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Abstract
The fact that the adjacency matrix of every finite graph is diagonalizable plays a
fundamental role in spectral graph theory. Since this fact does not hold in general
for digraphs, it is natural to ask whether it holds for digraphs with certain level of
symmetry. Interest in this question dates back to the early 1980s, when P. J. Cameron
asked for the existence of arc-transitive digraphs with non-diagonalizable adjacency
matrix. This was answered in the affirmative by Babai (J Graph Theory 9:363–370,
1985). Then Babai posed the open problems of constructing a 2-arc-transitive digraph
and a vertex-primitive digraphwhose adjacencymatrices are not diagonalizable. In this
paper, we solve Babai’s problems by constructing an infinite family of s-arc-transitive
digraphs for each integer s ≥ 2, and an infinite family of vertex-primitive digraphs,
both of whose adjacency matrices are non-diagonalizable.
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1 Introduction

In this paper, a digraph � is a pair (V (�),→) with V (�) a set of vertices and → an
irreflexive binary relation on V (�), and all digraphs are assumed to be finite. Suppose
that � has n vertices v1, v2, . . . , vn . The adjacency matrix of �, denoted by A(�), is
the square matrix of order n whose (i, j)-entry is 1 if vi → v j and 0 otherwise. Note
that the adjacency matrices of � under different labellings of its vertex set are similar
and hence have the same eigenvalues with multiplicities. The eigenvalues of A(�) are
called the eigenvalues of �. The digraph � is said to be diagonalizable if its adjacency
matrix is diagonalizable.

We say that � is an undirected digraph or a graph if the binary relation → is
symmetric. For a graph, its adjacency matrix is symmetric, which makes it always
diagonalizable. Due to this essential property, the famous Courant-Fischer-Weyl Min-
Max Theorem and Cauchy Interlacing Theorem, as powerful tools, are used frequently
to deal with eigenvalues of graphs; refer to [6, 11]. Compared with those of graphs,
results about eigenvalues of digraphs are sparse due to the obvious fact that their adja-
cency matrices are not necessarily diagonalizable. It is natural to ask whether digraphs
with certain prescribed properties are diagonalizable. For example, some digraph prop-
erties in terms of association schemes guarantee that the digraph is diagonalizable;
see [16, 17] for instance.

For a non-negative integer s, an s-arc of � is a sequence v0, v1, . . . , vs of s + 1
vertices with vi → vi+1 for each i ∈ {0, 1, . . . , s − 1}. In particular, a 0-arc is a
vertex of �. We say that � is s-arc-transitive if the automorphism group Aut(�) of
� acts transitively on the set of s-arcs of �. The 0-arc-transitive and 1-arc-transitive
digraphs are simply said to be vertex-transitive and arc-transitive, respectively. For
a finite group G and a nonempty subset S of G \ {1}, the Cayley digraph on G with
connection set S, denoted by Cay(G, S), is defined to be the digraph with vertex set
G such that x → y if and only if yx−1 ∈ S.

It is clear that every Cayley digraph is vertex-transitive as its automorphism group
has a regular subgroup. The first result exploring the relationship between symmetry
and diagonalizability of digraphs was given by Godsil [10]. He proved that for each
digraph � with maximum degree greater than one, there exists a Cayley digraph �

such that the minimal polynomial of A(�) divides that of A(�). This implies the
existence of non-diagonalizable Cayley digraphs, and thus non-diagonalizable vertex-
transitive digraphs. On the other hand, a sufficient condition for a Cayley digraph to
be diagonalizable is given by Babai in [2], that is, if the connection set S is closed
under conjugation then Cay(G, S) is diagonalizable.

The digraph � is said to be regular if there exists a positive integer d, called the
valency of � and denoted by Val(�), such that every vertex of � has d out-neighbours
and d in-neighbours. Note that a regular (s + 1)-arc-transitive digraph is also s-arc-
transitive. In particular, a regular arc-transitive digraph is necessarily vertex-transitive.
In 1983 Cameron [5] asked about the existence of non-diagonalizable arc-transitive
digraphs. This was answered in the affirmative by Babai [1] in 1985. In fact, Babai [1]
proved a stronger result that for each integral matrix A, there exists an arc-transitive
digraph � such that the minimal polynomial of A divides that of A(�). In the same
paper, he further posed the following open problems. Recall that a permutation group
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G on a set � is said to be primitive if G does not preserve any nontrivial and proper
partition of �. We say that � is vertex-primitive if Aut(�) acts primitively on V (�).

Problem 1.1 [1, Problem 1.4] Construct a non-diagonalizable 2-arc-transitive digraph
and a non-diagonalizable vertex-primitive digraph.

We remark that, for every positive integer s, the existence of non-diagonalizable
s-arc-transitive digraphs can be deduced from the combination of some known results.
In Hoffman [12] showed that for each integral matrix A, there exists a digraph � such
that the minimal polynomial of A divides that of A(�). For each digraph �, Godsil
[10] proved the existence of a regular digraph � with the property that the minimal
polynomial of A(�) divides that of A(�). Moreover, for every regular digraph �, a
result from Mansilla and Serra [15] in 2001 shows that there exists an s-arc-transitive
covering digraph �s of � for each positive integer s. Since the minimal polynomial
of a digraph divides those of its covering digraphs (see [1, Corollary 3.3]), we derive
the existence of an s-arc-transitive digraph �s for each integral matrix A and positive
integer s such that the minimal polynomial of A divides that of �s . This proves the
existence of non-diagonalizable s-arc-transitive digraphs for each s ≥ 1. However,
such a proof is not constructive.

In this paper, we solve Problem 1.1 by constructing infinite families of digraphs
with the required properties. To build an infinite family of digraphs from an existing
one, we use the tensor product �×� of digraphs� and�, where�×� is the digraph
with vertex set V (�) × V (�) such that (u1, v1) → (u2, v2) if and only if u1 → u2
in � and v1 → v2 in �. For an integer n ≥ 1, denote by �×n the tensor product of
n copies of digraph �. Our main result gives infinite families of non-diagonalizable
s-arc-transitive digraphs and non-diagonalizable vertex-primitive digraphs. The basic
digraphs in these two families are as follows.

Construction 1.2 For each integer s ≥ 2, let as = (2s−1, 2s)(4s−1, 4s) ∈ Sym(4s),
let bs = (1, 3, 5, . . . , 4s − 1, 2, 4, 6, . . . , 4s) ∈ Sym(4s), let Rs = 〈as, bs〉 be the
group generated by as and bs , and let �s = Cay(Rs, {asbs, bs}).
Construction 1.3 Let R = 〈a, b | a7 = b3 = 1, b−1ab = a2〉 × 〈c, d | c7 = d3 =
1, d−1cd = c2〉, let γ be the automorphism of R interchanging a with c and b with
d, let

S = (S1 ∪ S−1
1 )(S3 ∪ S−1

3 )γ ∪ (S3 ∪ S−1
3 )(S1 ∪ S−1

1 )γ ∪ S1S
γ
2 ∪ S2S

γ
1 ∪ S−1

1 Sγ
4 ∪ S4(S

−1
1 )γ ,

where

S1 = {a, a5, a6b, a6b2}, S2 = {ab, (ab)−1},
S3 = {a3, b, ab2, a4b2}, S4 = {a2b, (a2b)−1},

and let � = Cay(R, S).

Remark We will see in Lemmas 3.1 and 4.1 that the group Rs in Construction 1.2 is
an extension of the elementary abelian group Cs

2 by the cyclic group C2s , while R and
S in Construction 1.3 satisfy R ∼= (C7 � C3)

2 and |S| = 160.
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Our main result is as follows.

Theorem 1.4 For all positive integers n and s ≥ 2, with �s and � defined in Con-
structions 1.2 and 1.3, the digraphs �×n

s and �×n satisfy the following:

(a) �×n
s is s-arc-transitive;

(b) �×n is vertex-primitive;
(c) �×n

s and �×n are non-diagonalizable.

The remainder of this paper is structured as follows. In the next section, we will
give some basic definitions and lemmas that will play an important role in the proofs
of our main results. After these preparations, we will prove in Sect. 3 that the digraph
�s defined in Construction 1.2 is a non-diagonalizable s-arc-transitive digraph for
each integer s ≥ 2 (see Theorem 3.3), and prove in Sect. 4 that the digraph � in
Construction 1.3 is a non-diagonalizable vertex-primitive digraph (see Theorem 4.6).
Finally, Theorem 1.4 follows fromLemma 2.6 and Theorems 3.3 and 4.6 immediately,
as summarized in Sect. 5 along with some open questions and a conjecture.

