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Abstract
A sweep of a point configuration is any ordered partition induced by a linear func-
tional. Posets of sweeps of planar point configurations were formalized and abstracted
by Goodman and Pollack under the theory of allowable sequences of permutations.
We introduce two generalizations that model posets of sweeps of higher dimensional
configurations. Sweeps of a point configuration are in bijection with faces of an asso-
ciated sweep polytope. Mimicking the fact that sweep polytopes are projections of
permutahedra, we define sweep oriented matroids as strong maps of the braid oriented
matroid.Allowable sequences are then the sweeporientedmatroids of rank2, andmany
of their properties extend to higher rank. We show strong ties between sweep oriented
matroids and both modular hyperplanes and Dilworth truncations from (unoriented)
matroid theory. Pseudo-sweeps are a generalization of sweeps in which the sweep-
ing hyperplane is allowed to slightly change direction, and that can be extended to
arbitrary oriented matroids in terms of cellular strings. We prove that for sweepable
oriented matroids, sweep oriented matroids provide a sphere that is a deformation
retract of the poset of pseudo-sweeps. This generalizes a property of sweep polytopes
(which can be interpreted as monotone path polytopes of zonotopes), and solves a
special case of the strong Generalized Baues Problem for cellular strings. A second
generalization are allowable graphs of permutations: symmetric sets of permutations
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pairwise connected by allowable sequences. They have the structure of acycloids and
include sweep oriented matroids.

Keywords Allowable sequences of permutations · oriented matroids · polytopes ·
sweep algorithms · monotone path polytopes · generalized Baues problem ·
permutahedra
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1 Introduction

It is very natural to order a point configuration by the values of a linear functional, and
it is not surprising that applications abound in discrete and combinatorial geometry.
For example, this is the core of sweep algorithms, a central paradigm in computational
geometry (see [27, Section 2.1]). The simplex methods for linear programming visit
vertices of a convex polytope in such a linear order (see for example [64]). Moreover,
these orderings are precisely those inducing the Bruggesser–Mani line shellings in the
polar polytope [18] (see [89, Lec. 8]).

The set of all linear orderings of a planar point configuration was already studied
by Perrin in 1882 [68]. This was a precursor to the theory of allowable sequences,
introduced and developed byGoodman and Pollack [44–48]. The idea is the following.
Given a configuration A of n points in the plane, for each generic vector u ∈ R

2, we
sweep the plane with a line orthogonal to u. The order in which the points are hit by
the line gives rise to a permutation σ ∈ Sn (see Fig. 1). As u rotates 180◦ clockwise,
we obtain a sequence of permutations in which:

(i) the move from a permutation to the next one consists of reversing one or more
disjoint substrings;

(ii) each pair i, j with 1 ≤ i < j ≤ n is reversed in exactly one move along the
sequence.

An allowable sequence is a sequence of permutations from the identity to its reverse
(σ, σ ∈ Sn are reverse if σ(t) = σ(n− t+1) for all t) fulfilling these two conditions.
Contrary to Perrin’s claim, Goodman and Pollack showed that there are unrealizable

Fig. 1 A segment of an allowable sequence. The sweeps between two consecutive permutations in the
sequence correspond to ordered partitions
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allowable sequences [44, Fig. 3 and Thm. 3.1], that is, that do not arise from a point
configuration with this construction (c.f. Fig. 10).

Allowable sequences are hence purely combinatorial objects abstracting geomet-
ric properties of planar point configurations. They are closely related to pseudoline
arrangements and oriented matroids (see [17, Sects. 1.10 & 6.4]), although their com-
binatorial structure is in some senses easier to grasp and manipulate. In particular, in
the simple case (where consecutive permutations differ by a transposition), allowable
sequences are in correspondence with reduced decompositions of the reverse of the
identity and maximal chains in the weak Bruhat order ofSn , see [17, Sec. 6.4], as well
as with (minimal primitive) sorting networks [59, Sec. 5.3.4]. This has allowed for
their complete enumeration [33, 79], as well as the study of uniform random instances
[1, 4, 26].

They turned out to be a very effective tool to study problems of geometric com-
binatorics in the plane, used for example to prove Ungar’s theorem (a configuration
of 2n points not all on a same line determines at least 2n slopes) [84], to decide the
stretchability of arrangements of at most eight pseudolines [45], or to estimate the
number of k-sets and (≤ k)-sets [3, 60, 85]. See [48, Ch. V] and [39, Ch. 6] for some
of their applications.

The construction detailed above extends naturally to any higher dimensional point
configuration A ∈ R

d×[n]. Every vector u ∈ R
d defines a sweep, which is the

ordered partition of [n] in which the points of A are met when sweeping with a
hyperplane in direction u. Goodman and Pollack already observed that sweeps induce
a complex on the unit sphere S

d−1, “which has not yet been fully investigated” [48,
after Def. 2.3]. This was further explored by Edelman [32] and Stanley [80] who,
in particular, presented a tight upper bound for the number of sweeping orders of a
d-dimensional configuration of n points.

Ordered by refinement, the poset of sweeps �(A) is isomorphic to the face poset
of a polyhedral fan generated by a hyperplane arrangement SH(A), called the valid
order arrangement by Stanley in a polar formulation [80]. As we discuss in Sect. 2.3,
this is the normal fan of a zonotope: the sweep polytope SP(A) (mentionned under
the name of shellotope by Gritzmann and Sturmfels in [50]).

Posets of sweeps of point configurations are the high-dimensional analogue of real-
izable allowable sequences. However, there is no purely combinatorial description of
these objects. Indeed, Hoffmann and Merckx recently adapted the classical Univer-
sality Theorem for oriented matroids by Mnëv [65] to give a Universality Theorem
for allowable sequences [54]. This shows that already in the plane the problem of
deciding whether an allowable sequence arises from a point configuration is very hard
(equivalent to the “existential theory of the reals”, and in particular NP-hard).

Our main goal is to give a purely combinatorial high-dimensional generalization
of allowable sequences that abstracts and encompasses the posets of sweeps of point
configurations. We present two strongly related approaches with two levels of gener-
ality ( sweep oriented matroids and sweep acycloids). As we will see, the objects that
we introduce fill a gap connecting several topics studied by different communities,
providing a new and unified point of view. We also hope that, beside their intrin-
sic interest, having a purely combinatorial framework without the rigid constraints

123



66 Combinatorica (2024) 44:63–123

of realizability will open the door to new approaches to problems on discrete and
combinatorial geometry, as happened in the two-dimensional case.

Our starting point are sweep polytopes. We report alternative constructions that
highlight different points of view. On the one hand, sweep polytopes are affine projec-
tions of permutahedra. The n-permutahedron Pn ⊂ R

d is a classical polytope whose
normal fan is the braid arrangement Bn . Up to translation, every affine projection of
a permutahedron is a sweep polytope, which gives a natural combinatorial interpre-
tation of permutahedral shadows. Moreover, sweep polytopes can be realized as fiber
polytopes, and in particular as monotone path polytopes of zonotopes [32, Sec. 5].
These are polytopes whose vertices encode the parametric simplex paths induced by a
linear functional [16, 23]. Conversely, every monotone path polytope of a zonotope is
a sweep polytope (under mild technical conditions, see Proposition 2.10). This inter-
pretation of sweep polytopes appears in the study of pivot rules in linear programming
[10].

Moreover, this construction naturally reveals a decomposition of sweep polytopes
as Minkowski sums of k- set polytopes [6, 38] (see Remark 2.9). After the appearance
of the first version of this article, most of these constructions have been generalized
to lineup polytopes, which encode prefixes of sweeps and are relevant for the 1-body
N -representability problem in quantum physics, see [24] and references therein.

