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Abstract
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1 Introduction andMotivation

This paper studies regular graphs which may have parallel edges but no loops. All
graphs and all multisets considered in this paper are finite. The vertex set of a graph G
is denoted by V (G) and its edge set by E(G). The number of parallel edges connecting
two vertices u, v of G is denoted by μG(u, v) and μ(G) = max{μG(u, v) : u, v ∈
V (G)}. For any two disjoint subsets X and Y of V (G)we denote by EG(X ,Y ) the set
of edges with one end in X and the other end in Y . If Y = Xc we denote EG(X ,Y )

by ∂G(X). The graph induced by X is denoted by G[X ]. The edge-connectivity of
G, denoted by λ(G), is the maximum number k such that |∂G(X)| ≥ k for every
non-empty X ⊂ V (G). Similarly, the odd edge-connectivity λo(G) is defined as the
maximum number t such that |∂G(Y )| ≥ t for every Y ⊆ V (G) of odd cardinality.
Clearly, λ(G) ≤ λo(G) if G is of even order. An r -regular graph G is an r -graph if
λo(G) = r . Note that an r -graph can have small edge-cuts which separate sets of even
cardinality.

An r -graph is class 1, if its edge set can be partitioned into r perfect matchings and
it is class 2 otherwise. Consequently, an r -graph is class 2 if and only if it has at most
r − 2 pairwise disjoint perfect matchings. There are many hard problems with regard
to perfect matchings in r -graphs. For instance Seymour’s exact conjecture [6] states
that every planar r -graph is class 1.

If G has a set of k pairwise disjoint perfect matchings we say that it has a k-PDPM.
For 0 ≤ t ≤ r letm(t, r) be the maximum number s such that every t-edge-connected
r -graph has an s-PDPM. In addition to its exact determination, lower and upper bounds
for this parameter are of great interest. The function m(t, r) is monotone increasing
in t , in other words m(t, r) ≤ m(t ′, r) for t ≤ t ′. In particular we have that m(t, r) ≤
m(r , r) for all t ∈ {2, . . . , r}.

For all r ≥ 3 and r �= 5, class 2 r -edge-connected r -graphs are known, [2, 4]. Thus,
m(r , r) ≤ r −2 for these r . Surprisingly, no such graphs seem to be known for r = 5.
The question whether m(5, 5) = 5 is raised in [2] where also some consequences (if
true) are discussed. Thomassen [7] asked whether m(r , r) = r − 2. This is not true if
r is even. In [2, 3] it is proved thatm(r , r) ≤ r −3 if r is even andm(r −1, r) ≤ r −3
if r is odd.

There is also not much known with regard to lower bounds for m(t, r). Trivially
we have m(t, r) ≥ 1. It is an open question which r -graphs have two disjoint per-
fect matchings. Rizzi [5] constructed (non-planar) r -graphs where any two perfect
matchings intersect. These r -graphs are called poorly matchable and so far all known
poorly matchable r -graphs have a 4-edge-cut. We do not know any 5-edge-connected
poorly matchable r -graph. It might be that high edge-connectivity (instead of odd
edge-connectivity) enforces the existence of pairwise disjoint perfect matchings in
r -graphs. Thomassen [7] conjectured this to be true. Precisely, he conjectured that
there is an integer r0 such that there is no poorly matchable r -graph for r ≥ r0.
Seymour’s exact conjecture implies that there is no poorly matchable planar r -graph.
However, even this seemingly weaker statement is unproved so far. Up to now, we
have m(3, 3) = 1 for cubic graphs and m(4, r) = 1 by Rizzi’s result.
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In this paper, we improve upper bounds form(t, r)which only depend on the edge-
connectivity parameter. Our main result is that m(2l, r) ≤ 3l − 6 for every l ≥ 3 and
r ≥ 2l.

2 Basic Definitions and Results

In this paper, we make extensive use of the Petersen graph, denoted by P , and of
the properties of its perfect matchings. Rizzi [5] observed that every two distinct 1-
factors of the Petersen graph have precisely one edge in common, and proved that
there is a one-to-one correspondence between edges and pairs of distinct 1-factors in
the Petersen graph. Then we have the following proposition immediately.

Proposition 2.1 The Petersen graph has exactly six perfect matchings, and each edge
is contained in exactly two of them.