2 Preliminaries

Throughout the paper, 	 denotes the disjoint union. For a positive integer n, denote
the cyclic group of order n by Cn and the dihedral group of order 2n by D2n . Let G be
a finite group. For elements a and b in G denote ab = b−1ab. For a subgroup H and a
subset D ofG \H such that D is a union of double cosets of H inG, the coset digraph
Cos(G, H , D) is the digraph with vertex set [G:H ], the set of right cosets of H in G,
and Hx → Hy if and only if yx−1 ∈ D. Clearly, the right multiplication action of G
on [G:H ] induces a group of automorphisms of Cos(G, H , D), and Cos(G, H , D) is
arc-transitive if D is a single double coset of H in G.

For matrices A and B, denote by A ⊗ B their Kronecker product (tensor product),
that is, the matrix obtained by replacing each entry ai, j of A with the block ai, j B.
Let C be the complex field, and denote by Mn×m(C) the set of n × m matrices with
entries inC. Some basic properties of the Kronecker product are given in the following
lemma, which follows from [13, Eqs. 4.2.7, 4.2.8, Lemma 4.2.10, Corollaries 4.2.11
and 4.3.10].

Lemma 2.1 Let A ∈ Mm×n(C), B ∈ Mp×q(C), C ∈ Mn×k(C) and D ∈ Mq×r (C).
The following hold:

(a) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD);
(b) if both A and B are invertible, then A ⊗ B is invertible and (A ⊗ B)−1 =

A−1 ⊗ B−1;
(c) if m = p and n = q, then (A + B) ⊗U = A ⊗U + B ⊗U and U ⊗ (A + B) =

U ⊗ A +U ⊗ B for all U ∈ M�×t (C);
(d) if m = n and p = q, then A ⊗ B and B ⊗ A are similar.

The constructions of �s and � in Sects. 3 and 4 are via Cayley digraphs. The
following two lemmas enable us to prove the non-diagonalizability of Cayley digraphs
on a group G by analyzing irreducible representations (over C) of G. For a subset
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S ⊆ G and two representations ρ and ς of a group G, denote ρ(S) = ∑
s∈S ρ(s) and

ρ(S) ⊕ ς(S) =
(

ρ(S) 0
0 ς(S)

)

.

Lemma 2.2 [14, Proposition 7.1] Let G be a finite group, let S be a nonempty subset
of G \ {1}, and let {ρ1, . . . , ρk} be a complete set of irreducible representations of G
over C. Then A(Cay(G, S)) is similar to

d1ρ1(S) ⊕ d2ρ2(S) ⊕ · · · ⊕ dkρk(S),

where di is the dimension of ρi and diρi (S) := ρi (S) ⊕ · · · ⊕ ρi (S)
︸ ︷︷ ︸

di

for i ∈ {1, . . . , k}.

Lemma 2.3 Let G be a finite group and let S be a nonempty subset of G \ {1}. The
digraph Cay(G, S) is non-diagonalizable if and only if there exists a representation
ρ of G over C such that ρ(S) is non-diagonalizable.

Proof For each representation ρ of G over C, by Maschke’s theorem (see [8,
Corollary 1.6]), there exist irreducible representations ρ1, ρ2, . . . , ρt of G satisfy-
ing ρ = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρt . This implies that ρ(S) is non-diagonalizable if and only
if ρi (S) is non-diagonalizable for some i ∈ {1, 2, . . . , t}. According to Lemma 2.2,
the latter holds if and only if A(Cay(G, S)) is non-diagonalizable. Thus the lemma
follows. 	

Denote by J (α, s) the s × s Jordan block with eigenvalue α.

Lemma 2.4 If s > 1 or t > 1, then J (α, s) ⊗ J (β, t) is non-diagonalizable.

Proof According to [13, Theorem 4.3.17], J (α, s) ⊗ J (β, t) is similar to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

J (0,min{s, t})⊕(|s−t |+1) ⊕
min{s,t}−1⊕

k=1
J (0, k)⊕2 if α = 0 = β

J (0, s)⊕t if α = 0 �= β

J (0, t)⊕s if α �= 0 = β
min{s,t}⊕

k=1
J (αβ, s + t + 1 − 2k) if αβ �= 0.

This shows that the Jordan canonical form of J (α, s) ⊗ J (β, t) contains one of the
Jordan blocks J (0, s), J (0, t) and J (αβ, s + t − 1). Since s > 1 or t > 1, we have
s + t − 1 > 1. Hence J (α, s) ⊗ J (β, t) is non-diagonalizable. 	
Lemma 2.5 If either � or� is non-diagonalizable, then � ×� is non-diagonalizable.

Proof Let A and B be the adjacency matrices of � and �, respectively. Then A ⊗ B
is the adjacency matrix of � × �. Suppose that either � or � is non-diagonalizable,
that is, either A or B is non-diagonalizable. This implies that there exist Jordan blocks
J (α, s) of A and J (β, t) of B with s > 1 or t > 1. By Lemma 2.1, each Jordan block
of J (α, s) ⊗ J (β, t) is a Jordan block of A ⊗ B. Thus we conclude from Lemma 2.4
that A ⊗ B is non-diagonalizable, which means that � ⊗ � is non-diagonalizable. 	
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For a digraph �, recall the digraph �×n defined in the paragraph before Construc-
tion 1.2. We give some properties for �×n in the following lemma.

Lemma 2.6 For positive integers n and s, the digraph �×n satisfies the following:

(a) �×n is s-arc-transitive if � is s-arc-transitive;
(b) �×n is vertex-primitive if � is vertex-primitive and |V (�)| is not prime;
(c) �×n is non-diagonalizable if � is non-diagonalizable.

Proof Parts (a) and (c) are obtained directly from [9, Lemma 2.7] and Lemma 2.5,
respectively. For part (b), the conditions that Aut(�) is primitive on V (�) and that
|V (�)| is not prime imply that Aut(�) �Sym(n) is primitive on V (�)n (see [4, Propo-
sition 3.2 and the paragraph thereafter]), and so Aut(�×n) ≥ Aut(�) � Sym(n) is
primitive on V (�)n = V (�×n). 	

For each prime power q, we label the 1-dimensional subspaces of F
2
q by the ratio of

the coordinates, that is 〈(x, 1)〉 is labelled by x and 〈(1, 0)〉 is labelled by∞. The set of
1-spaces is then identified with the set Fq ∪{∞}, called the projective line over Fq , and

denoted by PG(1, q). For each matrix A =
(
a b
c d

)

∈ GL(2, q), the transformation

φA : PG(1, q) → PG(1, q), x �→ ax + c

bx + d

is called a linear fractional transformation on PG(1, q). Here we set φA(∞) = a/b
and φA (−d/b) = ∞ if b �= 0, and set φA(∞) = ∞ if b = 0. Note that

φ : GL(2, q) → Sym(PG(1, q)), A �→ φA

is a group homomorphism, and we have PGL(2, q) = φ(GL(2, q)) and PSL(2, q) =
φ(SL(2, q)). Moreover, φA ∈ PSL(2, q) if and only if det(A) is a square in Fq .

3 The Non-diagonalizable s-arc-Transitive Digraphs 0s

Fix an integer s ≥ 2. For simplicity of notation, let a = as = (2s−1, 2s)(4s−1, 4s) ∈
Sym(4s), let b = bs = (1, 3, 5, . . . , 4s − 1, 2, 4, 6, . . . , 4s) ∈ Sym(4s), and let
R = Rs = 〈a, b〉. Then �s = Cay(R, {ab, b}) is as defined in Construction 1.2.

Throughout this section, let N = 〈a, ab, ab
2
, . . . , ab

s−1〉, let G = 〈h, g〉 with

h = (1, 2) ∈ Sym(4s) and g = (1, 3, 5, . . . , 4s − 1)(2, 4, 6, . . . , 4s) ∈ Sym(4s),

and let H = 〈h, hg, hg
2
, . . . , hg

s−1〉. Observe that

H = 〈h〉 × 〈hg〉 × 〈hg2〉 × · · · × 〈hgs−1〉
= 〈(1, 2)〉 × 〈(3, 4)〉 × 〈(5, 6)〉 × · · · × 〈(2s − 1, 2s)〉 ∼= Cs

2, (1)

a = hg
s−1

hg
−1
, and b = gh. In particular, R ≤ G.
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Lemma 3.1 The subgroup N = 〈a〉 × 〈ab〉 × 〈ab2〉 × · · · × 〈abs−1〉 ∼= Cs
2 is normal in

R with R/N = 〈bN 〉 ∼= C2 s . In particular, |R| = 2s+1s.

