xk} in place of [M]. This gives a (χ1, . . . , χq−1)-
forest F ′ with V (F ′) ⊆ [M]\{x1, . . . , xk} and

|L(F ′)| ≥ M − n

2q−2 − n ≥ M

2q−2 − 2n.

Let S1 < · · · < S� be the components of F ′. For each 1 ≤ i ≤ �, let yi be the
root of Si , and let ji be the maximum 1 ≤ j ≤ k with x j < yi (this is well-defined
because x1 = 1). Then x ji < yi < x ji+1 if ji < k, and yi ≥ xk if ji = k. It follows
that χ0(x ji ) ≥ χ0(yi ) by the definition of the sequence (x j ) j . (This means that yi is
a potential child of x ji in the (χ0, . . . , χq−1)-forest we are going to construct.) For
1 ≤ j ≤ k, let I j = {1 ≤ i ≤ � : ji = j}, the set of potential children of x j . Let J0
be the set of all 1 ≤ j ≤ k such that I j �= ∅. For each j ∈ J0, let Z j be the minimum
interval (in [M]) which contains the set {x j } ∪ ⋃

i∈I j V (Si ); namely, the left endpoint
of Z j is x j , and the right endpoint of Z j is the rightmost element of

⋃
i∈I j V (Si ). See

figure 4 for an example. Recall that L(Si ) denotes the set of leaves of Si .

Claim 4.6 There is J ⊆ J0 such that Z j < Z j ′ for every pair j, j ′ ∈ J with j < j ′,
and

∑

j∈J

∑

i∈I j
|L(Si )| ≥ 1

2
(|L(S1)| + · · · + |L(S�)|) ≥ M

2q−1 − n. (1)

Proof Let H be the interval graph of the intervals Z j , j ∈ J0; namely, V (H) = J0
and j, j ′ are adjacent if Z j , Z j ′ intersect. We claim that H is triangle-free. Indeed,
suppose that j < j ′ < j ′′ make a triangle in H . Since Z j , Z j ′′ intersect, there is
v ∈ ⋃

i∈I j V (Si ) with v > x j ′′ . Let i ∈ I j such that v ∈ V (Si ). We know yi < x j ′
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because ji = j < j ′. Now, take an arbitrary i ′ ∈ I j ′ (the set I j ′ is non-empty because
j ′ ∈ J0). If i ′ ≤ i , then yi ′ ≤ yi , which means ji ′ ≤ ji = j < j ′. And if i ′ > i ,
then Si < Si ′ . As v ∈ V (Si ), this implies that yi ′ > v > x j ′′ , so ji ′ ≥ j ′′ > j ′. In
either case, ji ′ �= j ′, contradicting the fact that i ′ ∈ I j ′ . This proves our claim that H
is triangle-free.

Interval graphs are perfect (see [9, Chap. 8]), so H is 2-colorable. Take J ⊆ J0
to be the color class that maximizes

∑
j∈J

∑
i∈I j |L(Si )|. Then (1) holds. Also, for

every pair j, j ′ ∈ J with j < j ′, we have Z j ∩ Z j ′ = ∅ (because J is independent in
H ) and hence Z j < Z j ′ (because Z j , Z j ′ are intervals and x j ∈ Z j is to the left of
x j ′ ∈ Z j ′). ��

We now complete the proof of the lemma. For each j ∈ J , form a balanced
tree Tj by taking x j as the root and attaching Si as a subtree of the root for every
i ∈ I j . Then Tj is pre-ordered and balanced of depth q, because the Si ’s are pre-
ordered and have depth q − 1. The children of x j are all the yi with i ∈ I j , and
we already saw that χ0(x j ) ≥ χ0(yi ) for each such yi . Also, by the claim, we have
Z j < Z j ′ for all j, j ′ ∈ J with j < j ′. Hence, writing J = { j1, . . . , jm}, we
have V (Tj1) < · · · < V (Tjm ). Let F be the forest with components Tj1, . . . , Tjm .
Then F is a (χ0, . . . , χq−1)-forest; indeed, the requirement in Definition 4.4 holds for
d = 0 (as we just saw), and also holds for 1 ≤ d ≤ q − 1 because (S1, . . . , S�) is a
(χ1, . . . , χq−1)-forest. Also, |L(F)| ≥ M/2q−1 −n by (1). This completes the proof.