Inspired by the characterization of sweep polytopes as permutahedral shadows, in
Sect. 3we define sweep oriented matroids as strongmaps of the orientedmatroid of the
braid arrangement. The strong link between allowable sequences, oriented matroids
of rank 3, and arrangements of pseudolines is well documented in [17, Sects. 1.10
& 6.4] and explained in terms of big and little oriented matroids. These concepts
extend to high dimensions too: each sweep oriented matroid of rank r determines a
little and a big oriented matroid of rank r+1 (Theorem 4.1 and Leema 4.4). For sweep
oriented matroids of rank 2, which are equivalent to allowable sequences, we recover
the original definitions. In particular, in the realizable case, the little oriented matroid
is the standard oriented matroid associated to the point configuration.

We show that, up to isomorphism, big orientedmatroids are characterized by having
a tight modular hyperplane (Theorem 4.9). Modular flats of matroids were introduced
by Stanley [77] and play a structural role for matroid constructions [21]. We call a
modular hyperplane tight if it is no longer modular after the deletion of one of
its elements. The operation that determines the big oriented matroid from its sweep
oriented matroid extends to all oriented matroids equipped with certain decorations
(Corollary 4.10), and can be seen as an oriented matroid version of [19, Thm. 2.1].

We extend the bounds from [32, 80] to the non-realizable case (Theorem 5.6).
For this, we show in Sect. 5 that, at the level of the underlying unoriented matroids,
the lattice of flats of a sweep oriented matroid is (a weak map of) the first Dilworth
truncation of the lattice of flats of the little oriented matroid (Theorem 5.2). When
one removes all the atoms from a geometric lattice, the resulting poset is no longer
a geometric lattice. The first Dilworth truncation is a lattice obtained by adding the
necessary joins in the most generic way to obtain a geometric lattice [22, 29]. We can
therefore view sufficiently generic sweep oriented matroids as an oriented version of
the first Dilworth truncation of the associated little oriented matroid. Unfortunately, in
contrast to rank 3, not every (little) oriented matroid can be extended to a big oriented
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matroid (Theorem 4.13). The question of characterizing oriented matroids admitting
such an extension is open.

In Sect. 6, we discuss pseudo-sweeps, which correspond to sweeps in which the
sweeping hyperplane is allowed to change direction (in a controlled monotonous
way). Whereas sweeps of a point configuration correspond to the parametric (coher-
ent) monotone paths on an associated zonotope, pseudo-sweeps take into account all
monotone paths. They admit a polar formulation in terms of galleries and cellular
strings of pseudo-hyperplane arrangements, which extends to oriented matroids [13].
This way, for every (little) oriented matroid, even those that cannot be extended to a
big oriented matroid, one can define a poset of pseudo-sweeps. In general, an oriented
matroidM can be the little oriented matroid of several sweep oriented matroids; each
with a different associated poset of sweeps. They are all subposets of the poset of
pseudo-sweeps ofM. A classification of the cases when all pseudo-sweeps are actual
sweeps is given in [35].

There is a lot of literature concerning the graphs of pseudo-sweep permutations
of oriented matroids. Cordovil and Moreira had shown that they are connected [25],
extending to orientedmatroids results thatwent back toTits [83] (for reflection arrange-
ments), Deligne [28] (for simplicial arrangements), and Salvetti [75] (for realizable
oriented matroids). More results concerning graphs of pseudo-sweeps can be found
in [5, 73].

The topology of the posets of pseudo-sweeps has been extensively studied as a
special case of the generalized Baues problem [23, 71]. Without the trivial sweep,
their order complexes have the homotopy type of, but in general are not homeomorphic
to, a sphere. In the realizable case, Billera, Kapranov, and Sturmfels proved that the
poset of sweeps is a strong deformation retract of the poset of pseudo-sweeps [16].
Their proof uses strongly the geometry of the fiber polytope construction. Björner [13]
and Athanasiadis, Edelman, and Reiner [2] found combinatorial proofs that extend to
general oriented matroids, but only give the homotopy type. Nevertheless, Björner
claims that it is “undoubtedly true” that even for unrealizable oriented matroids there
must be a sphere to which the poset of pseudo-sweeps retracts [13, below Thm. 2].
However, there were no explicit candidates for these spheres. For oriented matroids
that are little oriented matroids, we show in Theorem 6.6 that any of the associated
sweep oriented matroids can play this role. That is, that the poset of non-trivial sweeps
(which is a sphere) is a strong deformation retract of the poset of non-trivial pseudo-
sweeps of the little oriented matroid. This highlights the fact that sweep oriented
matroids should be seen as combinatorial analogues of monotone path polytopes of
zonotopes; that is, sweep polytopes. Unfortunately, the existence of oriented matroids
that are not little oriented matroids leaves some cases where Björner’s observation
remains open.

In Sect. 7 we present a further generalization of sweep oriented matroids in terms
of allowable graphs of permutations, which are closer to the original formulation of
allowable sequences. Allowable graphs of permutations are graphs whose vertex sets
are sets of permutations closed under taking reverses in which every pair of permuta-
tions is connected through a sequence of permutations fulfilling conditions (i) and (ii)
above (plus some technical conditions when the moves are not simple). In the simple
case, these are antipodal isometric subgraphs of the permutahedron. Translating back
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to sign-vectors, we obtain sweep acycloids (Theorem 7.12), which have the structure
of acycloids [51], also known as antipodal partial cubes [41]. Again, sweep acycloids
(and thus allowable graphs of permutations) of rank 2 are equivalent to allowable
sequences. Not every acycloid is an oriented matroid [52, Sec. 7], but there are char-
acterizations of those that are [31, 52, 57]. Since sweep acycloids that are oriented
matroids are sweep oriented matroids (Corollary 7.18), these give alternative charac-
terizations of sweep oriented matroids in terms of allowable graphs of permutations
(Corollary 7.20). So far we could not find any example of a sweep acycloid that is not
a sweep oriented matroid, and we leave this question as an open problem.

1.1 A Note Concerning the Terminology

The terms sweep and sweeping had already been used in the orientedmatroids literature
in the context of topological sweepings of affine oriented matroids and pseudo-
hyperplane arrangements. These concepts should not be confused with the notions
that we introduce in this paper.

The two colliding terminologies arise from the two classical dual geometric repre-
sentations of realizable orientedmatroids; namely, point configurations andhyperplane
arrangements. Both give rise to a natural definition of sweep that generalizes to non-
realizable matroids.

On the one hand, our definition of sweep is meant to model sweeps of point configu-
rations by parallel hyperplanes. Such a sweep induces an ordering of the points, which
are the elements of the underlying oriented matroid. When this picture is polarized,
the point configuration gives rise to a hyperplane arrangement, but the collection of
sweeping hyperplanes becomes a point that travels in a linear direction (the associated
sweep permutation records the order in which the point crosses the hyperplanes). This
is the formulation studied by Edelman [32] and Stanley [80].

On the other hand, one can consider sweeps of hyperplane arrangements by parallel
hyperplanes. Such a sweep induces an ordering of the vertices of the arrangement,
which are the cocircuits of the underlying oriented matroid. This is the point of view
of the literature on topological sweepings of pseudo-hyperplane arrangements and
oriented matroids (see, for example, [17, 34, 37, 42, 55, p.172]), which concerns
mostly the rank 3 case (pseudoline arrangements).

In rank 3, the two notions are strongly related. Indeed, the allowable sequence of a
planar point configuration (which is a collection of sweeps in our terminology), can
be interpreted as a topological sweep of the dual arrangement of lines. This correspon-
dence exists in rank 3 but completely fails in higher rank, as it only works because in
an oriented matroid of rank 3 the lines (flats of rank 2) coincide with the hyperplanes
(flats of corank 1).

It is worth to note that in this second setup there exist other approaches to generalize
allowable sequences to higher dimensions. For example, the signotopes described in
[42] (see also [39]). These are strongly related to higher Bruhat orders [66] and single-
element extensions of cyclic hyperplane arrangements [43, 88]. However, as these
generalizations are meant to model (topological) sweeps of hyperplane arrangements
with a (pseudo) hyperplane, they do not cover the spherical complexes that Goodman
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and Pollack alluded to in [48] as the natural way to generalize allowable sequences to
higher dimensions.