Proof Note that a has order |a| = 2 and ab
� = (2� − 1, 2�)(2 s + 2� − 1, 2 s + 2�)

for each � ∈ {1, 2, . . . , s}. We see that

N = 〈a〉 × 〈ab〉 × 〈ab2〉 × · · · × 〈abs−1〉 ∼= Cs
2

is normalized by a and b, and so N � 〈a, b〉 = R. This together with a ∈ N and

b2s = (1, 2)(3, 4) · · · (4s − 1, 4s) = aabab
2 · · · abs−1 ∈ N

leads to R/N = 〈bN 〉 ∼= C2s . As a consequence, |R| = 2s · 2s. 	
In order to prove that �s is s-arc-transitive, we need the following lemma.

Lemma 3.2 For the digraph�s in Construction 1.2, we have�s ∼= Cos(G, H , HgH).

Proof Since ghg−1 = (4s − 1, 4s) /∈ H , we have H �= Hghg−1 and so Hg �= Hgh.
Hence HgH ⊇ Hg 	 Hgh. Moreover, since

H ∩ Hg = (〈h〉 × 〈hg〉 × · · · × 〈hgs−1〉) ∩ (〈hg〉 × 〈hg2〉 × · · · × 〈hgs 〉)
= 〈hg〉 × 〈hg2〉 × · · · × 〈hgs−1〉
∼= Cs−1

2 ,

we see that |HgH |/|H | = |H |/|H ∩ Hg| = 2. Therefore, HgH = Hg 	 Hgh. As
a = hg

s−1
hg

−1
and b = gh, we have ab = hg

s−1
g ∈ Hg, and so

HgH = Hg 	 Hgh = Hab 	 Hb. (2)

Now we prove that |G| = 22s · 2s. Let M = 〈h, hg, hg
2
, . . . , hg

2 s−1〉. Since hgi =
(2i + 1, 2i + 2) for i ∈ {0, 1, . . . , 2s − 1}, we see that

M = 〈h〉 × 〈hg〉 × 〈hg2〉 × · · · × 〈hg2s−1〉 ∼= C2s
2 .

Therefore, M is normalized by both h and g as g2s = 1, and so M � 〈h, g〉 = G.
Together with the facts that g has order 2s, that elements in M have order dividing 2
and that

gs = (1, 2s + 1)(2, 2s + 2) · · · (2s − 1, 4s − 1)(2s, 4s) /∈ M,

this gives G/M = 〈gM〉 ∼= C2s , and so |G| = 22s · 2s.
Let ψ : r �→ Hr be the mapping from the vertex set R of �s to [G:H ]. Next we

prove that ψ is a graph isomorphism from �s to Cos(G, H , HgH). Note from
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N = 〈(1, 2)(2s + 1, 2s + 2)〉 × 〈(3, 4)(2s + 3, 2s + 4)〉 × · · ·
×〈(2s − 1, 2s)(4s − 1, 4s)〉

and H = 〈(1, 2)〉×〈(3, 4)〉×· · ·×〈(2 s−1, 2 s)〉 that N ∩H = 1. Since R∩H ≤ H
is an elementary abelian 2-group, the only possible non-identity elements of R ∩ H
are involutions. Moreover, we deduce from R/N = 〈bN 〉 ∼= C2s that the involutions
of R are contained in N ∪ bs N . Thus R ∩ H ⊆ (N ∪ bs N ) ∩ H . Note from

bs = (1, 2s + 1, 2, 2s + 2)(3, 2s + 3, 4, 2s + 4) · · · (2s − 1, 4s − 1, 2s, 4s)

that bs N ∩ H = 1. Hence R ∩ H ⊆ (N ∪ bs N ) ∩ H = 1 as N ∩ H = 1. From
Lemma 3.1 we have |R| = 2s+1s. Since R ≤ G and

|G| = 22s · 2s = 2s+1s · 2s = |R||H |,

we conclude that R forms a right transversal of H in G, and so the mapping ψ is
bijective. Hence for r1 and r2 in R, we have r2r

−1
1 ∈ {ab, b} if and only if Hr2r

−1
1 ⊆

Hab 	 Hb. By (2), the latter condition holds if and only if Hr2r
−1
1 ⊆ HgH , or

equivalently, r2r
−1
1 ∈ HgH . Thus we conclude that r1 → r2 is an arc in�s if and only

if Hr1 → Hr2 is an arc of Cos(G, H , HgH). This shows that ψ is an isomorphism
from �s to Cos(G, H , HgH). 	

Now we give the main result of this section.

Theorem 3.3 For the digraph �s in Construction 1.2, the following hold:

(a) |V (�s)| = 2s+1s;
(b) Val(�s) = 2;
(c) �s is strongly connected;
(d) �s is s-arc-transitive;
(e) �s is non-diagonalizable.

Proof Parts (a) and (b) follow directly from �s = Cay(R, {ab, b}) and |R| = 2s · 2s.
Since 〈ab, b〉 = 〈a, b〉 = R, we see that �s is a connected digraph, which implies that
�s is strongly connected (see [11, Lemma 2.6.1]), as part (c) states. Note that

H → Hg → · · · → Hgs−1 → Hgs

is an s-arc of the coset digraph Cos(G, H , HgH) and the stabilizer in G of this s-arc
is H ∩ Hg ∩ · · · ∩ Hgs . It is clear from (1) that

Hg ∩ Hg2 ∩ · · · ∩ Hgi = 〈hgi 〉 × 〈hgi+1〉 × · · · × 〈hgs 〉,
H ∩ Hg ∩ · · · ∩ Hgi = 〈hgi 〉 × 〈hgi+1〉 × · · · × 〈hgs−1〉,

Hg ∩ Hg2 ∩ · · · ∩ Hgi+1 = 〈hgi+1〉 × 〈hgi+2〉 × · · · × 〈hgs 〉,
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and so

Hg ∩ Hg2 ∩ · · · ∩ Hgi = (H ∩ Hg ∩ · · · ∩ Hgi )(Hg ∩ Hg2 ∩ · · · ∩ Hgi+1
)

for each i ∈ {0, 1, . . . , s − 1}. Recall that G ≤ Aut
(
Cos(G, H , HgH)

)
and

Cos(G, H , HgH) is arc-transitive. Thus, by [9, Lemma 2.2] and Lemma 3.2, we
conclude that �s is s-arc-transitive, as part (d) asserts.

Now it remains to prove part (e). Denote ak = ab
k
for k ∈ {1, 2, . . . , s}. According

to Lemma 3.1, any elements x and y in R can be written as

x = aε1
1 aε2

2 · · · aεs
s bm and y = aθ1

1 aθ2
2 · · · aθs

s bn (3)

for some ε1, ε2, . . . , εs, θ1, θ2, . . . , θs ∈ {0, 1} and m, n ∈ {1, 2, . . . , 2 s}. Since
(ak)b

� = (ab
k
)b

� = ab
k+� = ak+�, we have

xy = aε1
1 aε2

2 · · · aεs
s (aθ1

1 aθ2
2 · · · aθs

s )b
−m

bmbn (4)

= aε1
1 aε2

2 · · · aεs
s aθ1

1−ma
θ2
2−m · · · aθs

s−mb
m+n

= aε1+θ1+m
1 aε2+θ2+m

2 · · · aεs+θs+m
s bm+n,

where subscripts are counted modulo s.
First assume that s ≥ 3 is odd. In this case, let V be the vector space over C with

basis e1, e2, . . . , es , and for x as in (3), let ρ(x) be the linear transformation on V such
that

eρ(x)
i = (−1)−ε2−2i+∑s

k=1 εk ei+m(s−1)/2 for all i ∈ {1, 2, . . . , s}, (5)

where subscripts are counted modulo s. It follows that

(eρ(x)
i )ρ(y) = ((−1)−ε2−2i+∑s

k=1 εk ei+m(s−1)/2)
ρ(y)

= (−1)−ε2−2i+∑s
k=1 εk eρ(y)

i+m(s−1)/2

= (−1)−ε2−2i+∑s
k=1 εk (−1)−θ2−2(i+m(s−1)/2)+∑s

k=1 θk ei+m(s−1)/2+n(s−1)/2

= (−1)−ε2−2i+∑s
k=1 εk (−1)−θ2−2i+m+∑s

k=1 θk ei+(m+n)(s−1)/2

= (−1)−(ε2−2i+θ2−2i+m )+∑s
k=1(εk+θk+m )ei+(m+n)(s−1)/2

= eρ(xy)
i

for i ∈ {1, 2, . . . , s}. Hence ρ is a representation of R on V . For i, j ∈ {1, 2, . . . , s},
let Ei, j be the s × s matrix with (i, j)-entry 1 and other entries 0. With respect to the
basis e1, e2, . . . , es we deduce from (5) that
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ρ(ab) = ρ(asb) =
( −I(s+1)/2

−I(s−1)/2

)

+ 2E1,(s+1)/2 and ρ(b)

=
(

I(s+1)/2
I(s−1)/2

)

,

which yields

ρ(ab) + ρ(b) = 2E1,(s+1)/2.