��

4.2 Using s-Red-nets

In this section, we show in Lemma 4.12 that a large enough s-red-net implies the
existence of a red Ks+1 or a blue Pt

n . This is done via a stronger statement (see
Lemma 4.9), which has the advantage of allowing an inductive proof. The following
definition will play an important role.

Definition 4.7 Let C = (F, (Xv)v) be an s-red-net. Let x be the root of the leftmost
component (tree) of F and x ′ be the root of the rightmost component (tree) of F . The
head of C, denoted Head(C), consists of the s vertices of F on the leftmost path from
x to a leaf (i.e., a path that always goes to the leftmost child). Similarly, the tail of C,
denoted Tail(C), consists of the s vertices of F on the rightmost path from x ′ to a leaf.

As an example, if C is as depicted in the top part of figure 2, then Head(C) = {1, 2}
and Tail(C) = {5, 7}, and if C is as depicted in the bottom part of figure 2, then
Head(C) = {1, 2, 3} and Tail(C) = {9, 10, 11}.
Definition 4.8 For each subset S = {s1, . . . , sr } of [N ], write SU := {s1, . . . , sr/3},
SM := {sr/3+1, . . . , s2r/3}, SD := {s2r/3+1, . . . , sr }.2
Our key lemma is the following.

Lemma 4.9 Let s ≥ 1, n ≥ t ≥ 1 and r ≥ 3t . Suppose C = (F, (Xv)v) is an s-red-net
of order r . Then, at least one of the following holds.

2 To avoid floor and ceiling signs, we will assume that r is divisible by 3.
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XU
x1

XM
x1

XD
x1

XU
x2

XM
x2

XD
x2

XU
x3

XM
x3

XD
x3

XU
x4

XM
x4

XD
x4

L1 L2 L3R1 R2 R3

P t

Fig. 5 Proof of Lemma 4.9 for s = 1: Every part with a blue shadow induces a blue clique, and every two
parts connected by two blue dashed lines induce a blue complete bipartite graph

(a) There exist s + 1 distinct vertices v1, . . . , vs+1 ∈ V (F), along with sets Ai ⊆
Xvi (⊆ [N ]), |Ai | ≥ r/3, such that for every 1 ≤ i < j ≤ s + 1, there is no blue
Kt,t with one part in Ai and the other in A j .

(b) There exist s integers �1, . . . , �s ≥ t with
∑s

i=1 �i ≥ |F |r/3, and there exist
vertex-disjoint blue copies P1, . . . , Ps of Pt

�1
, . . . , Pt

�s
, respectively, such that the

following holds: there exist two bijections σ : [s] → Head(C) and π : [s] →
Tail(C) such that for each i ∈ [s], the first t vertices of Pi lie in XM

σ(i) and the last

t vertices of Pi lie in XM
π(i).

Before proving Lemma 4.9, let us sketch the proof when s = 1, 2, as these cases are
easy to describe and already contain the main ideas. We will also explain how Lemma
4.9 is used to show that there exists a red Ks+1 or a blue Pt

n .
In the case s = 1, the forest F consists of isolated vertices, say x1 < · · · < x|F |.

The key observation is that if for every 1 ≤ i ≤ |F | − 1, there is a blue Kt,t with
parts Li ⊆ XD

xi and Ri ⊆ XU
xi+1

, then we can construct a copy of Pt
� (for some �) from

these Kt,t ’s by connecting Ri and Li+1 inside Xxi+1 , using that the sets Xxi are all
blue cliques; see figure 5. Note that this Pt

� contains the middle part XM
xi for every i ,

so � ≥ 1
3

∑
i |Xxi | = |F |r/3. This case corresponds to Item (b) in the lemma. On the

other hand, if, for some 1 ≤ i ≤ |F | − 1, there is no blue Kt,t with one part in XD
xi

and one part in XU
xi+1

, then Item (a) in the lemma holds with v1 = xi , v2 = xi+1. Note
that Kt,t -free graphs are sparse, so here we get a bipartite graph which is very dense
in red.