We fix a drawing of P as in Fig. 1 left. With reference to Fig. 1, we define M0 to
be the perfect matching consisting of all edges uivi , for i ∈ {1, . . . , 5}. Moreover, for
i ∈ {1, . . . , 5}, by Proposition 2.1 we let Mi be the only other perfect matching of P
different from M0 and containing uivi , see Fig. 1.

Let G be a graph and let F1, . . . , Ft ⊆ E(G). The graph G + F1 + . . . + Ft is the
graph obtained from G by adding a copy of every edge in Fj for every j ∈ {1, . . . , t}.
For a multiset N of perfect matchings of G and an edge e ∈ E(G), we say that N
contains (avoids, respectively) e if e ∈ ⋃

N∈N N (e /∈ ⋃
N∈N N , respectively).

Let M be a multiset of perfect matchings of P . We denote by nM(i) the number
of copies of Mi appearing inM. Define PM to be the graph P +∑

F∈M F . Now, let
N be a multiset of perfect matchings of PM. Note that each perfect matching of N
can be interpreted as a perfect matching of P by caring only about the end-vertices of
each edge. Then the multiset N can be interpreted as a multiset of perfect matchings
of P , which is denoted by NP . Note that |NP | = |N |.

Fig. 1 The Petersen graph P , and its perfect matchings M0 and Mi
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Lemma 2.2 LetM be a multiset of perfect matchings of P. LetN be a set of pairwise
disjoint perfect matchings of PM. There is at most one i ∈ {0, . . . , 5} such that
nNP (i) > nM(i).

In particular, there is no triple of different vertices u, v, w in PM, with w adjacent
to both v and u, such that N contains all edges of EPM({u, v}, {w}).
Proof First, suppose that there are two indices i and j such that i �= j , nNP (i) >

nM(i), and nNP ( j) > nM( j). Let uv be the edge of P belonging to both Mi and Mj

by Proposition 2.1. Since the perfect matchings of N are pairwise disjoint, at most
μPM(u, v) perfect matchings in N can contain an edge connecting u and v. This
implies nNP (i) + nNP ( j) ≤ μPM(u, v). Then the following contradiction arises.

μPM(u, v) = nM(i) + nM( j) + 1 ≤ nNP (i) + nM( j) < nNP (i) + nNP ( j).

Next, we prove the second part of the lemma. Let u, v be two different vertices both
adjacent to the vertexw in PM. Suppose by contradiction thatN contains all edges of
EPM({u, v}, {w}). By Proposition 2.1, we may assume without loss of generality that
{uw} = M0 ∩ M1 and {vw} = M2 ∩ M3. Then, since all edges of EPM({u, v}, {w})
are contained in N , we similarly deduce that

• nNP (0) + nNP (1) = μPM(u, w) = nM(0) + nM(1) + 1;
• nNP (2) + nNP (3) = μPM(v,w) = nM(2) + nM(3) + 1.

Then we conclude that there is s ∈ {0, 1} and t ∈ {2, 3}, such that nNP (s) > nM(s)
and nNP (t) > nM(t), which is impossible. 
�

Lemma 2.3 Let M be a multiset of k perfect matchings of P and let μ = μ(PM).
Then, λ(PM) = min{k + 3, 2k + 6 − 2μ}.
Proof Note that P is a 3-graph, and PM is a (k+3)-graph since every perfectmatching
of P intersects each edge-cut that separates two vertex sets of odd cardinality. Let X be
a non-empty proper subset of V (PM) minimizing |∂PM(X)|. It implies that PM[X ]
is connected. If |X | is odd, then |∂PM(X)| ≥ k + 3 since PM is a (k + 3)-graph. If
|X | is even, then it suffices to consider the cases |X | ∈ {2, 4}. Since P has girth 5,
either P[X ] is a path on two or four vertices, or it is isomorphic to K1,3. Then ∂PM(X)

contains at least k + 3 − μ edges for each vertex of degree 1 in P[X ], and so we get
that |∂PM(X)| ≥ 2(k + 3 − μ). Consequently, λ(PM) ≥ min{k + 3, 2k + 6 − 2μ}.
Finally, observe that |∂PM({u, v})| = 2k + 6 − 2μ for every two vertices u, v with
μPM(u, v) = μ. Thus, the statement follows. 
�
Definition 2.4 Let G and H be two graphs with u, v ∈ V (G) and x, y ∈ V (H) such
that μG(u, v) ≥ t and μH (x, y) ≥ r − t . Then, (G, u, v) ⊕t (H , x, y) is the graph
obtained from G and H by deleting exactly t edges joining u and v in G and r − t
edges joining x and y in H , identifying u and x to a new vertex wux , and identifying
v and y to a new vertex wvy , see Fig. 2.
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Fig. 2 The operation of Definition 2.4