Since 2E1,(s+1)/2 is non-diagonalizable, we conclude from Lemma 2.3 that �s is
non-diagonalizable.

Next assume that s ≥ 2 is even. For each integer t , denote

t = t mod 2 =
{
0, if t is even,

1, if t is odd.

In this case, let V be the vector space over C with basis e1, e2, and for x as in (3), let
ρ(x) be the linear transformation on V such that

eρ(x)
i = (−1)δi (m + i)e1 + (−1)δi (m + i + 1)e2 for all i ∈ {1, 2},

where δi = ∑s/2−1
k=0 ε2k+i for i ∈ {1, 2}. Thus by (3) and (4), with respect to the basis

e1, e2 we have

ρ(x) =
(

(−1)δ1m + 1 (−1)δ1m
(−1)δ2m (−1)δ2m + 1

)

,

ρ(y) =
(

(−1)σ1n + 1 (−1)σ1n
(−1)σ2n (−1)σ2n + 1

)

,

ρ(xy) =
(

(−1)γ1m + n + 1 (−1)γ1m + n
(−1)γ2m + n (−1)γ2m + n + 1

)

,

where σi = ∑s/2−1
k=0 θ2k+i and γi = ∑s/2−1

k=0

(
ε2k+i + θ2k+i+m

)
with the subscripts

of θ counted modulo s for i ∈ {1, 2}. Since γi = δi + (m + i)σ1 + (m + i + 1)σ2, a
straightforward calculation shows that ρ(xy) = ρ(x)ρ(y). Hence ρ is a representation
of R on V . Since

ρ(ab) + ρ(b) =
(

0 1
−1 0

)

+
(
0 1
1 0

)

=
(
0 2
0 0

)

is non-diagonalizable, we conclude from Lemma 2.3 that �s is non-diagonalizable.
This completes the proof of part (e). 	
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4 The Non-diagonalizable Vertex-Primitive Digraph 6

Recall from Construction 1.3 that � = Cay(R, S) with

R = 〈a, b | a7 = b3 = 1, b−1ab = a2〉 × 〈c, d | c7 = d3 = 1, d−1cd = c2〉,
S = (S1 ∪ S−1

1 )(S3 ∪ S−1
3 )γ ∪ (S3 ∪ S−1

3 )(S1 ∪ S−1
1 )γ ∪ S1S

γ
2

∪ S2S
γ
1 ∪ S−1

1 Sγ
4 ∪ S4(S

−1
1 )γ ,

where γ is the automorphism of R interchanging a with c and b with d, and

S1 = {a, a5, a6b, a6b2}, S2 = {ab, (ab)−1},
S3 = {a3, b, ab2, a4b2}, S4 = {a2b, (a2b)−1}.

The following lemma gives basic properties on R and S.

Lemma 4.1 The following hold:

(a) R ∼= (C7 � C3)
2;

(b) S = (S1 	 S−1
1 )(S3 	 S−1

3 )γ 	 (S3 	 S−1
3 )(S1 	 S−1

1 )γ 	 S1S
γ
2 	 S2S

γ
1 	 S−1

1 Sγ
4 	

S4(S
−1
1 )γ ;

(c) |S| = 160.

Proof Part (a) is obvious. Next we prove parts (b) and (c). Observe that Si ∩ S j = ∅
for all i, j ∈ {1, 2, 3, 4} with i �= j . Moreover, since

S−1
1 = {a6, a2, a2b2, a4b} and S−1

3 = {a4, b2, a3b, a5b},

we observe that the sets S1 ∪ S2 ∪ S3 ∪ S4, S
−1
1 and S−1

3 are pairwise disjoint. Thus

S = (S1 	 S−1
1 )(S3 	 S−1

3 )γ 	 (S3 	 S−1
3 )(S1 	 S−1

1 )γ 	 S1S
γ
2

	S2Sγ
1 	 S−1

1 Sγ
4 	 S4(S

−1
1 )γ ,

proving part (b). As a consequence,

|S| = |(S1 	 S−1
1 )||(S3 	 S−1

3 )γ | + |(S3 	 S−1
3 )||(S1 	 S−1

1 )γ |
+ |S1||Sγ

2 | + |S2||Sγ
1 | + |S−1

1 ||Sγ
4 | + |S4||S−γ

1 |
= (4 + 4) · (4 + 4) + (4 + 4) · (4 + 4) + 4 · 2 + 4 · 2 + 4 · 2 + 4 · 2
= 160,

as part (c) states. 	
Recall the group homomorphism φ : GL(2, q) → PGL(2, q) ≤ Sym(PG(1, q))

defined at the end of Sect. 2. For our convenience, we identify R with a permutation
group on PG(1, 7) × PG(1, 7) by letting
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a : (x, y) �→ (x + 1, y), b : (x, y) �→ (2x, y),

c : (x, y) �→ (x, y + 1), d : (x, y) �→ (x, 2y).

We also fix the following notation throughout this section. Let

s : (x, y) �→
(
2x + 1

x + 1
, y

)

, t : (x, y) �→
(−1

x
, y

)

,

α : (x, y) �→
( −x

x + 1
,

−y

y + 1

)

be elements of PGL(2, 7) × PGL(2, 7), and let

β : (x, y) �→ (y, x)

be a permutation on PG(1, 7) × PG(1, 7). Then R is normalized by β, and the auto-
morphism of R induced by β is equal to γ (recall that γ is the automorphism of R
interchanging a with c and b with d). Let

u = sβ, v = tβ, g1 = a4c5, g2 = a2c3d2, (6)

and let

G = 〈a, b, c, d, t, v, α, β〉, H = 〈s, t, u, v, α, β〉.

Under the above notation, we have the following lemma.

Lemma 4.2 We have |s2| = |u2| = |t | = |v| = |α| = |β| = 2, s = (αt)2 and
u = (αv)2.

Proof From the definitions of β, u and v we see that |β| = 2, |u| = |s| and |v| = |t |.
Note that

s = (φ × φ)

((
2 1
1 1

)

, I

)

, t = (φ × φ)

((
0 1

−1 0

)

, I

)

,

α = (φ × φ)

((−1 1
0 1

)

,

(−1 1
0 1

))

.

It follows from

((
2 1
1 1

)2
)2

=
(
5 3
3 2

)2

=
(−1 0

0 −1

)

=
(

0 1
−1 0

)2

and

(−1 1
0 1

)2

=
(
1 0
0 1

)

that |s2| = |t | = |α| = 2. As a consequence, |u2| = |v| = 2. Moreover,
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(αt)2 = (φ × φ)

(((−1 1
0 1

) (
0 1

−1 0

))2

,

(−1 1
0 1

)2
)

= (φ × φ)

((−1 −1
−1 0

)2

, I

)

= (φ × φ)

((
2 1
1 1

)

, I

)

= s.

This together with the observation αβ = α yields u = sβ = ((αt)2)β = (αβ tβ)2 =
(αv)2. 	

From the definition of G and the previous lemma, we see that H and R are both
subgroups of G. The following lemma reveals the relation between G, H and R.

Lemma 4.3 The group H = (〈s, t〉 × 〈u, v〉) � (〈α〉 × 〈β〉) ∼= (D8 × D8) � C2
2 is

maximal in G ∼= (PSL(2, 7) × PSL(2, 7)) � C2
2 with right transversal R.

Proof It is straightforward to verify that st = s−1, uv = u−1, and

H = (〈s, t〉 × 〈u, v〉) � (〈α〉 × 〈β〉).