Now let us consider the case s = 2. In this case, the trees in F have depth 1; namely,
each tree consists of a root and leaves connected to the root. Let x1 < · · · < xm be
the roots, and let Yk be the set of children of xk . For each 1 ≤ k ≤ m, we would like
to apply the case s = 1 to the set of vertices Yk . If Item (a) in the lemma holds, then
we have vertices v1, v2 ∈ Yk and sets Ai ⊆ Xvi with no blue Kt,t between A1, A2.
Together with Xxk , this gives three sets with no blue Kt,t between any two, meaning
that Item (a) in the lemma holds (for s = 2). (Herewe use the definition of an s-red-net,
which implies that there is no blue Kt,t between Xxk and Xy for any y ∈ Yk .)

So we may assume that when applying Lemma 4.9 to Yk (with s = 1), Item (b)
holds. This gives a copy Pk of Pt

� inside
⋃

y∈Yk Xy , where � ≥ |Yk |r/3. We now take

another “trivial” t’th-power of a path which just consists of all the vertices in XM
xk ; let

us denote it by P ′
k , so |P ′

k | = |XM
xk |. Our goal now is to connect the ends of Pk and

P ′
k to the beginnings of Pk+1 and P ′

k+1. This connection forms a matching, i.e., we
want to connect Pk to Pk+1 and P ′

k to P ′
k+1, or Pk to P ′

k+1 and Pk to P ′
k+1; see Fig. 6.

Doing this for every 1 ≤ k ≤ m − 1 gives disjoint blue copies of Pt
�1

, Pt
�2

(for some
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Fig. 6 Proof of Lemma 4.9 for s = 2: The top picture shows two trees (of depth one) which we want to
connect. The middle and bottom show the two ways of connecting P1, P

′
1 to P2, P

′
2 (the connections are

the blue dotted curves). Every part with a blue shadow induces a blue clique and every two parts connected
by a single blue dash-dotted line induce a blue complete bipartite graph

�1, �2) which together cover XM
x for every x ∈ V (F). This corresponds to Item (b) in

the lemma. As Pt
�1

, Pt
�2

together cover many vertices, one of them must be long, and
this will give the desired blue Pt

n .
To achieve the aforementioned connection for a specific 1 ≤ k ≤ m − 1, we do

as follows. Let uk be the rightmost vertex in Yk ⊆ V (F) and let vk+1 be the leftmost
vertex in Yk+1 ⊆ V (F); then the last t vertices of Pk are in XM

uk , and the first t vertices
of Pk+1 are in XM

vk+1
. We now define an auxiliary bipartite graph with parts {xk, uk}

and {xk+1, vk+1}, where u ∈ {xk, uk} is connected to v ∈ {xk+1, vk+1} if there is a
blue Kt,t with one part in XD

u and one part in XU
v . A perfect matching in this bipartite

graph gives the desired connection (see figure 6). On the other hand, if there is no
perfect matching, then there is an isolated vertex. So suppose, for example, that xk+1
is adjacent to neither xk nor uk . Then XD

xk , X
D
uk , X

U
xk+1

are three sets such that between
any two there is no blue Kt,t (recall that there is no blue Kt,t between Xxk and Xuk
by the definition of an s-red-net). So Item (a) in the lemma holds. Finally, note that a
bipartite graph with no blue Kt,t is sparse in blue, and hence very dense in red. Thus,
a (large enough) tripartite graph with no blue Kt,t between any two parts must contain
a red triangle (we will argue this in Lemma 4.12). We now proceed with the full proof
of Lemma 4.9.

Proof of Lemma 4.9 The proof is by induction on s. First, for the base case s = 1,
F consists of |F | isolated vertices x1 < · · · < x|F |. Note that Head(C) = {x1} and
Tail(C) = {x|F |}. If, for some 1 ≤ i ≤ |F | − 1, there is no blue Kt,t with one part
in XD

xi and the other in XU
xi+1

, then (a) is satisfied with v1 := xi and v2 := xi+1 with

A1 := XD
xi and A2 := XU

xi+1
. Otherwise, for every 1 ≤ i ≤ |F |−1, there exists a blue

Kt,t with one part Li ⊂ XD
xi and the other part Ri ⊂ XU

xi+1
. As each Xxi forms a blue

clique in KN , we can connect these |F | − 1 blue Kt,t ’s by
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XM
x1 → L1 → R1 → XM