Lemma 2.5 Let G and H be two r-graphs with u, v ∈ V (G) and x, y ∈ V (H) such
that μG(u, v) ≥ t and μH (x, y) ≥ r − t . Then, G ′ = (G, u, v) ⊕t (H , x, y) is an
r-graph with

λ(G ′) = min{λ(G), λ(H)}.

Proof By the construction in Definition 2.4, G ′ = (G, u, v) ⊕t (H , x, y) is r -regular.
For every Y ⊆ V (G)\{v}, we have |∂G(Y )| = |∂G ′((Y \ {u}) ∪ {wux })| if u ∈ Y
and |∂G(Y )| = |∂G ′(Y )| otherwise. Similarly, for every Y ′ ⊆ V (H) \ {y}, we have
|∂H (Y ′)| = |∂G ′((Y ′ \ {x}) ∪ {wux })| if x ∈ Y ′ and |∂H (Y ′)| = |∂G ′(Y ′)| otherwise.
As a consequence, there is an X ⊆ V (G ′) with |∂G ′(X)| = min{λ(G), λ(H)}. Thus,
it suffices to prove that, for each non-empty proper subset S ⊂ V (G ′), we have
|∂G ′(S)| ≥ min{λ(G), λ(H)} if |S| is even, and |∂G ′(S)| ≥ r if |S| is odd. Since, for
all Y ⊆ V (G ′), ∂G ′(Y ) = ∂G ′(V (G ′)\Y ), we just need to consider the two cases when
|S ∩ {wux , wvy}| = 0 and |S ∩ {wux , wvy}| = 1.

First, assume |S ∩ {wux , wvy}| = 0. It is clear that |∂G ′(S)| = |∂G(S ∩ V (G))| +
|∂H (S ∩ V (H))|. Note that one of |S ∩ V (G)| and |S ∩ V (H)| is odd if |S| is odd. So
|∂G ′(S)| ≥ min{λ(G), λ(H)} if |S| is even, and |∂G ′(S)| ≥ r if |S| is odd.

Next, we assume |S ∩ {wux , wvy}| = 1. Without loss of generality, say wux ∈ S.
Note that |∂G ′(S)| = |∂G((S\{wux } ∪ {u}) ∩ V (G))| − t + |∂H ((S\{wux } ∪ {x}) ∩
V (H))| − (r − t). If one of |(S\{wux } ∪ {u}) ∩ V (G)| and |(S\{wux } ∪ {x}) ∩
V (H)| is odd, then the other has the same parity as |S|. This implies |∂G ′(S)| ≥
min{λ(G), λ(H)} if |S| is even, and |∂G ′(S)| ≥ r if |S| is odd. Thus, the remaining
case is that both |(S\{wux } ∪ {u}) ∩ V (G)| and |(S\{wux } ∪ {x}) ∩ V (H)| are even,
and |S| is odd. Since |(S \ {wux }) ∩ V (G)| is odd in this case and G is an r -graph, we
obtain |∂G((S\{wux } ∪ {u}) ∩ V (G))| ≥ 2μG(u, v) ≥ 2t . Similarly, |∂H ((S\{wux } ∪
{x})∩V (H))| ≥ 2μH (x, y) ≥ 2(r − t). So |∂G ′(S)| ≥ 2t− t+2(r − t)−(r − t) = r .
This completes the proof. 
�
Lemma 2.6 Let r , t be two integers with 2 ≤ t < r , let G be an r-graph and let u, v ∈
V (G) such thatμG(u, v) ≥ t . LetM be a multiset of r −3 perfect matchings of P, let
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x, y ∈ V (PM) such that μPM(x, y) ≥ r − t and let G ′ = (G, u, v) ⊕t (PM, x, y).
If G ′ has a k-PDPM N ′, then G has a k-PDPM N such that

(i) N avoids at least one edge connecting u and v,
(ii) for every e ∈ E(G ′[V (G) \ {u, v}]), if N ′ avoids e, then N avoids e.