Since st = s−1 and uv = u−1, we derive from Lemma 4.2 that 〈s, t〉 ∼= 〈u, v〉 ∼= D8,
and so

H ∼= (D8 × D8) � C2
2 .

In particular, |H | = 28. From Lemma 4.2 we see that s = (αt)2 and u = (αv)2.
Hence H ≤ G. Observe that

a = (φ × φ)

((
1 0
1 1

)

, I

)

, b = (φ × φ)

((
2 0
0 1

)

, I

)

, t = (φ × φ)

((
0 1

−1 0

)

, I

)

.

Since 〈a, b〉 ∼= C7 � C3 has index 8 in PSL(2, 7) and its order is coprime to |t | = 2,
it follows that the index of 〈a, b, t〉 in PSL(2, 7) is at most 4. Since PSL(2, 7) is a
simple group of order 168, we then obtain 〈a, b, t〉 ∼= PSL(2, 7). Moreover,

α = (φ × φ)

((−1 1
0 1

)

,

(−1 1
0 1

))

with det

(−1 1
0 1

)

= −1,

and−1 is not a square in F7. We conclude that 〈a, b, t, α〉 ∼= 〈c, d, v, α〉 ∼= PGL(2, 7)
and

G = (〈a, b, t〉 × 〈c, d, v〉) � (〈α〉 × 〈β〉),

which implies that

G ∼= (PSL(2, 7) × PSL(2, 7)) � C2
2 .

123



192 Combinatorica (2024) 44:179–203

In particular, |G| = 28 · 32 · 72.
By Lemma 4.2, we have s = (αt)2, |t | = |α| = 2 and |s| = 4,

it follows that 〈s, t, α〉 = 〈t, α〉 ∼= D16. Let M be a maximal subgroup
of 〈a, b, t, α〉 ∼= PGL(2, 7) containing 〈s, t, α〉. Then |PGL(2, 7)|/|M | divides
|PGL(2, 7)|/|〈s, t, α〉| = 336/16 = 21. If |PGL(2, 7)|/|M | = 3, then M would
contain PSL(2, 7), not possible. Moreover, [7, Table 2.1] shows that 〈a, b, t, α〉 ∼=
PGL(2, 7) has no subgroup of index 7. Thus |PGL(2, 7)|/|M | = 21, and so D16 ∼=
〈s, t, α〉 = M . Since M is maximal in 〈a, b, t, α〉, it follows that 〈u, v, α〉 = 〈s, t, α〉β
is maximal in 〈a, b, t, α〉β = 〈c, d, v, α〉. As a consequence, H is maximal in G.

Finally, the fact that |R| = 32 · 72 is prime to |H | = 28 yields R ∩ H = 1. This
together with |G| = 28 · 32 · 72 = |H ||R| implies that R forms a right transversal of
H in G. 	

For a subset S of the group G, let I2(S) be the set of involutions of S. Recall the
elements g1 and g2 of R defined in (6).

Lemma 4.4 We have |Hg1 ∩ H | = 2 and |Hg2 ∩ H | = 8.

Proof Recall that

a : (x, y) �→ (x + 1, y), b : (x, y) �→ (2x, y), c : (x, y) �→ (x, y + 1),

d : (x, y) �→ (x, 2y),

s : (x, y) �→
(
2x + 1

x + 1
, y

)

, t : (x, y) �→
(−1

x
, y

)

,

α : (x, y) �→
( −x

x + 1
,

−y

y + 1

)

,

β : (x, y) �→ (y, x), u = sβ, v = tβ, g1 = a4c5, g2 = a2c3d2.

It is straightforward to verify that

|a| = |c| = 7, |b| = |d| = 3, sα = s3, tα = st, uα = u3, vα = uv,

g1 : (x, y) �→ (x + 4, y + 5), g2 : (x, y) �→ (x + 2, 4y + 5).

According to Lemmas 4.2 and 4.3, any elements x and y of H can be written as

x = sk1 t�1um1vn1αε1βδ1 and y = sk2 t�2um2vn2αε2βδ2 (7)

for some k1, k2,m1,m2 ∈ {0, 1, 2, 3} and �1, �2, n1, n2, ε1, ε2, δ1, δ2 ∈ {0, 1}. Since
u = sβ , v = tβ , st = s−1, sα = s3, uα = u3, tα = st , vα = uv, (st)�2 = s�2 t�2 and
(uv)n2 = un2vn2 , we have

xy = sk1 t�1um1vn1αε1βδ1 · sk2 t�2um2vn2αε2βδ2

= sk1 t�1um1vn1 (αε1βδ1sk2 t�2um2vn2βδ1αε1 )βδ2−δ1αε2−ε1

= sk1 t�1um1vn1 (s3
ε1 k2+ε1�2 t�2u3

ε1m2+ε1n2vn2 )β
δ1

βδ2−δ1αε2−ε1 ,
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=
{
sk1+(−1)�1 (3ε1 k2+ε1�2)t�1+�2um1+(−1)n1 (3ε1m2+ε1n2)vn1+n2βδ2αε2−ε1 if δ1 = 0

sk1+(−1)�1 (3ε1m2+ε1n2)t�1+n2um1+(−1)n1 (3ε1 k2+ε1�2)vn1+�2βδ2−1αε2−ε1 if δ1 = 1.
(8)

First consider elements x of order 2 in H . Since x2 = 1, taking x = y in (8) gives

⎧
⎪⎨

⎪⎩

k1 + (−1)�1 (3ε1k1 + ε1�1) ≡ 0 (mod 4)

m1 + (−1)n1 (3ε1m1 + ε1n1) ≡ 0 (mod 4)

δ1 = 0

or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k1 + (−1)�1 (3ε1m1 + ε1n1) ≡ 0 (mod 4)

m1 + (−1)n1 (3ε1k1 + ε1�1) ≡ 0 (mod 4)

n1 + �1 ≡ 0 (mod 2)

δ1 = 1.

Let N = 〈s, t〉 × 〈u, v〉. It follows that

I2(〈s, t〉) = {s2, t, st, s2t, s3t}, I2(Nα) = {s j ukα | j, k ∈ {0, 1, 2, 3}},
I2(Nβ) = {s j tu jvβ, s j ukβ | j, k ∈ {0, 1, 2, 3}, j + k ≡ 0 (mod 4)},
I2(Nαβ) = {s j u jαβ | j ∈ {0, 1, 2, 3}} ∪ {(stvαβ)β

k
, (s2tu3vαβ)β

k | k ∈ {0, 1}}.

Note that I2(〈u, v〉) = I2(〈s, t〉β). It is straightforward to verify that

I2(〈s, t〉g1) = {a3bs3t, a4b2s2, b2t, a3b2s, abs2t},
I2(〈u, v〉g1) = {cdu, cdu2v, cd2u3v, uv, c3u3},
I2

(
(Nα)g1

) = {a3bc4d2s3tuα, a3bc6ds3tu2α, a3bcs3tvα, a3bc4s3tu3α,

a6bc4d2stuα, c4d2uα, a6c4d2s3uα, a6bc6dstu2α,

c6du2α, a6c6ds3u2α, a6bcstvα, cvα, a6cs3vα,

a6bc4stu3α, c4u3α, a6c4s3u3α},
I2

(
(Nβ)g1

) = {a2bc3d2s2tu2β, a2b2c6d2s3tvβ, ac2d2stuβ,

a4ds3u2vβ, ac6β, a4c5dtuvβ,

a2bc2dsu3vβ, a2b2c5s2u3β},
I2

(
(Nαβ)g1

) = {a5b2c2dsu3vαβ, bc5ds2uvαβ,

a2c6tαβ, a5c5s3u3αβ, a2c2d2uαβ, a5c6d2s3tvαβ,

bds2tu2vαβ, a5b2c3d2stu2αβ},
I2(〈s, t〉g2) = {a2bs3, a4s, s2t, b2t, a2bst},
I2(〈u, v〉g2) = {v, u2v, c3d2uv, u2, c3d2u},
I2

(
(Nα)g2

) = {a6c6d2stuvα, a6cstvα,

a6c6d2stα, a6cstu3α, a4bc6d2uvα, a4b2c6d2suvα,

a3c6d2s3uvα, a4bcvα, a4b2csvα, a3cs3vα,

a4bc6d2α, a4b2c6d2sα, a3c6d2s3α,

a4bcu3α, a4b2csu3α, a3cs3u3α},
I2

(
(Nβ)g2

) = {ab2c5ds2tuβ, bc3dstu2vβ, ab2c3s2vβ,

bc4d2suvβ, ab2c3dβ, bc5ds3u3vβ,

123



194 Combinatorica (2024) 44:179–203

ab2c4d2tu3β, bc3s3tu2β},
I2

(
(Nαβ)g2

) = {a6bc6dstuvαβ, a3b2c5d2tαβ,

a6bc5uαβ, a3b2cds3u3αβ, a6bc6ds2u2αβ,

a3b2cdsu2vαβ, a3b2c5d2s2tu3vαβ, a6bc5s3tvαβ}. (9)

By Lemma 4.3, we have H ∩ R = 1 and

I2(H) = I2(〈s, t〉) ∪ I2(〈u, v〉) ∪ I2(〈s, t〉)I2(〈u, v〉) ∪ I2(Nα) ∪ I2(Nβ) ∪ I2(Nαβ).