x2 → L2 → R2 → XM
x3 → · · · → XM

x|F |−1
→ L |F |−1

→ R|F |−1 → XM
x|F | ,

which forms a blue Pt
� , for � ≥ |F |r/3, with first t vertices in XM

x1 and last t vertices
in XM

x|F | . Thus, (b) is satisfied. This completes the proof of the base case s = 1.
For the inductive step, let s ≥ 2, and suppose that the lemma holds for s − 1. We

assume that (a) does not hold and show that (b) must hold. Let x1 < · · · < xm be the
roots of the components (trees) in F . For each k ∈ [m], let Fk denote the forest obtained
from the tree rooted at xk by deleting xk (so the components of Fk are the trees rooted
at the children of xk). Then Fk is a pre-ordered balanced forest of depth s − 2. Let Ck
denote the (s − 1)-red-net (Fk, (Xv)v∈Fk ). Note that Head(C) = {x1} ∪Head(C1) and
Tail(C) = {xm} ∪ Tail(Cm). We will apply the induction hypothesis to Ck with s − 1
in place of s. We now show that Item (b) of the lemma must hold:

Claim 4.10 For each k ∈ [m], (b) holds for Ck in terms of s − 1.

Proof Suppose not. Then by the induction hypothesis for Ck (with s − 1 in place of
s), (a) must hold for Ck , i.e., there exist v1, . . . , vs ∈ V (Fk) and A1, . . . , As with
Ai ⊂ Xvi and |Ai | ≥ |Xvi |/3, such that for every 1 ≤ i < j ≤ s, there is no blue
Kt,t with one part in Ai and the other in A j . Note that for every 1 ≤ i ≤ s, there is
no blue Kt,t with one part in Xxk and the other in Ai , by the definition of an s-red-net
(as vi is a descendant of xk). So the s + 1 vertices xk, v1, . . . , vs , along with the sets
Xxk , A1, . . . , As , satisfy (a), contradicting our assumption that (a) does not hold for C.

��
By the above claim, for each k ∈ [m], there exist integers �k,1, . . . , �k,s−1 ≥ t
with

∑s−1
i=1 �k,i ≥ |Fk |r/3, there exist vertex-disjoint blue copies Pk,1, . . . , Pk,s−1 of

Pt
�k,1

, . . . , Pt
�k,s−1

, respectively, and there exist two bijections σk : [s−1] → Head(Ck)
and πk : [s − 1] → Tail(Ck) such that for each i ∈ [s − 1], the first t vertices of Pk,i
lie in XM

σk (i)
and the last t vertices of Pk,i lie in XM

πk (i)
.

We now add an additional blue copy of Pt
�k,s

with �k,s := |XM
xk | = r/3 ≥ t ,

as follows: let Pk,s be the copy of Pt
�k,s

on all the vertices of XM
xk (recall that Xxk

induces a blue clique by Definition 4.3). It will be convenient to set Head′(Ck) :=
{xk} ∪ Head(Ck) and Tail′(Ck) := {xk} ∪ Tail(Ck). Note that Head(C) = Head′(C1)
and Tail(C) = Tail′(Cm). Also, with a slight abuse of notation, we extend σk and πk

by setting σk(s) = xk and πk(s) = xk , to get bijections σk : [s] → Head′(Ck) and
πk : [s] → Tail′(Ck). Note that

∑s
i=1 �k,i ≥ (|Fk |+ 1)r/3 and that Pk,1, . . . , Pk,s are

vertex-disjoint blue copies of Pt
�k,1

, . . . , Pt
�k,s

, respectively, such that for each i ∈ [s],
the first t vertices of Pk,i are in XM

σk (i)
and the last t vertices of Pk,i are in XM

πk (i)
To prove that Item (b) holds, we need to “connect" Pk,1, . . . , Pk,s to Pk+1,1, . . . ,

Pk+1,s for every 1 ≤ k ≤ m − 1. More precisely, we will prove the following by
induction on k:

(b’) For every 1 ≤ k ≤ m, there exist integers �1, . . . , �s ≥ t with
∑s

i=1 �i ≥
∑k

j=1(|Fj | + 1)r/3, and there exist vertex-disjoint copies P1, . . . , Ps of

123



Combinatorica (2024) 44:509–529 525

Pt
�1

, . . . , Pt
�s
, respectively, such that the following holds: there exist two bijec-

tions σ : [s] → Head′(C1) and π : [s] → Tail′(Ck) such that for each i ∈ [s],
the first t vertices of Pi lie in XM

σ(i) and the last t vertices of Pi lie in XM
π(i).