Proof Assume that N ′ is a k-PDPM of G ′. Every perfect matching of G ′ contains
either zero or exactly two edges of ∂G ′(V (PM) \ {x, y}), since |V (PM)\{x, y}| is
even. The same holds for V (G)\{u, v}, since |V (G)\{u, v}| is also even. Hence, every
perfect matching of G ′ can be transformed into a perfect matching of G and of PM
by adding either uv or xy. In particular, N ′ can be transformed into a k-PDPM N
of G, which satisfies (i i). Suppose that N contains all edges connecting u and v,
which implies thatN ′ contains all edges of ∂G ′(V (G)). As a consequence, PM has a
k-PDPM that contains all edges of ∂PM({x, y}). This means that PM has a k-PDPM
containing all edges incident with y and not with x , a contradiction to Lemma 2.2. 
�

3 An Upper Bound form(t, r)Depending on t

Recall that m(t, r) ≤ m(t ′, r) whenever t ≤ t ′. For an r -graph G with a subset
X ⊆ V (G), we observe that |∂G(X)| = r · |X | − 2|E(G[X ])| is even if |X | is even.
Therefore, the edge-connectivity of an r -graph is either r or an even number. By Rizzi
[5], m(4, r) = 1 for every r ≥ 4. Furthermore, r − 2 is a trivial upper bound for
m(2l, r) since m(4, 5) = 1 and for each r �= 5 there are r -edge-connected r -graphs
that are class 2 [2, 4]. We will improve this bound as follows.

Theorem 3.1 For every l ≥ 3 and r ≥ 2l, m(2l, r) ≤ 3l − 6.

As mentioned above, we know m(2l, r) ≤ r − 2 for every r ≥ 3. It implies that
Theorem 3.1 trivially holds for the case 2l ≤ r ≤ 3l − 4. Thus, it suffices to prove
Theorem 3.1 for the case r ≥ 3l − 3.

We will construct 2l-edge-connected r -graphs inductively starting with a 2l-edge-
connected (3l − 4)-graph without a (3l − 5)-PDPM if l ≥ 4 and a 6-edge-connected
6-graph without a 4-PDPM if l = 3.

For this we describe the induction step in the next section and then in the following
sections we give the base graphs for the two cases. Finally we deduce the statement
of Theorem 3.1.

Induction Step from r to r + 1

Lemma 3.2 Let r , l, k be integers such that r ≥ 3l − 4, l ≥ 2 and 2 ≤ k ≤ r . If there
is an r-graph G such that

• λ(G) ≥ 2l,
• G has a perfect matching M such that μG(u, v) ≥ l − 1 for every uv ∈ M,
• G has no k-PDPM,

then there is an (r + 1)-graph G ′ such that
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• λ(G ′) ≥ 2l,
• G ′ has a perfect matching M ′ such that μG ′(u, v) ≥ l − 1 for every uv ∈ M ′,
• G ′ has no k-PDPM.

Proof Assume that the order of G is 2s and let M = {x1y1, . . . , xs ys}. In order to
construct G ′ we define a graph P(r+1,l) by

P(r+1,l) = P +
⌈
r − l

2

⌉

M0 +
⌊
r − l

2

⌋

M1 + (l − 2)M2.

Since G is 2l-edge-connected, we have r ≥ 2l. Thus, P(r+1,l) is well defined. For
every i ∈ {1, . . . , s}, take a copy Pi

(r+1,l) of P(r+1,l). In each copy, the vertices and
perfect matchings are labelled accordingly by using an upper index, i.e. the vertex of
Pi

(r+1,l) corresponding to u1 in P(r+1,l) is labeled as ui1. Define graphs H0, . . . , Hs

inductively as follows:

H0 := G + M,

Hi := (Hi−1, xi , yi ) ⊕l (Pi
(r+1,l), u

i
1, v

i
1) for every i ∈ {1, . . . , s}.