Then we observe from (9) that

H ∩ I2(H
g1) = {uv} and H ∩ I2(H

g2) = {s2t, v, u2v, u2, s2tv, s2tu2v, s2tu2}.

Therefore,

x =
{
uv if x ∈ H ∩ Hg1

s2t, v, u2v, u2, s2tv, s2tu2v or s2tu2 if x ∈ H ∩ Hg2 .
(10)

Next suppose that x ∈ H ∩ Hgj and |x | = 4 for some j ∈ {1, 2}. Then x2 ∈
H ∩ I2(Hgj ). Let

χ : skt�umvnαεβδ �→ (−1)�+n (11)

be the mapping from H to the group {−1, 1}, where k,m ∈ {0, 1, 2, 3} and �, n, ε, δ ∈
{0, 1}. Then for all y, z ∈ H we derive from (8) that

χ(yz) = χ(y)χ(z), (12)

that is, χ is a group homomorphism. In particular, we have χ(z2) = χ(z)χ(z) = 1
for all z ∈ H . If x ∈ H ∩ Hg1 , then by (10) we see that x2 = uv, but by (12) we
obtain

1 = χ(x2) = χ(uv) = χ(u)χ(v) = 1 · (−1) = −1,

a contradiction. Now x ∈ H ∩ Hg2 , and since x2 ∈ H ∩ I2(Hg2), (10) shows that

x2 ∈ {s2t, v, u2v, u2, s2tv, s2tu2v, s2tu2}.

Since χ(s2t) = χ(v) = χ(u2v) = χ(s2tu2) = −1, we have x2 /∈
{s2t, v, u2v, s2tu2}. Since x ∈ H ∩ Hg2 , there exists y ∈ H such that x = yg2 ,
and so x2 = (y2)g2 . Note from (9) that u2 = (u2v)g2 and (s2tv) = (stu2)g2 .
If x2 ∈ {u2, s2tv}, then y2 ∈ {u2v, stu2}. However, by (12) we have χ(u2v) =
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χ(stu2) = −1. Hence x2 /∈ {u2, s2tv}, and so x2 = s2tu2v. This together with (7)
and (8) leads to

{
�1 + �1 ≡ 1 (mod 2)

δ1 = 0
or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k1 + (−1)�1(3ε1m1 + ε1n1) ≡ 2 (mod 4)

m1 + (−1)n1(3ε1k1 + ε1�1) ≡ 2 (mod 4)

n1 + �1 ≡ 1 (mod 2)

δ1 = 1.

It is easy to see that the former system of equations has no solutions, and the latter has
solutions precisely when (k1, �1,m1, n1, ε1, δ1) is one of

(2, 0, 0, 1, 0, 1), (2, 1, 0, 0, 0, 1), (0, 1, 2, 0, 0, 1) and (0, 0, 2, 1, 0, 1).

Thus x ∈ {s2vβ, s2tβ, tu2β, u2vβ}. For each y ∈ H such that yg2 = x , we have
(y2)g2 = x2 = s2tu2v, and so y2 = stv by (9). Combining this with (8) we derive
that

y ∈ {stαβ, vαβ, s3tu2αβ, s2u2vαβ}.

However, it is straightforward to verify that

yg2 ∈ {a6bc6ds2uvαβ, a6bc6dstu2αβ, a6bc5s3tuαβ, a6bc5vαβ},

which contradicts the fact yg2 = x ∈ {s2vβ, s2tβ, tu2β, u2vβ}. Therefore, all non-
identity elements of H ∩ Hg2 are involutions. As a consequence,

|H ∩ Hg1 | = |〈uv〉| = 2,

|H ∩ Hg2 | = |〈s2t〉 × 〈u2, v〉| = 2 · 4 = 8.

	

Lemma 4.5 The digraph � in Construction 1.3 is isomorphic to Cos(G, H ,

H{g1, g2}H).

Proof Let S1, S2, S3, S4 and S be as in Construction 1.3. For each x ∈ S, as listed
in Tables 1, 2, 3 and 4, a straightforward calculation verifies that x = hg j k with h,
k and j given in the corresponding row. Therefore, S is a subset of Hg1H ∪ Hg2H ,
and hence

{Hx | x ∈ S} ⊆ {Hy | y ∈ Hg1H ∪ Hg2H}. (13)

According to Lemma 4.4, we have

|Hg1H |/|H | = |H |/|Hg1 ∩ H | = 256/2 = 128,

|Hg2H |/|H | = |H |/|Hg2 ∩ H | = 256/8 = 32.
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Table 1 x ∈ S1S
β
3 and j = 1

x h k

ac3 suβ svβ

ad su2β s3tvβ

acd2 svβ s2vβ

ac4d2 suvβ tvβ

a5c3 uβ sβ

a5d u2β s3tβ

a5cd2 vβ s2β

a5c4d2 uvβ tβ

a6bc3 tuβ su2vβ

a6bd tu2β s3tu2vβ

a6bcd2 tvβ s2u2vβ

a6bc4d2 tuvβ tu2vβ

a6b2c3 s3uβ su2β

a6b2d s3u2β s3tu2β

a6b2cd2 s3vβ s2u2β

a6b2c4d2 s3uvβ tu2β

Table 2 x ∈ S1(S
−1
3 )β and

j = 1 x h k

ac4 sβ vβ

ad2 su2vβ s3vβ

a(cd2)−1 su3β stvβ

a(c4d2)−1 su3vβ s2tvβ

a5c4 β β

a5d2 u2vβ s3β

a5(cd2)−1 u3β stβ

a5(c4d2)−1 u3vβ s2tβ

a6bc4 tβ u2vβ

a6bd2 tu2vβ s3u2vβ

a6b(cd2)−1 tu3β stu2vβ

a6b(c4d2)−1 tu3vβ s2tu2vβ

a6b2c4 s3β u2β

a6b2d2 s3u2vβ s3u2β

a6b2(cd2)−1 s3u3β stu2β

a6b2(c4d2)−1 s3u3vβ s2tu2β
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Table 3 x ∈ S1S
β
2 and j = 2

x h k

acd u2α tα

a(cd)−1 u3α tu3α

a5cd s3u2α s3α

a5(cd)−1 s3u3α s3u3α

a6bcd su2α α

a6b(cd)−1 su3α u3α

a6b2cd s2u2α sα

a6b2(cd)−1 s2u3α su3α

Table 4 x ∈ S−1
1 Sβ

4 and j = 2
x h k

a6c2d tu s3u

a6(c2d)−1 t s3

a2c2d u u

a2(c2d)−1 1 1

(a6b)−1c2d su s2u

(a6b)−1(c2d)−1 s s2

(a6b2)−1c2d s2u su

(a6b2)−1(c2d)−1 s2 s

Consequently,

|{Hy | y ∈ Hg1H ∪ Hg2H}| = |Hg1H |/|H | + |Hg2H |/|H | = 128 + 32 = 160.

(14)

Recall from Lemma 4.3 that R forms a right transversal of H in G. We then conclude
from S ⊆ R and Lemma 4.1 that |{Hx | x ∈ S}| = |S| = 160, which combined
with (13) and (14) yields

{Hx | x ∈ S} = {Hy | y ∈ Hg1H ∪ Hg2H}. (15)

Let ψ : r �→ Hr be the mapping from the vertex set R of � to [G:H ]. Next we
prove that ψ is a digraph isomorphism from � to Cos(G, H , H{g1, g2}H). Since
R forms a right transversal of H in G, we derive that ψ is bijective. Hence for r1
and r2 in R, we have r2r

−1
1 ∈ S if and only if Hr2r

−1
1 ∈ {Hx | x ∈ S}. By (15),

the latter condition holds if and only if Hr2r
−1
1 ∈ {Hy | y ∈ Hg1H ∪ Hg2H}, or

equivalently, r2r
−1
1 ∈ Hg1H ∪ Hg2H . Thus we conclude that r1 → r2 is an arc of �

if and only if Hr1 → Hr2 is an arc of Cos(G, H , H{g1, g2}H). This shows that ψ is
an isomorphism from � to Cos(G, H , H{g1, g2}H). 	