Note that
∑m

j=1(|Fj | + 1) = |F |. Hence, by setting k = m in (b’), we get (b).
So it remains to prove (b’). In the base case k = 1, we take P1, . . . , Ps to be

P1,1, . . . , P1,s and σ := σ1, π := π1. For the inductive step, suppose k ≥ 2 and
we have found P1, . . . , Ps and σ, π satisfying (b’) for k − 1. Our goal is to extend
P1, . . . , Ps by Pk,1, . . . , Pk,s to obtain P ′

1, . . . , P
′
s satisfying (b’) for k. We will also

define appropriate σ ′, π ′. To this end, we define an auxiliary bipartite graph H with
sides Tail′(Ck−1) andHead′(Ck) such that u ∈ Tail′(Ck−1) is adjacent to v ∈ Head′(Ck)
in H if there exists a blue Kt,t with one part in XD

u and the other in XU
v .

Claim 4.11 H has a perfect matching.

Proof Suppose not. By Hall’s marriage theorem, there exists a subset S ⊆ Tail′(Ck−1)

with |NH (S)| < |S|, where NH (S) is the neighborhood of S in H . Take T =
Head′(Ck)\NH (S). Then there is no edge in H between S and T . Hence, for each
u ∈ S and each v ∈ T , there is no blue Kt,t with one part in XD

u and the other in XU
v .

Observe also that for distinct u, v ∈ Tail′(Ck−1) or u, v ∈ Head′(Ck), there is no blue
Kt,t with one part in Xu and the other in Xv . This follows from Definition 4.3, since
Tail′(Ck−1) and Head′(Ck) are paths from a root to a leaf in F , and so, for every two
u, v ∈ Tail′(Ck−1) or u, v ∈ Head′(Ck), it holds that u is a descendant of v or vice
versa. Also, note that |S| + |T | = |S| + s − |NH (S)| ≥ s + 1. So we see that the (at
least s + 1) vertices in S ∪ T , along with the sets (XD

u )u∈S and (XU
v )v∈T , satisfy Item

(a) in the lemma. This contradicts our assumption that (a) does not hold for C. ��
By the above claim, there exists a bijection τ : Tail′(Ck−1) → Head′(Ck) that specifies
the perfect matching of H . Fix i ∈ [s]. Due to (b’) for P1, . . . , Ps (with k − 1 in place
of k), the last t vertices of Pi lie in XM

u for u = π(i) ∈ Tail′(Ck−1) (and this is the only
u with this property). Set v := τ(u) ∈ Head′(Ck). We know that the first t vertices of
Pk, j lie in XM

v for j = σ−1
k (v) (and this is the only j with this property). We have

xk−1 < xk , and hence V (Fk−1) < V (Fk), as F is pre-ordered. Therefore, u < v,
since u ∈ V (Fk−1) ∪ {xk−1} and v ∈ V (Fk) ∪ {xk}. Now, by Definition 4.3, we have
Xu < Xv . As (u, v) ∈ E(H), there is some blue Kt,t with parts L and R such that
L ⊆ XD

u and R ⊆ XU
v . Also, both Xu and Xv are blue cliques. Thus, we can extend Pi

by Pi → L → R → Pk, j , giving a blue copy of Pt
�′
i
with �′

i > �i + �k, j . We denote

this copy by P ′
i . Doing the above for all i ∈ [s], we obtain blue copies P ′

1, . . . , P
′
s of

Pt
�′
1
, . . . , Pt

�′
s
, respectively, where

s∑

i=1

�′
i ≥

s∑

i=1

�i +
s∑

i=1

�k,i ≥
k−1∑

j=1

(|Fj | + 1)r/3 + (|Fk | + 1)r/3 =
k∑

j=1

(|Fj | + 1)r/3.