1.2 Structure of this Document

This paper gravitates around the concept of sweep oriented matroid, which lies in
the intersection of the theories of allowable sequences, valid order arrangements, and
the generalized Baues problem for cellular strings. Our hope is to provide a unified
reference that reflects all these connections. To this end,wegive a broad overviewof the
topic, as we expect readers with diverse backgrounds and motivations to be interested
in different aspects. In particular, most of the sections can be read independently.

Section 2 serves as an introduction and focuses in the realizable case. We present
polytopal constructions that serve as motivation for the upcoming definitions. Sweep
orientedmatroids are defined in Sect. 3. In Sect. 4we showhow the structural results on
allowable sequences from [17] generalize to sweep orientedmatroids of arbitrary rank.
Section5 demonstrates that the results in [32, 80] do not require realizability. Section6
depicts sweep oriented matroids as highlighted spheres inside the poset of cellular
strings of oriented matroids whose existence was conjectured by [13]. A presentation
in terms of permutations, akin to Goodman and Pollack’s original formulation of
allowable sequences [48], is given in Sect. 7 under the name of allowable graphs of
permutations.

We end by discussing some open problems and further directions of research in
Sect. 8.

2 Sweeps and Sweep Polytopes

2.1 Sweeps of Point Configurations

For any integer n, we use [n] to denote the set {1, . . . , n}, Sn to denote the set of all
permutations of [n], and ([n]2

) = {
(i, j)

∣∣ 1 ≤ i < j ≤ n
}
to denote the set of non-

repeating sorted pairs of elements of [n]. An ordered partition of [n] is an ordered
collection of non-empty disjoint subsets (I1, . . . , Il) whose union is [n]. Ordered
partitions where all parts are singletons are identified with permutations. They are
the maximal elements in the refinement order: we say that J = (J1, . . . , Jl) refines
I = (I1, . . . , Ik), noted J � I , if each Ii is the union of some consecutive J j ’s. In
some proofs, it will be more comfortable to think of an ordered partition I as the
surjection pI from [n] to [l] such that Ik = p−1I ({k}) for all 1 ≤ k ≤ l. Note that for
a permutation σ , the ordered partition I = ({σ(1)}, . . . , {σ(n)}) corresponds to the
bijection pI = σ−1.

We always consider R
d as an Euclidean space, equipped with the usual orthog-

onal scalar product 〈· , ·〉. A point configuration is an ordered sequence A =
(a1, . . . , an) ∈ R

d×[n] of points in R
d indexed by [n]. We do not require the points

to be distinct, although it will be often convenient to make this simplification. For
u ∈ R

d , consider the linear form 〈u , · 〉 : R
d → R sending x to 〈u , x〉. The sweep
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of A associated to u is the ordered partition I u = (I1, . . . , Il) of [n] that verifies
〈u , ai 〉 =

〈
u , a j

〉
for all i, j in a same part Ik , and 〈u , ai 〉 <

〈
u , a j

〉
if i ∈ Ir , j ∈ Is

with r < s. In particular, 〈u , ai 〉 ≤
〈
u , a j

〉
if and only if pI u(i) ≤ pI u( j). Note that

the partition associated to the linear form 0 is the trivial sweep ([n]).
The poset of sweeps of A, denoted�(A), is the set of all sweeps ordered by refine-

ment. Its maximal elements are permutations whenever A does not contain repeated
points. We will often assume that this is the case, as we can always identify repeated
points. Under this assumption, we denote by �(A) ⊆ Sn the set of its maximal ele-
ments, the sweep permutations of A. If there are repeated points, we will still call the
maximal elements sweep permutations for brevity.

Sweeps induce an equivalence relation on R
d , where u ∼ v if they give the

same sweep. Its equivalence classes are the cells of the polyhedral fan induced by
the sweep hyperplane arrangement SH(A); the arrangement of the linear hyper-
planes

{
u ∈ R

d
∣∣ 〈u , ai 〉 =

〈
u , a j

〉}
for all (i, j) ∈ ([n]2

)
. Note that the face poset

of SH(A) is isomorphic to the poset �(A), with a bijection that sends each cell
C of SH(A) to the sweep I in �(A) that verifies that the relative interior of C is{
u ∈ R

d
∣
∣ I u = I

}
. In particular, the cones of dimension d of SH(A) are indexed by

the sweep permutations in �(A).
We will see in Sect. 2.3 that SH(A) is the normal fan of a polytope: the sweep

polytope of A, denoted by SP(A). Thus, the poset of sweeps �(A) enlarged with a
top element is isomorphic to the poset opposite to the face lattice of SP(A), and is in
particular a lattice. This provides a natural labeling of the faces of SP(A) by sweeps.
In particular, the vertices of SP(A) are labeled by the sweep permutations in �(A).

The identification of sweeps with faces of SP(A) reflects the inherent topological
structure of the poset of sweeps. This can bemade precise in terms of its order complex.
The order complex �(P) of a poset P is the simplicial complex whose simplices are
the chains of P , see [14] or [17, Sec. 4.7] for some background. In our case, the order
complex of �(A) � ([n]), the poset of sweeps without the trivial sweep, is just the
barycentric subdivision of the boundary of SP(A). We will implicitly identify �(A)

with �
(
�(A) � ([n])) whenever we make topological statements about posets of

sweeps.

2.2 Examples

Before providing constructions for this polytope, we will present two particular exam-
ples.

2.2.1 The Simplex and the Permutahedron

If An is the set of vertices of a standard (n − 1)-simplex �n−1, i.e. the points ai

are the canonical basis vectors ei in R
n , then SH(An) is the braid arrangement Bn

consisting of the hyperplanes
{
u
∣∣ u j − ui = 0

}
for all 1 ≤ i < j ≤ n, the set of

sweep permutations is the whole symmetric group �(An) = Sn , and the poset of
sweeps �(An) is the poset of all ordered partitions of [n]. Likewise for any set A of
affinely independent points, up to affine transformation of the braid arrangement.
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Fig. 2 A3, its sweep hyperplane arrangement SH(A3) = B3 (modulo linearity), and its sweep polytope
SP(A3) = P ′3, the 3-permutahedron, where each vertex is labeled by the corresponding sweep permutation
of A3

Fig. 3 A4 and its sweep polytope SP(A4) = P ′4, the 4-permutahedron

The braid arrangementBn is the normal fan of a polytope, the n- permutahedron Pn .
It is usually defined as the convex hull of the points (σ (1), . . . , σ (n)) ∈ R

n for all
σ ∈ Sn (see [89, Ex 0.10] or [17, Ex. 2.2.5]). Thus, it lives in the (n−1)-dimensional
affine subspace of the sum of coordinates constant equal to n(n+1)

2 . It can be described
as the zonotope:

Pn = n+1
2 1n +

∑

1≤i< j≤n

[
− ei − e j

2
,
ei − e j

2

]
, (1)

where 1n = ∑n
i=1 ei is the all-ones vector and [ p, q] ⊂ R

d denotes the segment
between the points p and q, see [89, Ex. 7.15].

The sweep polytope SP(A) associated to the standard simplex is the translation
of Pn centered at the origin. We will denote this translated permutahedron by P ′n

P ′n =
∑

1≤i< j≤n

[
− ei − e j

2
,
ei − e j

2

]
(2)

to distinguish it from the standard realization. See Figs. 2 and 3 for the cases n = 3, 4.
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Fig. 4 B2, its sweep hyperplane arrangement SH(B2), and its sweep polytope SP(B2)

Fig. 5 B3 and its sweep polytope SP(B3), the 3-permutahedron of type B

2.2.2 The Cross-Polytope and the Permutahedron of type B

Let A[B]n be the set of vertices of the cross-polytope ♦n , that is, the set of standard
basis vectors of R

n and their opposites. It is convenient to index the points by [±n] =
{−n, . . . ,−1, 1, . . . , n}: Bn = {b−n = −en, . . . , b−1 = −e1, b1 = e1, . . . , bn =
en}. Then the sweep permutations of Bn are the centrally symmetric permutations
of S[±n], which satisfy σ(−i) = −σ(i) for all i ∈ [±n]. By symmetry, the first
half determines the whole permutation. This way, they can be represented by signed
permutations of [n], where −k is denoted by k. We use this notation in Figs. 4 and 5.