Now we give the main result of this section.
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Theorem 4.6 For the digraph � in Construction 1.3, the following hold:

(a) |V (�)| = 441;
(b) Val(�) = 160;
(c) � is strongly connected;
(d) � is vertex-primitive;
(e) � is non-diagonalizable.

Proof Since � = Cay(R, S), parts (a) and (b) follow directly from Lemma 4.1. It is
straightforward to verify that a = (a5cd)3, b = (cb)7, c = (cb)b−1 and d = a−1(ad).
Since

a5cd ∈ S1S
β
2 ⊆ S, cb ∈ Sβ

1 S3 ⊆ S and ad ∈ S1S
β
3 ⊆ S,

we see that R = 〈a, b, c, d〉 ≤ 〈S〉 ≤ R, and so R = 〈S〉. This implies that � =
Cay(R, S) is connected, and so� is strongly connected (see [11, Lemma 2.6.1]). This
proves part (c). Part (d) follows from Lemmas 4.3, 4.5 and [11, Lemma 2.5.1].

It remains to prove part (e). Let ω be an element of F
×
7 with order 3, let ζ ∈ C be a

primitive 7-th root of unity, let V be the underlying vector space of the group algebra
C[〈ω〉], and let ϕ(akb�) be the linear transformation on V such that

(ω j )ϕ(akb�) = ζ k2 j
ω j−� for all j, � ∈ {0, 1, 2} and k ∈ {0, 1, . . . , 6}. (16)

It follows from ab
−1 = a4 that

(ω j )ϕ(ak1b�1ak2b�2 ) = (ω j )ϕ(ak1+4�1 k2b�1+�2 )

= ζ (k1+4�1k2)2 j
ω j−(�1+�2)

= ζ k12 j+2 j+2�1k2ω j−�1−�2

= ζ k12 j+2 j+2�1−3�1k2ω j−�1−�2

= ζ k12 j (
ζ 2 j−�1k2ω( j−�1)−�2

)

= (ω j )ϕ(ak1b�1 )ϕ(ak2b�2 ).

Henceϕ is a representation of 〈a, b〉 on V .Moreover, sinceβ swaps awith c and swaps
b with d, it follows that ϕ ◦β is a representation of 〈c, d〉 on V . Thus ρ := ϕ ⊗ (ϕ ◦β)

is a representation of 〈a, b〉 × 〈c, d〉 = R on V . For X ,Y ⊆ 〈a, b〉, we have

ρ(XY β) = ϕ(X) ⊗ (ϕ ◦ β)(Y β) = ϕ(X) ⊗ ϕ(Y ).

Then Lemma 4.1(b) implies that

ρ(S) = ρ
(
(S1 	 S−1

1 )(S3 	 S−1
3 )β 	 (S3 	 S−1

3 )(S1 	 S−1
1 )β

	 S1S
β
2 	 S2S

β
1 	 S−1

1 Sβ
4 	 S4(S

−1
1 )β

)

= ρ
(
(S1 	 S−1

1 )(S3 	 S−1
3 )β

) + ρ
(
(S3 	 S−1

3 )(S1 	 S−1
1 )β

)

123



Combinatorica (2024) 44:179–203 199

+ ρ(S1S
β
2 ) + ρ(S2S

β
1 ) + ρ(S−1

1 Sβ
4 ) + ρ

(
S4(S

−1
1 )β

)

= ϕ(S1 	 S−1
1 ) ⊗ ϕ(S3 	 S−1

3 ) + ϕ(S3 	 S−1
3 ) ⊗ ϕ(S1 	 S−1

1 )

+ ϕ(S1) ⊗ ϕ(S2) + ϕ(S2) ⊗ ϕ(S1) + ϕ(S−1
1 ) ⊗ ϕ(S4) + ϕ(S4) ⊗ ϕ(S−1

1 )

= (
ϕ(S1) + ϕ(S−1

1 )
) ⊗ (

ϕ(S3) + ϕ(S−1
3 )

) + (
ϕ(S3) + ϕ(S−1

3 )
) ⊗ (

ϕ(S1) + ϕ(S−1
1 )

)

+ ϕ(S1) ⊗ ϕ(S2) + ϕ(S2) ⊗ ϕ(S1) + ϕ(S−1
1 ) ⊗ ϕ(S4) + ϕ(S4) ⊗ ϕ(S−1

1 ).

Thus for all invertible matrices T , Q ∈ M3×3(C), we conclude from Lemma 2.1 that

(T ⊗ Q)−1(ρ(S)
)
(T ⊗ Q)

= (T−1 ⊗ Q−1)
(
ρ(S)

)
(T ⊗ Q)

=
((

T−1(ϕ(S1) + ϕ(S−1
1 )

)
T

)
⊗

(
Q−1(ϕ(S3) + ϕ(S−1

3 )
)
Q

))

+
((

T−1(ϕ(S3) + ϕ(S−1
3 )

)
T

)
⊗

(
Q−1(ϕ(S1) + ϕ(S−1

1 )
)
Q

))

+
((
T−1ϕ(S1)T

) ⊗ (
Q−1ϕ(S2)Q

)) +
((
T−1ϕ(S2)T

) ⊗ (
Q−1ϕ(S1)Q

))

+
((
T−1ϕ(S−1

1 )T
) ⊗ (

Q−1ϕ(S4)Q
)) +

((
T−1ϕ(S4)T

) ⊗ (
Q−1ϕ(S−1

1 )Q
))

.

(17)

Moreover, for all i ∈ {0, 1, 2}, we derive from (16) that

(ωi )ϕ(S1) = (ωi )ϕ(a) + (ωi )ϕ(a5) + (ωi )ϕ(a6b) + (ωi )ϕ(a6b2)

= ζ 2i ωi + ζ 5·2iωi + ζ 6·2iωi−1 + ζ 6·2i ωi−2,

(ωi )ϕ(S−1
1 ) = (ωi )ϕ(a6) + (ωi )ϕ(a2) + (ωi )ϕ(a2b2) + (ωi )ϕ(a4b)

= ζ 6·2i ωi + ζ 2·2i ωi + ζ 2·2i ωi−2 + ζ 4·2iωi−1,

(ωi )ϕ(S2) = (ωi )ϕ(ab) + (ωi )ϕ((ab)−1) = (ωi )ϕ(ab) + (ωi )ϕ(a5b2)

= ζ 2i ωi−1 + ζ 5·2iωi−2,

(ωi )ϕ(S3) = (ωi )ϕ(a3) + (ωi )ϕ(b) + (ωi )ϕ(ab2) + (ωi )ϕ(a4b2)

= ζ 3·2i ωi + ωi−1 + ζ 2i ωi−2 + ζ 4·2iωi−2,

(ωi )ϕ(S−1
3 ) = (ωi )ϕ(a4) + (ωi )ϕ(b2) + (ωi )ϕ(a3b) + (ωi )ϕ(a5b)

= ζ 4·2iωi + ωi−2 + (ζ 3·2i + ζ 5·2i )ωi−1,

(ωi )ϕ(S4) = (ωi )ϕ(a2b) + (ωi )
ϕ
(
(a2b)−1

)

= (ωi )ϕ(a2b) + (ωi )ϕ(a3b2)

= ζ 2·2i ωi−1 + ζ 3·2i ωi−2.
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Hence with respect to the basis 1, ω, ω2 of V we conclude that

ϕ(S1) + ϕ(S−1
1 ) =

⎛

⎝
ζ 5 + ζ ζ 6 ζ 6

ζ 5 ζ 2 + ζ 3 ζ 5

ζ 3 ζ 3 ζ 6 + ζ 4

⎞

⎠ +
⎛

⎝
ζ 6 + ζ 2 ζ 2 ζ 4

ζ ζ 5 + ζ 4 ζ 4

ζ ζ 2 ζ 3 + ζ

⎞

⎠ ,

ϕ(S3) + ϕ(S−1
3 ) =

⎛

⎝
ζ 3 ζ 4 + ζ 1
1 ζ 6 ζ 2 + ζ

ζ 4 + ζ 2 1 ζ 5

⎞

⎠ +
⎛

⎝
ζ 4 1 ζ 5 + ζ 3

ζ 6 + ζ 3 ζ 1
1 ζ 6 + ζ 5 ζ 2

⎞

⎠ ,

ϕ(S2) =
⎛

⎝
0 ζ 5 ζ

ζ 2 0 ζ 3

ζ 6 ζ 4 0

⎞

⎠ and ϕ(S4) =
⎛

⎝
0 ζ 3 ζ 2

ζ 4 0 ζ 6

ζ 5 ζ 0

⎞

⎠ .