As τ specifies a perfect matching in H , P ′
1, . . . , P

′
s are vertex-disjoint. Clearly, for

every 1 ≤ i ≤ s, the first t vertices of P ′
i are the same as those of Pi , and thus lie in

XM
σ(i). The last t vertices of P

′
i are the same as those of Pk, j for j = σ−1

k (τ (π(i))),
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and thus lie in XM
πk ( j)

. Then P ′
1, . . . , P

′
s , σ

′ := σ and π ′ := πk ◦ σ−1
k ◦ τ ◦ π satisfy

(b’) for k. This completes the inductive step, thus proving the lemma. ��
Lemma 4.12 Let s ≥ 1, n ≥ t ≥ 1. Suppose C = (F, (Xv)v) is an s-red-net of order
r ≥ 3(4 s2)t with |F | ≥ 3sn/r . Then, KN contains a red Ks+1 or a blue Pt

n .

Proof We apply Lemma 4.9 to C, and consider the following two cases.

Case 1: (a) holds for C, i.e., there exist distinct subsets A1, A2, . . . , As+1 ⊆ [N ], each
of size a = r/3, such that for all 1 ≤ i < j ≤ s+1, there is no blue Kt,t with
one part in Ai and the other in A j . Fix any1 ≤ i < j ≤ s+1.Let z(a×a, Kt,t )

denote the maximum number of edges in a Kt,t -free a × a bipartite graph.
By the Kővari–Sós–Turán theorem [10], we have the following bound for the
number of blue edges between Ai and A j :

eblue(Ai , A j ) ≤ z(a × a, Kt,t ) < t1/t a2−1/t + ta ≤ a2/

(
s + 1

2

)
.

In the last inequality, we used the fact that a = r/3 ≥ (4 s2)t ≥ (2 s2)t t . Now,
sample vertices v1 ∈ A1, . . . , vs+1 ∈ As+1 independently and uniformly at
random. For every 1 ≤ i < j ≤ s + 1, the probability that (vi , v j ) is
blue is 1

a2
· eblue(Ai , A j ) < 1/

(s+1
2

)
. Taking a union bound over all pairs

1 ≤ i < j ≤ s + 1, we get that with positive probability, none of the edges
(vi , v j ) is blue, meaning that v1, . . . , vs+1 form a red Ks+1.

Case 2: (b) holds for C, i.e., there exist P1, . . . , Ps such that for each i ∈ [s], Pi is
a blue copy of Pt

�i
for some �i ≥ t , and

∑s
i=1 �i ≥ |F |r/3. By averaging,

there is i ∈ [s] such that �i ≥ |F |r/(3 s) ≥ n. Thus, Pi contains a blue copy
of Pt

n . ��

4.3 Putting It All Together

Proof of Theorem 1.1 Set r = 3(4 s2)t , M = 2s−1n, and N = M · R(Ks+1, Ksr ).
Note that R(Ks+1, Km) ≤ (m+s−1

s

) ≤ ms (by the Erdős–Szekeres bound [7]). Hence,
N ≤ 2s−1n · (rs)s ≤ (24 s3)st n. Fix a red/blue edge-coloring of KN and suppose
by contradiction that there is no red Ks+1 and no blue Pt

n . Then every R(Ks+1, Ksr )

vertices contain a blue clique of size sr . As N = M ·R(Ks+1, Ksr ), this means that we
can find blue cliques V1 < · · · < VM of size sr each. Partition Vi = X (0)

i ∪· · ·∪X (s−1)
i

with |X ( j)
i | = r for all 0 ≤ j ≤ s − 1, and X (s−1)

i < X (s−2)
i < · · · < X (0)

i .
For each 1 ≤ i ≤ M and 0 ≤ j ≤ s − 2, let χ j (i) be the maximum � such that

there exists a blue copy of Pt
� whose last t vertices belong to X ( j+1)

i ∪ · · · ∪ X (s−1)
i .