They are the elements of the Coxeter group of type B, also called hyperoctahedral
group. See [8, Section 8.1] for more details on the combinatorics of this group. The
sweep hyperplane arrangement SH(Bn) is the Coxeter arrangement of type B, which
consists of the hyperplanes

{
u ∈ R

n
∣∣ ui ± u j = 0

}
for all 1 ≤ i < j ≤ n and{

u ∈ R
n
∣
∣ ui = 0

}
for all 1 ≤ i ≤ n. The sweeps are the centrally symmetric ordered

partitions of [±n]. This complex is known as the Coxeter complex of type B, see [17,
Sec. 2.3(c)]. See Fig. 4 for an example.

The associated sweep polytope is the Coxeter permutahedron of type B, also known
as the Coxeterhedron of type B [74]. See Figs. 4 and 5 for pictures in dimensions 2
and 3.
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2.2.3 Sweeping with Polynomial Functions

Sweep polytopes can also be used to model sweeps of a point configuration A =
(a1, . . . , an) ∈ R

d×[n] by polynomial functions p ∈ R[x1, . . . , xd ] of bounded
degree. The polynomial sweep of A associated to p is the ordered partition of [n]
induced by the ordered level sets of p on A.

Let M be the set of monomials of degree at most D on variables x1, . . . , xd .
There are |M| = (D+d

D

)
elements in M. For a point v = (v1, . . . , vd) ∈ R

d and
a monomial M ∈ M, denote by M(v) ∈ R the evaluation of M on the values
x1 = v1, . . . , xd = vd . The Veronese mapping is defined by the map

χ :
{

R
d → R

M

v → (M(v))M∈M .

Then, the polynomial sweep of A induced by the polynomial p = ∑
M∈M cM M

exactly corresponds to the sweep of χ(A) induced by the linear functional 〈c , ·〉 for
c = (cM )M∈M ∈ R

M. In particular, the poset of sweeps of χ(A) coincides with the
poset of polynomial sweeps of A induced by polynomials of degre at most D. Note
that if d = 1, the image χ(A) is a standard cyclic polytope of dimension D with n
vertices.

Variants of the Veronese mapping can be used for particular families of polynomial
sweeps. For example, the embedding

(v1, . . . , vd) → (v1, . . . , vd , v21 + · · · + v2d)

onto the paraboloid models sweeps by families of concentric spheres.

2.3 Constructions for Sweep Polytopes

Inwhat follows, we describe three approaches to construct the sweep polytope SP(A).
Recall that SP(A) is a polytopewhosenormal fan coincideswith the sweephyperplane
arrangement SH(A), and whose face poset is opposite to the poset of sweeps �(A).

2.3.1 As a Zonotope

The most direct realization is as the Minkowski sum of the segments with directions
the differences between the points of the configuration, which is (a translation of) the
presentation of sweep polytopes given in [50] (under the name of shellotopes).

Definition 2.1 The sweep polytope SP(A) associated to the configuration A =
(a1, . . . , an) ∈ R

d×[n] is the zonotope:

SP(A) =
∑

1≤i< j≤n

[
− ai − a j

2
,
ai − a j

2

]
⊂ R

d .
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The normal fan of a zonotope is the arrangement of the hyperplanes orthogonal to
its generators, see for example [87, Sec. 2] and [89, Thm. 7.16]. Applied to sweep
polytopes, we directly get:

Proposition 2.2 The normal fan of SP(A) is the hyperplane arrangement SH(A).

2.3.2 As a Projection of the Permutahedron

Our second incarnation is as a projection of the (centered) permutahedron P ′n . For a
configuration A of n points a1, . . . , an in R

d , let MA be the linear map

MA : R
n → R

d (3)

ei → ai .

Then it follows from Definition 2.1 and the description of P ′n in (2) that:

Proposition 2.3 SP(A) = MA(P ′n).

Conversely, all affine images of permutahedra are sweep polytopes, up to trans-
lation. This provides a combinatorial interpretation, in terms of sweeps, of the face
lattice of any affine projection of a permutahedron (a permutahedral shadow).

Corollary 2.4 Let M : R
n → R

d be a linear map, then M(P ′n) is the sweep polytope
of the point configuration M(e1), . . . , M(en).

Note that, given a linear map from P ′n to R
d , there is a d-dimensional family of

ways to extend it to a linear map from R
n to R

d . This amounts to the fact that point
configurations related by a translation give rise to the same sweep polytope.

Remark 2.5 Proposition 2.3 follows from the fact that Minkowski sums and linear
projections commute. This can be exploited also with other decompositions of the
permutahedron. For example, the permutahedron Pn can be written as the Minkowski
sum of the hypersimplices �n,k =

{
x ∈ [0, 1]n ∣∣ ∑ xi = k

}
with k ranging from 1

to n − 1 (see for example [69]). Therefore, any sweep polytope can be expressed as a
Minkowski sum of projections of hypersimplices. Projections of hypersimplices are
studied under the name of k- set polytopes [6, 38], which (up to homothety) can be
described as the convex hull of the barycenters of all k-subsets of A, see [67]. The
sweep polytope of A is thus theMinkowski sum of its k-set polytopes, up to translation
and homothety. In particular, because conv(A) = MA(�n,1), this shows that conv(A)

is a Minkowski summand of SP(A). See Fig. 6 for an example. Another point of view
on this Minkowski decomposition will be discussed in Remark 2.9.

2.3.3 As a Monotone Path Polytope

Fiber polytopes are certain polytopes associated to polytope projections. This con-
struction was introduced by Billera and Sturmfels in [23], generalizing the theory of
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Fig. 6 The sweeppolytope SP(B3) = P ′3 as aMinkowski sumof the k-set polytopes of B3 for k = 1, . . . , 5

secondary polytopes in a unified way that encompasses concepts such as monotone
path polytopes, zonotopal tiling polytopes and secondary polytopes. We refer to [89,
Lec. 9] and [30, Sec. 9.1] for gentle introductions to the topic.

Consider polytopes P and Q related by a linear surjection π : P → Q. The fibers
of π over Q form a polytope bundle y ∈ Q → π−1({ y}) whose Minkowski integral,
after some normalization, is the fiber polytope � (P, π):

� (P, π) = 1

vol(Q)

∫

Q
π−1({ y})d y.

Fiber polytopes can also be described as a finite Minkowski sum. Namely,

� (P, π) = 1

vol(Q)

∑

C∈�(P,π)

vol(C) π−1({bC}),

where �(P, π) is the set of chambers: the subsets of Q of the form

C y =
⋂

F face of P
y∈π(F)

π(F)

for y ∈ Q; and bC is the barycenter of the chamber C.
Note that � (P, π) lies in the fiber over the barycenter of Q: � (P, π) ⊂

π−1
(

1
vol(Q)

∫
Q y d y

)
.

An important feature of fiber polytopes is that their face lattice is isomorphic to the
poset ofπ -coherent subdivisions of Q (ordered by refinement), which are subdivisions
of Q composed of images of faces of P that are coherently induced by the map π . We
refer to the aforementioned sources for the details in the definitions.We are particularly
interested in a special case of fiber polytopes: monotone path polytopes. They will
give a new interpretation of sweep polytopes and provide motivation for the definition
of pseudo-sweeps, that will be further explored in Sect. 6.