(18)

Let x1 = ζ 4 + ζ 3 + ζ + 1, x2 = ζ 4 − 2ζ 3 − 2ζ 2 − 2ζ + 1, and x3 = ζ 5 + 2ζ 4 +
4ζ 3 + 2ζ 2 + ζ , and let

T1 = 1

14

⎛

⎝
1 −6 −1

ζ 5 + ζ −2(2x3 − 7ζ 3) −(3x3 − 7ζ 3)

x1 2(x1 + 2ζ 4 + ζ 2 + 2) x2

⎞

⎠ ,

T2 = 1

14

⎛

⎝
−2 −2 2

−2(ζ 5 + ζ ) −2(3x3 − 7ζ 3) −x3
−2x1 2x2 −(

2ζ 4 + 3(ζ 3 + ζ 2 + ζ ) + 2
)

⎞

⎠ .

(19)

It is straightforward to verify that

T−1
1 =

⎛

⎝
−2(ζ 4 + ζ 3 − 2) 2(ζ 6 − ζ 5 − ζ 3 + ζ 2) 2(ζ 6 + ζ 4 − ζ 2 − ζ )

−(ζ 4 + ζ 3 + 3) ζ 6 + ζ 2 ζ 6 + ζ 4

4(ζ 4 + ζ 3 + 2) −2(ζ 6 − ζ 4 + ζ 2 − ζ − 1) −2(ζ 6 − ζ 5 + ζ 4 − ζ 3 − 1)

⎞

⎠ ,

T−1
2 =

⎛

⎝
ζ 4 + ζ 3 − 2 −(ζ 6 − ζ 5 − ζ 3 + ζ 2) −(ζ 6 + ζ 4 − ζ 2 − ζ )

ζ 4 + ζ 3 + 1 ζ 4 + ζ + 1 ζ 5 + ζ 3 + 1
2(ζ 4 + ζ 3 + 3) −2(ζ 6 + ζ 2) −2(ζ 6 + ζ 4)

⎞

⎠ .

(20)

Moreover, let

y1 = −93506(ζ 5 + ζ 2) − 152738(ζ 4 + ζ 3) − 147903,

y2 = −9177(ζ 5 + ζ 2) − 13557(ζ 4 + ζ 3) − 58289,

y3 = 56798(ζ 5 + ζ 2) + 98510(ζ 4 + ζ 3) − 85253,

y4 = 75152(ζ 5 + ζ 2) + 125624(ζ 4 + ζ 3) + 31325,
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T3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 4 0 0 4 −1
0 4 2 0 0 1
0 455836 y1 0 2y1 + 455836 y1 + 113959
0 8y2 −y1 0 2y3 y4
1 0 0 0 0 0
1 0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By a straightforward calculation, we deduce from (17)–(20) that

(
I3 0
0 T3

)

(T1 ⊗ T2)
−1(ρ(S)

)
(T1 ⊗ T2)

=
(
I3 0
0 T3

)(((
T−1
1

(
ϕ(S1) + ϕ(S−1

1 )
)
T1

)
⊗

(
T−1
2

(
ϕ(S3) + ϕ(S−1

3 )
)
T2

))

+
((

T−1
1

(
ϕ(S3) + ϕ(S−1

3 )
)
T1

)
⊗

(
T−1
2

(
ϕ(S1) + ϕ(S−1

1 )
)
T2

))

+
((
T−1
1 ϕ(S1)T1

) ⊗ (
T−1
2 ϕ(S2)T2

)) +
((
T−1
1 ϕ(S2)T1

) ⊗ (
T−1
2 ϕ(S1)T2

))

+
((
T−1
1 ϕ(S−1

1 )T1
) ⊗ (

T−1
2 ϕ(S4)T2

)) +
((
T−1
1 ϕ(S4)T1

) ⊗ (
T−1
2 ϕ(S−1

1 )T2
))

)

= 1

2

⎛

⎜
⎜
⎝

A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D

⎞

⎟
⎟
⎠

(
I3 0
0 T3

)

,

where A =
⎛

⎝
−16 0 0
0 10 5
0 40 10

⎞

⎠ , B =
(
8 0
0 8

)

, C =
(−16 24

0 −16

)

and D =
(

0 −10
−10 20

)

.SinceC is non-diagonalizable,we conclude that (T1⊗T2)−1
(
ρ(S)

)
(T1⊗

T2) is non-diagonalizable as T3 is invertible, and hence ρ(S) is non-diagonalizable.
By Lemma 2.3, this implies that � is non-diagonalizable, which completes the proof
of part (e). 	

5 Concluding Remarks

Let �s and � be as in Constructions 1.2 and 1.3, respectively. According to Theo-
rem 3.3, the digraph �s is non-diagonalizable and s-arc-transitive for each positive
integer s ≥ 2.Moreover, Theorem 4.6 asserts that� is non-diagonalizable and vertex-
primitive. Combining these with Lemma 2.6, we obtain Theorem 1.4 immediately.

Besides the properties listed in Theorem 1.4, we remark that�×n is connected since
it is vertex-primitive (for otherwise its connected components would form an invariant
partition). Moreover, since the out-valency of �s is 2, it follows that the out-valency
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of �×n
s is 2n . Hence �×n

s is not a disjoint union of digraphs isomorphic to �×m
s for

any m < n. This means that �×n
s with n ≥ 1 is a genuine infinite family of digraphs.

We also remark that the digraph � in Construction 1.3 was first discovered by
computer search in Magma [3]. Although the proof of all the properties of � in
this paper is computer-free, the arguments therein (mostly calculations) have been
confirmed by computation inMagma [3]. Further computation inMagma [3] shows
that �2 has the smallest order among non-diagonalizable 2-arc-transitive digraphs
(note that �2 has order 16), while the smallest order among non-diagonalizable 3-arc-
transitive digraphs is 20 (note that �3 has order 48). Thus a natural question to ask is
as follows.

Question 5.1 For s ≥ 4, what is the smallest order of a non-diagonalizable s-arc-
transitive digraph?

In a similar fashion, one may ask:

Question 5.2 What is the smallest order of a non-diagonalizable vertex-primitive
digraph?

Recall that the digraph � has 441 vertices (see Lemma 4.1(a)). By a non-exhaustive
search in Magma [3] for non-diagonalizable vertex-primitive digraphs � of order
smaller than 441, we obtain the following examples � = Cos(G, H , D):

(a) |V (�)| = 153, G ∼= PSL(2, 17), H ∼= D16 and D = H{g1, g2}H with g1, g2 ∈
G, where exactly one of Hg1H and Hg2H is inverse-closed;

(b) |V (�)| = 165, G ∼= M11, H ∼= GL(2, 3) and D = H{g1, g2, g3}H with
g1, g2, g3 ∈ G, where exactly one of Hg1H , Hg2H and Hg3H is inverse-closed;

(c) |V (�)| = 234,G ∼= PSL(3, 3), H ∼= Sym(4) and D = H{g1, g2}H with g1, g2 ∈
G, where neither Hg1H nor Hg2H is inverse-closed;

(d) |V (�)| = 325, G ∼= PSL(2, 25), H ∼= D24 and D = H{g1, g2}H with g1, g2 ∈
G, where exactly one of Hg1H and Hg2H is inverse-closed.

It is worth remarking that none of the digraphs in (a)–(d) is Cayley or arc-transitive,
and we do not know any computer-free proof of the non-diagonalizability of them.
Moreover, computation in Magma [3] shows that there is no non-diagonalizable
vertex-primitive arc-transitive digraph with no more than 1000 vertices. In light of
this, we would like to propose the following conjecture.

Conjecture 5.3 Every vertex-primitive arc-transitive digraph is diagonalizable.
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