Note that H0 and P(r+1,l) are both (r + 1)-graphs. Furthermore, μH0(xi , yi ) ≥ l for
every i ∈ {1, . . . , s} by the choice of M . Recall that u1v1 ∈ E(P) is the unique edge
in M0 ∩ M1. Thus, μP(r+1,l) (u1, v1) = (r + 1) − l by the definition of P(r+1,l). As a
consequence, H0, . . . , Hs are well defined. Set

G ′ := Hs and M ′ :=
s⋃

i=1

Mi
2.

An example is given in Fig. 3. We claim that G ′ and M ′ have the desired properties.
The perfect matching M2 does not contain the edge u1v1. Thus, M ′ is well defined.

Furthermore, M ′ is a perfect matching of G ′ since M is a perfect matching of G. By
the definition of P(r+1,l), we have μG ′(u, v) ≥ l − 1 for every uv ∈ M ′. Hence, M ′
has the desired properties.

The graph H0 is a 2l-edge-connected (r+1)-graph, sinceG is a 2l-edge-connected
r -graph. Furthermore,

⌊ r−l
2

⌋ ≥ l−2 since r ≥ 3l−4. Thus, r − l+1 is the maximum
number of parallel edges of P(r+1,l) and hence, λ(P(r+1,l)) = 2l by Lemma 2.3.
Therefore, for each i ∈ {1, . . . , s}, Hi is a 2l-edge-connected (r+1)-graph by Lemma
2.5, and so is G ′.

Now, suppose that Hs has a k-PDPM N s . By applying Lemma 2.6 with t = l to
the (r + 1)-graph Hs and N s we obtain a k-PDPM N s−1 of Hs−1, which avoids
xs ys by property (i). Apply Lemma 2.6 to Hs−1 and N s−1 to obtain a k-PDPM
N s−2 of Hs−2, which avoids xs−1ys−1 by property (i) and xs ys by property (i i). By
inductively repeating this process, we obtain a k-PDPM of H0 that avoids every edge
of M . This is not possible, since G has no k-PDPM. Therefore, G ′ has no k-PDPM,
which completes the proof. 
�
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Fig. 3 The graph G = P + 2M0 + M1 + M2 + M3 (left) and the graph G′ (right) constructed from G in
the proof of Lemma 3.2. The edges of M and M ′ respectively are drawn in bold red lines

Fig. 4 The graph Q1 (solid lines) and the edge sets E1
1 , E

2
1 (dashed lines). The bold red edges are used to

construct M6 in the proof of Theorem 3.1

We note that the condition r ≥ 3l−4 is necessary in Lemma 3.2 since λ(P(r+1,l)) <

2l if r < 3l − 4. In view of Lemma 3.2, we need to construct suitable base graphs for
all l ≥ 3, which will be done now.

Base Graph if l = 3.

Let l = 3 and let P1
1 and P2

1 be two copies of the graph P + M0 + M1 + M2.
For i ∈ {1, 2}, remove from Pi

1 all parallel edges connecting ui1v
i
1, call this new

graph Pi−. Let Q1 be the graph constructed by identifying the vertices u11 and u21
of P1− and P2− respectively. If a graph G contains Q1 as a subgraph, then let Ei

1 =
EG({vi1}, V (G)\V (Q1)) for every i ∈ {1, 2}, see Fig. 4.

Recall the following property of Q1, proved in [2].

Lemma 3.3 [2] Let G be a graph that contains Q1 as an induced subgraph. Let
{N1, . . . , N4} be a set of pairwise disjoint perfect matchings of G and let N =⋃4

i=1 Ni . If ∂(V (Q1)) = E1
1 ∪ E2

1 , then |E1
1 ∩ N | = |E2

1 ∩ N | = 2.
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Fig. 5 The graph G1

In order to construct the required base graph G6, we need the graph G1 shown in
Fig. 5, where the boxes denote copies of the graph Q1.

The graph G1 was constructed in [2] to provide a negative answer to a question of
Thomassen [7]. The following theorem describes its properties.

Theorem 3.4 [2] G1 is a 6-edge-connected 6-graph without a 4-PDPM.