If Q is one dimensional and P ⊂ R
n , then π : P → Q is a linear form defined by

a vector u ∈ R
n via π(x) = 〈u , x〉. For simplicity, assume that π is generic in the

sense that it is not constant along any edge of P , and let pm and pM be the minimal
and maximal vertices of P with respect to π . A π - monotone path is a path from pm to
pM composed of edges of P along which π is always increasing. One way to obtain
π -monotone paths is to consider some generic vector w orthogonal to u and consider
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Fig. 7 The zonotope Z(B̄2). Three fibers of the height function h are highlighted, representing a copy of
the convex hull of B2, and of its 2-set and 3-set polytopes. The lower (red) path represents the coherent
monotone path associated to the permutation (2̄, 1̄, 1, 2) (which can be read off the directions of the steps in
the path). The upper (blue) path is a monotone path that is not coherent. It is associated to the permutation
(1̄, 2, 1, 2̄), which is not a sweep permutation, but a pseudo-sweep permutation, see Sect. 6

the sequence of vertices of P that are extreme in the direction w + λu as λ ranges
from −∞ to∞ (see Fig. 7). These paths induce the finest π -coherent subdivisions of
Q, and are known as parametric simplex paths in linear programming, where they
play an important role as they are the paths followed by the shadow-vertex simplex
method [20, 49].

More generally, a cellular string on P with respect to π is a sequence of faces
F1, . . . , Fk of P of dimension at least 1 such that pm ∈ F1, pM ∈ Fk , and every
two adjacent faces Fi , Fi+1 meet at a vertex pi such that π(x) ≤ π( pi ) ≤ π( y) for
each x ∈ Fi and y ∈ Fi+1. Such a cellular string is π -coherent if there is some (not-
necessarily generic) vector w orthogonal to u such that these are the maximal faces
of P maximized in a direction of the formw+λu. The fiber polytope� (P, π) is called
the monotone path polytope of P and π . Its vertices are in one-to-one correspondence
with the parametric π -monotone paths of P , and its faces are in correspondence with
the π -coherent cellular strings.

Example 2.6 ([23, Ex. 5.4], see also [89, Ex. 9.8]) Let �n = [−1, 1]n be the n-
dimensional ±1-hypercube, and let s : R

n → R be the linear form that sums the
coordinates, i.e. the form s = 〈1n , · 〉 induced by the all-ones vector. Then the fiber
polytope � (�n, s) = 2

n P
′
n is (homothetic to) the (centered) permutahedron P ′n , and

�
( n
2�n, s

) = P ′n .

The following central property of fiber polytopes will be key for our purposes.

Lemma 2.7 ([23, Lem. 2.3]) Let R
n θ−→ R

m π−→ R
d be linear maps, and P ⊂ R

n a
polytope. Then � (θ(P), π) = θ(� (P, π ◦ θ)).

We need some extra notation. Let A = (a1, . . . , an) ∈ R
d×[n] be a point config-

uration, and consider its homogenization Ā = (ā1, . . . , ān) ∈ R
(d+1)×[n] consisting
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of the vectors āi = (ai , 1). We define the zonotope Z( Ā) associated to A as the
following Minkowski sum of centrally symmetric segments:

Z( Ā) =
n∑

i=1
[−āi , āi ].

Let h : R
d+1 → R denote the map that returns the last coordinate of a point, that we

call its height.
This gives us another point of view on sweep polytopes.

Proposition 2.8 For any point configuration A we have

�
( n
2 Z( Ā), h

) = SP(A)× {0},

and hence SP(A) is affinely isomorphic to the monotone path polytope �
(
Z( Ā), h

)
.

Proof The projection M Ā : R
n → R

d+1 that maps ei to āi = (ai , 1) is
such that Z( Ā) = M Ā(�n) and s = h ◦ M Ā, where s is the linear form that
sums the coordinates defined in Example 2.6. Hence, by Lemma 2.7 and Exam-
ple 2.6 we have �

(
Z( Ā), h

) = M Ā(� (�n, s)) = M Ā( 2n P
′
n). Now, P ′n lies in

s−1
(

1
vol(�n)

∫
�n

yd y
)
= s−1(0n), and thus M Ā( 2n P

′
n) lies in the kernel of h, which

means that �
(
Z( Ā), h

) = 2
n MA(P ′n) × {0}. Finally, by Proposition 2.3, we have

MA(P ′n) = SP(A), and therefore �
(
Z( Ā), h

) = 2
n SP(A)× {0}. ��

Remark 2.9 If we intersect Z( Ā) with the hyperplane of height equal to −n + 2, we
obtain

conv(−
n∑

i=1
āi + 2ā j , j ∈ [n]) = conv(−

n∑

i=1
ai + 2A)× {−n + 2},

which is an embedding of a dilation of the convex hull of A inR
d+1. Similarly, for any

k ∈ [n] the slice at height−n+2k is an embedding of a dilation of the projection of the
hypersimplex�n,k under themap MA. This is the k-set polytope of A, see Remark 2.5.
The fiber polytope realization reflects the decomposition of the sweep polytope as a
sum of k-set polytopes.

Conversely, monotone path polytopes of zonotopes for nondegenerate functionals
are sweep polytopes, up to normal equivalence. Two polytopes are called normally
equivalent if they have the same normal fan, and normal equivalence obviously implies
combinatorial equivalence.

Proposition 2.10 Let Z ⊂ R
d be a zonotope, π : R

d → R a linear map, and Zπ

the face of Z minimizing π . Then the monotone path polytope � (Z, π) is normally
equivalent to the Minkowski sum of Zπ with the sweep polytope SP(A), where A
consists of the points 1

π(zi )
zi for the generators zi of Z such that π(zi ) �= 0.
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Proof Let c, z1 . . . , zm ∈ R
d be such that

Z = c+
m∑

i=1
[−zi , zi ] ⊂ R

d .

Then Z is normally equivalent to any zonotope Z′ = c′ +∑m
i=1 [−λi zi , λi zi ], where

c′ is a vector in R
d and the λi are non-zero scalars.

Up to relabeling the zi , one can suppose that
{
i
∣
∣ π(zi ) = 0

} = {n+1, . . . , m} for
a certain n ∈ {0, . . . , m}. Let Z1 and Z2 be the zonotopes:

Z1 =
n∑

i=1

[
− 1

π(zi )
zi ,

1

π(zi )
zi

]
, Z2 =

m∑

i=n+1
[−zi , zi ] .

Note that the face Zπ is a translation of Z2.
Since Z is normally equivalent to the Minkowski sum Z1 + Z2, we have that

its monotone path polytope � (Z, π) is normally equivalent to the monotone path
polytope � (Z1 + Z2, π) by [63, Cor. 4.4].

Moreover, � (Z1 + Z2, π) = � (Z1, π) + Z2 because π(Z2) = {0}, thus (Z1 +
Z2)∩π−1({y}) = Z1∩π−1({y})+Z2 for any y ∈ R. If we denote the configuration of
points a1 = 1

π(z1)
z1, . . . , an = 1

π(zn)
zn in R

d by A, we have exactly s = π ◦MA and
Z1 = MA(�n), with the same notations as in Proposition 2.3 and Example 2.6. Hence,
Lemma 2.7 and Example 2.6 give � (Z1, π) = MA(� (�n, s)) = MA( 2n P

′
n) =

2
n SP(A).

Hence � (Z, π) is normally equivalent to the Minkowski sum SP(A)+ Zπ . ��

There is an alternative (but strongly related) way to construct sweep polytopes as
fiber polytopes. It is not directly used in the sequel, but we present it in Appendix A
for completeness.