By definition, for every 1 ≤ i ≤ M ,

χ0(i) ≥ χ1(i) ≥ · · · ≥ χs−2(i) ≥ t . (2)

Also, χ j (i) < n for all j because there is no blue Pt
n . By Lemma 4.5 (with q = s−1),

there is a (χ0, . . . , χs−2)-forest F with |L(F)| ≥ M/2s−2 − n = n. The following is
the key property we need:
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Claim 4.13 Let 0 ≤ d < d ′ ≤ s − 1, let a ∈ F at depth d and let a′ be a descendant
of a at depth d ′. Then there is no blue Kt,t with one part in X (d)

a and the other part in

X (d ′)
a′ .

Proof Leta = b0, b1, . . . , bd ′−d = a′ be the unique path froma toa′ in F . Thenbi is at
depth d+i .We haveχd+i (bi ) ≥ χd+i (bi+1) for every 0 ≤ i < d ′−d, by the definition
of a (χ0, . . . , χs−2)-forest (Definition 4.4). Also, χd+i (bi+1) ≥ χd+i+1(bi+1) for
every 0 ≤ i ≤ d ′ −d−2, by (2). So χd+i (bi ) ≥ χd+i+1(bi+1) for 0 ≤ i ≤ d ′ −d−2,
meaning that the sequence (χd+i (bi ))

d ′−d−1
i=0 is non-increasing. Setting i = 0 and i =

d ′ − d − 1, we get χd(a) = χd(b0) ≥ χd ′−1(bd ′−d−1) ≥ χd ′−1(bd ′−d) = χd ′−1(a′),
where the last inequality again uses the definition of a (χ0, . . . , χs−2)-forest.

Now suppose by contradiction that there is a blue Kt,t with sides A ⊆ X (d)
a and

A′ ⊆ X (d ′)
a′ . By the definition of χd(·), there exists a blue copy P of Pt

χd (a) whose last

t vertices belong to X (d+1)
a ∪ · · · ∪ X (s−1)

a . We can extend P by adding the sets A and
A′, using that both A and A′ induce blue cliques, and all edges between A and the
last t vertices of P are blue (because Va, Va′ are blue cliques). Extending P in this

way gives a blue copy Q of Pt
χd (a)+2t , whose last t vertices are A′ ⊆ X (d ′)

a′ . Hence,
χd ′−1(a′) ≥ χd(a) + 2t > χd(a), a contradiction to χd(a) ≥ χd ′−1(a′). ��

We now use Lemma 4.13 to find an s-red-net. For every 0 ≤ d ≤ s − 1 and every
v ∈ V (F) at depth d in F , define Xv := X (d)

v ⊆ Vv . Then Xv is a blue clique of
size r . For every v, u ∈ V (F) with v < u, we have Vv < Vu and hence Xv < Xu .
Also, by Lemma 4.13, for every v ∈ V (F) and every descendant u of v, there is no
blue Kt,t with one part in Xv and one part in Xu . Hence, (F, (Xv)v) is an s-red-net
of order r . Also, |F | ≥ n ≥ 3sn/r . By Lemma 4.12, there is a red Ks+1 or a blue Pt

n .
This completes the proof. ��

5 Concluding Remarks and Open Problems

In Theorem 1.1, we showed that R<(Ks+1, Pt
n) ≤ sO(st)n. As for lower bounds, it

holds that R<(Ks+1, Pt
n) > (R(Ks+1, Kt+1) − 1) · (n − 1)/t . Indeed, partition the

vertices into (n−1)/t intervals of size R(Ks+1, Kt+1)−1, and on each of the intervals,
put a red/blue coloring with no red Ks+1 and no blue Kt+1. All edges between the
intervals are blue. Then there is no red Ks+1 and no blue Pt

n , because a blue P
t
n would

have to contain t + 1 vertices from one of the intervals which appear consecutively in
the Pt

n , and hence must form a blue Kt+1. Combining our upper and lower bounds,
we obtain s�(t) · n ≤ R<(Ks+1, Pt

n) ≤ sO(st) · n (when say t � s). It would be
interesting to determine the correct dependence of the exponent on s and t .

In Theorem 1.2 we proved that R<(Pt
n , Kn) = Ot (nt(2t−1)). It would be interesting

to improve the exponent further.