Every perfect matching of G1 contains an edge in ∂G1(w), which is simple. Thus,
in order to use Lemma 3.2 we need to slightly modify G1. For any v ∈ V (G1), we
define a 3-expansion to be the operation that splits v into two vertices v′ and v′′ (edges
formerly incident with v will be incident with exactly one of v′ and v′′) and adds three
parallel edges between them.

LetG6 be the graph (depicted in Fig. 6) obtained fromG1 by applying a 3-expansion
to the vertices z2, z4, z6 and w. Let w′ and w′′ be the new vertices in which w has
been split. It is straightforward that G6 is still a 6-edge-connected 6-graph.

Proposition 3.5 The graph G6 has no 4-PDPM.

Proof In this proof vertex labelings of G6 are considered with reference to Fig. 6.
Assume by contradiction that G6 has a 4-PDPM M = {N1, . . . , N4}. Then, there is
j ∈ {1, . . . , 4} such that ∂G6({w′, w′′}) ∩ N j �= ∅. Let e ∈ ∂G6({w′, w′′}) ∩ N j . We
can assumewithout loss of generality that e is incident with z′2. Let X = {x2, y2, z′2} ⊆
V (G6). Then, fromLemma3.3, we infer that |∂G6(X)∩N | is odd,where N = ∪4

i=1Ni .
On the other hand, since X is an odd set, we have that for every i ∈ {i, . . . , 4},
|X ∩ Ni | is an odd number. Thus, |X ∩ N | = ∑4

i=1 |X ∩ Ni | must be an even number,
a contradiction. 
�

Base Graphs if l ≥ 4

Let l ≥ 4 and consider the following graph

G3l−4 = P + (l − 2)M0 + (l − 3)M1 + (l − 3)M2 + M3.
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Fig. 6 The graph G6

The graphG8 is shown in the left-hand side of Fig. 3. By definition,G3 l−4 is a (3 l−4)-
graph, which is 2l-edge-connected by Lemma 2.3. It is well known, see [1], thatG3l−4

is of class 2 and hence has no (3l − 5)-PDPM.

Fig. 7 The chosen edges of G6 needed to construct M6
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Proof of Theorem 3.1

We prove the statement by induction on r . When l ≥ 4 we chooseG3l−4 as base graph
(defined above) and we consider the perfect matching M0 of G3l−4.

Recall that G3l−4 is a 2l-edge-connected (3l − 4)-graph with no (3l − 5)-PDPM.
Furthermore, for all uv ∈ M0, μG3l−4(u, v) ≥ l − 1. Hence the base case is settled.
Then, the inductive step follows by Lemma 3.2 and the statement is proved.

When l = 3, we again argue by induction on r . We choose G6 as base graph. We
have already proved that it is a 6-edge-connected 6-graph without a 4-PDPM. Hence,
m(6, 6) ≤ 3.

Let M6 be the perfect matching of G6 defined as follows. Consider the matching
consisting of the bold red edges depicted in Fig. 7. Extend this matching to a perfect
matching of G6 by choosing, for every copy of Q1, the bold red edges depicted in
Fig. 4. Note that the chosen set of edges is indeed a perfect matching and each edge
of such perfect matching has at least one other parallel edge. This means that the
condition on the multiplicities of Lemma 3.2 is satisfied, i.e. for every edge uv ∈ M6,
μG6(u, v) ≥ 2 = l − 1. Therefore the base step is settled. Again, by Lemma 3.2, the
inductive step follows. Then Theorem 3.1 is proved. 
�

By asking for lower bounds on the parameterm(t, r), one can prove the existence of
sets of perfect matchings having specific intersection properties in regular graphs. For
example, it can be proved that for l ≥ 5, if m(2l, 3l) ≥ 2l − 1, then every bridgeless
cubic graph admits a perfect matching cover of cardinality 2l−1.As another example,
it can be proved that, for l ≥ 3, ifm(2l, 3l) ≥ l, then every bridgeless cubic graph has
l perfect matchings with empty intersection. Both these proofs rely on the properties
of the Petersen graph described in Lemma 2.2.

We though believe that these lower bounds are quite strong conditions. We believe
the following statement to be true.

Conjecture 3.6 For all l ≥ 2 and r ≥ 2l, m(2 l, r) ≤ l − 1.

Note that when l = 2, Conjecture 3.6 is true by Rizzi [5].
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