3 Sweep OrientedMatroids

The goal of this section is to provide a purely combinatorial definition of posets of
sweeps generalizing allowable sequences to higher dimensions. Since already in the
plane not all allowable sequences arise from point configurations, it is clear that our
definition has to go beyond the realizable case. We will do it in terms of oriented
matroids, which do have enough expressive power to completely describe allowable
sequences. However, to motivate our definition, we will start by discussing some
oriented matroids associated to point configurations, inspired by [17, Sects. 1.10 &
6.4]. While we will introduce the basic definitions in oriented matroid theory, we refer
the reader not familiar with the topic to the introduction in [89, Lec. 6], and to the
classical book [17] for a comprehensive source.
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3.1 Basic Notions and Notation

There are several cryptomorphic approaches to oriented matroids. We will use the
presentation in terms of the covector axioms, which describe oriented matroids in
terms of collections of sign-vectors M ⊆ {+,−, 0}E , called covectors, labeled by a
finite ground set E .

For X ∈ M and e ∈ E , Xe denotes the value of X at the coordinate e. The
opposite −X of X ∈ M is the sign-vector obtained by switching + and - in X ; that
is, (−X)e = −(Xe). For X , Y ∈ M, the composition of X and Y is the sign-vector
X ◦Y ∈ {+,−, 0}E such that (X ◦Y )e = Xe if Xe �= 0; and (X ◦Y )e = Ye otherwise.
The separation set of X and Y , denoted S(X , Y ), is the set of elements e ∈ E such
that (Xe, Ye) ∈ {(+,−), (−,+)}.
Definition 3.1 (cf. [17, Def. 4.1.1]) A collection of sign-vectors M ⊆ {+,−, 0}E is
the set of covectors of an oriented matroid if it satisfies the following axioms:

(V0) 0 ∈M,
(V1) X ∈M implies −X ∈M,
(V2) X , Y ∈M implies X ◦ Y ∈M,
(V3) if X , Y ∈ M and e ∈ S(X , Y ) then there exists Z ∈ M such that Ze = 0 and

Z f = (X ◦ Y ) f for all f /∈ S(X , Y ).

The set of covectors of an oriented matroid, with the product partial order induced
by 0 ≺ +,− componentwise, forms a poset. It has the structure of a lattice, called
the big face lattice of the oriented matroid, if a top element 1̂ is adjoined. The rank
of the oriented matroid is the length of the maximal chains in the poset of covectors.
The minimal non-zero covectors are called cocircuits, and they determine the ori-
ented matroid as every non-zero covector is a composition of cocircuits. The maximal
covectors for this partial order are called the topes of the oriented matroid. They also
determine the oriented matroid, as X is a covector ofM if and only if X ◦ T is a tope
for every tope T . In fact, the tope-graph ofM, whose vertices are the topes and whose
edges are given by the covectors covered by exactly two topes, already determines the
oriented matroid up to FL-isomorphism, see [11, Theorem 6.14] and [17, Theorem
4.2.14].

There are several standard notions of oriented matroid isomorphism. By FL-
isomorphism, we mean the coarsest, induced by isomorphism of the big face lattices.
FL-isomorphism, called just isomorphism in [40], is the equivalence relation induced
by reorientation, relabeling, and introduction/deletion of loops and parallel elements.

To understand the concepts used in the definition of FL-isomorphism, we need
some extra notation. For X ∈ {+,−, 0}E and F ⊆ E , we denote by −F X the signed
vector Z such that: Z f = −X f for f ∈ F and Ze = Xe for e ∈ E\F , which we
call the reorientation of X on F . IfM is an oriented matroid on the ground set E , its
reorientation on F is the oriented matroid −FMwith covectors −F X for X ∈M. The
support of a sign-vector X is X = {

e ∈ E
∣∣ Xe �= 0

}
. A loop is an element e ∈ E

that does not belong to the support of any covector. Two elements e, f ∈ E are said to
be parallel if X f = Xe for all X ∈M or X f = −Xe for all X ∈M. This defines an
equivalence relation on E , whose equivalence classes are called parallelism classes.

123



80 Combinatorica (2024) 44:63–123

The parallelism class of e ∈ E is denoted e. An oriented matroid is called simple if
it does not contain loops or distinct parallel elements.

For X ∈ {+,−, 0}E and F ⊆ E , the restriction of X to F , denoted X
∣∣
F is the

covector Z ∈ {+,−, 0}F such that Z f = X f for all f ∈ F . IfM is anorientedmatroid
on the ground set E , the set

{
X
∣∣
F

∣∣ X ∈M
}
forms an oriented matroid, denotedM

∣∣
F

and called the restriction of M to F . The set
{

X
∣∣
E\F

∣∣ X ∈M, X f = 0 ∀ f ∈ F
}

also forms an oriented matroid, denoted M/F and called the contraction of M
along F .

An oriented matroid is called acyclic if the all-positive sign-vector +n is a tope.
The standardway to associate an orientedmatroid to a real vector configurationV =

(v1, . . . , vn) ∈ R
d×[n] is to consider the set of covectors on the ground set [n] induced

by the signs of the evaluations of linear functionals on the elements of V :

M(V ) = {
(sign(〈u , v1〉 , . . . , sign(〈u , vn〉)

∣∣ u ∈ R
n} ⊆ {+,−, 0}n, (4)

where sign(x) =

⎧
⎪⎨

⎪⎩

+ if x > 0

− if x < 0

0 if x = 0.
That is, to each linear oriented hyperplane, we record which vectors of the con-

figuration lie on the hyperplane, and which lie at the positive and negative sides,
respectively. The covectors M(V ) label the regions of the hyperplane arrangement
HV consisting of the hyperplanes orthogonal to the vectors of V . Under this label-
ing, the big face lattice is consistent with the inclusion order of the regions, the topes
labeling the maximal cells of the arrangement. Thus, the big face lattice on M(V )

is isomorphic to (the opposite of) the face lattice of the zonotope
∑

i∈[n][0, vi ]. The
rank ofM(V ) coincides with the dimension of the linear hull of V . We will call this
oriented matroid the oriented matroid associated to V . Oriented matroids that arise
this way are called realizable. Note that even non-realizable oriented matroids can be
geometrically realized by arrangements of pseudo-spheres, see [17, Sec. 1.4.1 & 5.2].

3.2 Three Realizable OrientedMatroids Associated to a Point Configuration

The construction above extends directly to affine point configurations, by considering
evaluations of affine functionals instead. (Or, equivalently, linear functionals on the
homogenization Ā.) Although this is the standard way to associate an orientedmatroid
to a point configuration A, we will call it the little oriented matroid of A, which is
consistent with the notation in [17, Sect. 1.10] for planar configurations. This is to
avoid confusion with the other alternative notions of oriented matroid associated to a
point configuration that we will introduce. The big oriented matroid, which contains
more information than the little oriented matroid, is also inspired by [17, Sect. 1.10].
We will prefer a more compact presentation, the sweep oriented matroid, which was
not explicitly introduced there.

Definition 3.2 Let A = (a1, . . . , an) ∈ R
d×[n] be a full-dimensional point configura-

tion (i.e. its affine span is the whole space R
d ):
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Fig. 8 A big oriented matroid (with collinearities indicated). The points in the upper line, which represents
the line at infinity, give rise to a sweep oriented matroid, whereas the points below give rise to the associated
little oriented matroid

(i) The little oriented matroid of A, denoted Mli t ( Ā), is the oriented matroid of
rank d+1with ground set [n] associated to the (d+1)-dimensional homogenized
vector configuration Ā = (ā1, . . . , ān) ∈ R

(d+1)×[n], where āi = (ai , 1) ∈
R

d+1. This is always an acyclic oriented matroid.
(ii) The sweep oriented matroid of A, denoted Msw( Ā), is the oriented matroid

of rank d with ground set
([n]
2

) = {
(i, j)

∣
∣ 1 ≤ i < j ≤ n

}
associated to the

d-dimensional vector configuration

{
a(i, j) = a j − ai

∣∣ (i, j) ∈ ([n]2
)} ∈ R

d×([n]2 ).