Conjecture 5.1 R<(Pt
n , Kn) ≤ nO(t).

This conjecture, if true, would be tight (up to the implied constant in the exponent)
because R<(Pt

n , Kn) ≥ R(Kt+1, Kn) ≥ �̃(n(t+2)/2), see [2, 19]. We note that our
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proof method for Theorem 1.2 can be used to prove R<(Pn[t], Kn) ≤ nO(t), where
Pn[t] is the t-blowup of the monotone path Pn (i.e., Pn[t] is obtained by replacing
each vertex of Pn with t vertices and replacing edges with complete bipartite graphs).
This bound is tight because R<(Pn[t], Kn) ≥ R(Kt,t , Kn) ≥ n�(t).

Proposition 5.2 R<(Pn[t], Kn) ≤ (2tn3)2t−1.

Proof sketch The proof is similar to that of Theorem 1.2. A semi-red t-clique is a
clique x1 < · · · < xt such that all edges x1xi (2 ≤ i ≤ t) and xi xt (1 ≤ i ≤ t − 1)
are red. It can be shown that every set of N := (t − 2)n2 vertices contains a blue
Kn or semi-red t-clique. Indeed, if there is no vertex with forward red degree at least
(t − 2)n, then one can greedily find a blue clique of size N

(t−2)n ≥ n. Thus, there is a
vertex x1 with forward red degree at least (t − 2)n. By the same argument inside the
forward red neighbourhood of x1, we can find a vertex xt with at least t − 2 backward
red neighbours x2, . . . , xt−1. Now x1 < x2 < · · · < xt is a semi-red t-clique.

One can then show, using the argument from Lemma 3.2, that every set of
((t − 2)n2 − 1)n + 1 vertices contains a blue Kn or a chain of n semi-red t-
cliques. Then, we essentially repeat the proof of Theorem 1.2: consider a red/blue
coloring of KN with N = (2tn3)2t−1. We assume that there is no red Pn[t] or
blue Kn . For a semi-red clique x1 < · · · < xt , define χ(x1, . . . , xt ) to be the
largest number � such that x1, . . . , xt are the last t vertices of a red P�[t]. Then
1 ≤ χ(x1, . . . , xt ) ≤ n − 1. Using the choice of N , one can obtain vertices
x1 < · · · < xt−1 < z1 < · · · < zt−1, a set Y with |Y | ≥ tn2, and a value
1 ≤ c ≤ n − 1, such that for every y ∈ Y , {x1, . . . , xt−1, y}, {y, z1, . . . , zt−1}
are semi-red, χ(x1, . . . , xt−1, y) = c, and χ(y, z1, . . . , zt−1) ≤ c. Then, by finding a
semi-red (t + 2)-clique y1 < · · · < yt+2 inside Y , we can extend a longest Pc[t] end-
ing at x1, . . . , xt−1, y1 by adding the vertices y2, . . . , yt+1, yt+2, z1, . . . , zt−1. This
gives χ(yt+2, z1, . . . , zt−1) > χ(x1, . . . , χt−1, y1), a contradiction. ��

In Theorem 1.3 we obtain a new bound on R<(Pt
n , P

t
n), whose exponent grows

linearlywith t . Sincewe do not have a corresponding lower bound, wewonder whether
the following might be true.

Problem 5.3 Is there a constant C independent of t , such that R<(Pt
n , P

t
n) = Ot (nC )?

Even improving the exponent to o(t) would be interesting.
In Theorem 2.4 we proved that g(n, s) = Os(nC ) for a constant C = C(s). It

may be interesting to determine the order of growth of (the optimal such) C(s). Our
proof of Theorem 2.4 gives an upper bound on C(s) of the order ss , and this is likely
far from optimal. Does C(s) grow polynomially in s? Also, for s = 3, is it true that
g(n, 3) = O(n)?

One could also consider the analogous extremal functions for weaker notions of a
non-increasing triple (see Definition 2.1). There are two such notions: one is to require
that χ(x, y) ≥ χ(x, z) ≥ χ(y, z), and one is only to require that χ(x, y) ≥ χ(y, z).
For each of these notions, how large should N be to guarantee a non-increasing set of
size s in an n-coloring of KN ?
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