(iii) The big oriented matroid1 of A, denoted Mbig( Ā), is the oriented matroid of
rank d + 1 on the ground set [n] ∪ ([n]2

)
associated to the (d + 1)-dimensional

vector configuration

Ā ∪
{
(a(i, j), 0)

∣∣ (i, j) ∈ ([n]2
)} ∈ R

(d+1)×
(
[n]∪([n]2 )

)

.

Little, sweep and big orientedmatroids obtained this way from a point configuration
will be called realizable. In Sects. 3.3 and 4.1, we give definitions for abstract sweep,
little and big oriented matroids not necessarily arising from point configurations. We
explain below how these structures are related to each other and to the poset of sweeps
and the set of sweep permutations.

For a sweep I = (I1, . . . , Il) ∈ �(A), corresponding to the surjection pI : [n] →
[l], we define the sign-vector X I ∈ {+,−, 0}([n]2 ) such that

X I
(i, j) =

⎧
⎪⎨

⎪⎩

+ if pI (i) < pI ( j),

− if pI (i) > pI ( j),

0 if pI (i) = pI ( j);
(5)

1 Our definition differs slightly from that in [17, Sect. 1.10]We admit parallel vectorswhen the configuration
is not generic, whereas in [17, Sect. 1.10] all parallel vectors of the form a j − ai are merged into a single
element of the oriented matroid.
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Fig. 9 The vector configuration
{
a(1,2), a(1,3), a(2,3)

}
associated to the point configuration A3 from Fig. 2.

The covectors associated to the regions of the sweep hyperplane are indicated by sign-vectors of length 3
containing the sign of the scalar product of a vector in the region with a(1,2), a(1,3), and a(2,3), respectively.
This should be compared with the labeling of the regions of the sweep hyperplane arrangement in terms of
partitions in Fig. 2

for (i, j) ∈ ([n]2
)
.

For example, if I is the sweep ({1, 3}, {2}), we have pI (1) = pI (3) = 1, pI (2) =
2, and the corresponding covector on the ground set {(1, 2), (1, 3), (2, 3)} is X I =
(+, 0,−). Compare Figs. 2 and 9 to see other examples. As the figures illustrate, this
map induces an isomorphism at the level of posets.

Lemma 3.3 The map I → X I induces a poset isomorphism between the poset of
sweeps �(A) and the poset of covectors of the sweep oriented matroid Msw( Ā).

In particular,�(A)∪1̂, where 1̂ is an additional top element, is isomorphic to the big
face lattice ofMsw( Ā), which is the opposite of the face lattice of the zonotope SP(A)

(cf. [89, Cor. 7.17]).

Proof Let I be an ordered partition in �(A), with corresponding surjection pI , and
associated to the linear form u ∈ R

d . This linear form u is also associated to a covector
X of Msw( Ā) that is exactly the image of I by the above bijection:

X(i, j) = 0 ⇔ 〈
u , a j − ai

〉 = 0 ⇔ pI (i) = pI ( j),

X(i, j) = + ⇔ 〈
u , a j − ai

〉
> 0 ⇔ pI (i) < pI ( j),

X(i, j) = − ⇔ 〈
u , a j − ai

〉
< 0 ⇔ pI (i) > pI ( j).

Hence both the sweeps of �(A) and the covectors of Msw( Ā) are in bijection
with the cells of the hyperplane arrangement SH(A) and the bijections induce poset
isomorphisms. ��

It follows from the previous lemma that the set of sweep permutations �(A) is in
bijection with the topes of the sweep oriented matroidMsw( Ā). Since the topes of an
oriented matroid completely determine it (cf. [17, Proposition 3.8.2]), this implies:

Corollary 3.4 The set of sweep permutations �(A) determines the whole poset of
sweeps �(A).
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The structures we have introduced are related by the following hierarchy (whose
proof depends on the upcoming Proposition 4.3):

Theorem 3.5 Let A ∈ R
d×[n] be a point configuration. Then the set of sweep permu-

tations �(A), the poset of sweeps �(A), the sweep oriented matroid Msw( Ā) and
the big oriented matroid Mbig( Ā) (cryptomorphically) determine each other. They
determine the little oriented matroid Mlit( Ā), which does not always determine them.

In particular, the sweep oriented matroid is a combinatorial invariant of a point
configuration that is finer than the order type (given by the little oriented matroid).

Proof The fact that�(A) and�(A) determine each other follows from Corollary 3.4.
The equivalence between �(A) and Msw( Ā) follows from Lemma 3.3. The equiv-
alence between Msw( Ā) and Mbig( Ā) will be proved later, as a consequence of
Definition 4.2 and Proposition 4.3.

Finally, Mbig( Ā) determines Mlit( Ā) by restriction to the ground set [n] but this
operation is not injective. Examples of planar configurations with different sets of
sweep permutations but the same little oriented matroid can be found in [17, Sec-
tion 1.10]. ��

3.3 Sweep OrientedMatroids

The main insight for expanding the notion of sweep oriented matroids from Def-
inition 3.2 beyond the realizable case is to note that a configuration of vectors of
the form a j − ai for (i, j) ∈ ([n]2

)
is just the projection of the braid configuration

{e j − ei
∣∣ (i, j) ∈ ([n]

2

)} ∈ R
n×([n]2 ) (the set of positive roots of the Coxeter root

system An−1) under the linear map MA defined in (3).
Consider the oriented matroid Bn associated to the braid configuration, that is, the

graphic orientedmatroid of the complete graph Kn with the acyclic orientation induced
by the usual order on [n]. We will use the same notation Bn as with the hyperplane
arrangement, as it will be always clear from the context whether we are considering
the hyperplane arrangement or the associated oriented matroid. Note that, since the
configuration of the a j − ai is a linear projection of the braid configuration, every
covector of Msw( Ā) is a covector of the braid oriented matroid, as we can pull back
linear forms with MA

∗.
The oriented matroid analogues of linear projections are strong maps. For two

oriented matroids M1 and M2 on the same ground set, we say that there is a strong
map fromM1 toM2, denotedM1 →M2, if every covector ofM2 is a covector of
M1 (see [17, Sec. 7.7]). This will be the starting point for our definition.

Definition 3.6 An oriented matroid M on the ground set
([n]
2

)
is a sweep oriented

matroid if there is a strong map Bn → M from Bn to M, i.e. if all covectors of M
are covectors of Bn .

Remark 3.7 Note that, if M is a sweep oriented matroid, then we can interpret its
covectors as covectors of the braid arrangement, and hence each covector can be
uniquely identified with an ordered partition via the bijection inverse to (5). For a
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covector X ∈ M of a sweep oriented matroid, we will denote by IX the associated
ordered partition.

Our next result characterizes sweep oriented matroids via a 3-term orthogonality
condition on covectors (c.f. [17, Sec. 3.4]) that provides an explicit test for deciding
whether an oriented matroid is a sweep oriented matroid. It will be relevant later in
the context of sweep acycloids in Sect. 7.

Recall that the support of a sign-vector X ∈ {+,−, 0}E is X = {
e ∈ E

∣∣ Xe �= 0
}
.

Two sign-vectors X , Y ∈ {+,−, 0}E are said to be orthogonal if either X ∩ Y = ∅,
or the restrictions of X and Y to X ∩ Y are neither equal nor opposite (i.e., there are
i, j with Xi = Yi �= 0 and X j = −Y j �= 0).

Lemma 3.8 An oriented matroid M on
([n]
2

)
is a sweep oriented matroid if and

only if for every covector X and every choice of 1 ≤ i < j < k ≤ n, the triple
(X(i, j), X( j,k), X(i,k)) is orthogonal to the sign vector (+,+,−).

Equivalently, M is a sweep oriented matroid if and only if for any covector X,
and for 1 ≤ i < j < k ≤ n, the triple (X(i, j), X( j,k), X(i,k)) does not belong to the
following list of forbidden patterns:

{
(+,+,−), (−,−,+), (0,+,−), (0,−,+), (+, 0,−), (−, 0,+), (+,+, 0),
(−,−, 0), (0, 0,−), (0, 0,+), (0,+, 0), (0,−, 0), (+, 0, 0), (−, 0, 0)

}
.

Proof There is a strong map Bn → M if and only if all the covectors of M are
covectors of Bn , which is equivalent to the condition that all the covectors of M are
orthogonal to all circuits of Bn (see [17, Prop. 7.7.1]).

The circuits of Bn are induced by cycles of Kn . They are of the form Ci1,...,ir for
any collection i1, . . . , ir of at least 3 distinct elements of [n], with Ci1,...,ir

(ik ,ik+1) = + if

ik < ik+1 and Ci1,...,ir
(ik+1,ik )

= − if ik > ik+1 for all 1 ≤ k ≤ r (with the convention

ir+1 = i1), and Ci1,...,ir
(h,l) = 0 for any other pair.

An easy induction shows that the orthogonality to the circuit Ci1,...,ir is implied by
the orthogonality to all circuits Ci1,ik ,ik+1 for 2 ≤ k ≤ r − 1, which is equivalent to
our statement. ��

This condition is actually a reformulation of the transitivity of the partial order
induced by an ordered partition I (namely i � j if and only if pI (i) ≤ pI ( j)). For
example, forbidding the patterns (+,+,−) and (+,+, 0) is equivalent to stating that
i ≺ j ≺ k implies i ≺ k, and so on. This is why we refer to it as the transitivity
condition on sweep oriented matroids.

The poset of sweeps of a sweep oriented matroid M is the partially ordered set
�(M) of the ordered partitions IX for the covectors X ∈M, ordered by refinement.
Enlarged with a top element 1̂, this poset is isomorphic to the big face lattice of M.
The topology of such complexes is well known [17, Thm. 4.3.3]. We describe it in the
following proposition. Note that there is some ambiguity in the literature concerning
the definition of the poset of faces of cell complexes, in particular whether it should
be augmented by a bottom element or not (compare [12, Fig. 2] and [14, Fig. 2]). We
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follow [14] and [17] and do not include an additional bottom element in the definition
of the face poset of a cell complex.

Proposition 3.9 [17, Thm. 4.3.3] The poset of sweeps �(M) � ([n]) of a sweep
oriented matroid M of rank r without the trivial sweep is isomorphic to the face poset
of a shellable regular cell decomposition of the (r−1)-sphere. In particular, the order
complex �

(
�(M) � ([n])) triangulates the (r − 1)-sphere.

4 Big and Little OrientedMatroids

In this sectionwe show how the big and little orientedmatroids of a point configuration
(Definition 3.2) are completely determined by its sweep oriented matroid. Actually,
the construction of these matroids can be extended to any abstract sweep oriented
matroid, providing definitions beyond the realizable case. This generalizes the results
for rank 3 proved in [17, Sec. 1.10].

4.1 Big and Little OrientedMatroids Associated to Sweep OrientedMatroids

First, we will show how to extend any sweep oriented matroid to what will be called a
big orientedmatroid. For a covector X of a sweep orientedmatroid, let pX : [n] → [lX ]
be the surjection associated to the corresponding ordered partition. For each 1 ≤ k ≤
2lX + 1, let Xk ∈ {+,−, 0}[n]∪([n]2 ) be the sign-vector:

Xk
i =

⎧
⎪⎨

⎪⎩

− if pX (i) ≤ � k−1
2 �,

+ if pX (i) > � k
2�,

0 if k is even and pX (i) = k
2 .

for 1 ≤ i ≤ n;

Xk
(i, j) = X(i, j) for all 1 ≤ i < j ≤ n.

We defer the details of checking that the transitivity condition from Lemma 3.8
implies the oriented matroid axioms for these covectors to Appendix B. They are
easy, but tedious.

Theorem 4.1 If M is the set of covectors of a sweep oriented matroid, then

Mbig =
{

Xk
∣∣ X ∈M, 1 ≤ k ≤ 2lX + 1

}

is the set of covectors of an oriented matroid.

Definition 4.2 LetM be a sweep oriented matroid. The oriented matroidMbig is the
big oriented matroid of M; and the oriented matroid Mlit obtained by deleting all
pairs (i, j) fromMbig is the little oriented matroid of M.

These definitions are indeed coherent with the realizable case, as the following
proposition shows. This proves that the sweep orientedmatroid of a point configuration
determines its big and little oriented matroids, concluding the proof of Theorem 3.5.

123



86 Combinatorica (2024) 44:63–123

Proposition 4.3 The big and little oriented matroids of a point configuration are the
big and little oriented matroids associated to its sweep oriented matroid.

Proof Let A = (a1, . . . , an) ∈ R
d×[n] be a d-dimensional point configuration. Every

vector u ∈ R
d induces an ordering of A, which is encoded in a covector X ofMsw( Ā).

For c ∈ R, the partition

{
i
∣∣ 〈u , ai 〉 < c

}
,
{
i
∣∣ 〈u , ai 〉 = c

}
,
{
i
∣∣ 〈u , ai 〉 > c

}

only depends on which, or between which pair, of the lX values attained by 〈u , · 〉
on A does c lie. These 2lX + 1 distinct partitions are precisely those encoded by the
covectors Xk defining the big oriented matroid ofMsw( Ā). ��

Note that, by the definition of the big oriented matroid of M, the zero covector 0
of M induces the all-positive tope +n in Mlit, which is hence an acyclic oriented
matroid.

The following lemma concerning the ranks of the big and little oriented matroids
will be needed later.

Lemma 4.4 If the sweep oriented matroid M is of rank r , then Mbig and Mlit are of
rank r + 1.

Proof To justify thatMbig has rank r+1, it is sufficient to notice that if 0([n]2 ) = Y 0 ≺
Y 1 ≺ · · · ≺ Y r is a maximal chain of covectors ofM, then 0[n]∪([n]2 ) = Z−1 ≺ Z0 ≺
Z1 ≺ · · · ≺ Zr is amaximal chain of covectors ofMbig, where for any k ∈ {0, . . . , r},
we define Zk by Zk

∣∣
([n]2 )

= Y k and Zk
∣∣[n] = +n . Indeed, we cannot add a covector

Z in the big oriented matroid between Z−1 and Z0 because if Zi = 0 and Z j = +
we necessarily have Z(i, j) �= 0 since i and j are not in the same part of the ordered
partition lZ . We cannot add a covector strictly between Zk and Zk+1 either because
its restriction to

([n]
2

)
would give a covector ofM strictly between Y k and Y k+1.

We prove that Mlit also has rank r + 1 by induction on r . If M is of rank r = 0,
then 0([n]2 ) is its only covector. It induces the little oriented matroid of rank 1 consisting

of the covectors −n , 0n , and +n .
Now, suppose that M is a sweep oriented matroid on ground set

([n]
2

)
that has

rank r ≥ 1. Up to relabelling, we can suppose that (n − 1, n) is not a loop. Then
the contraction of M along {(n − 1, n)} has rank r − 1. Under the bijection (5), the
covectors of this contraction M/{(n−1,n)} correspond to the partitions associated to
covectors of M such that n − 1 and n are in the same part. This implies that for
all i ≤ n − 2, the pairs (i, n − 1) and (i, n) are parallel. By deleting all the pairs
(i, n) we obtain an oriented matroid M′ on

([n−1]
2

)
isomorphic to M/{(n−1,n)}. The

transitivity condition from Lemma 3.8 is preserved, and henceM′ is a sweep oriented
matroid of rank r − 1 and M′lit has rank r , by induction. A maximal chain of the
contraction M′lit/(n − 1) induces a chain 0n = X0 ≺ · · · ≺ Xr−1 of Mlit in which
(Xi )n−1 = (Xi )n = 0 for all 0 ≤ i ≤ r − 1 and that is maximal with this property.
Since n−1 and n are not parallel (because (n−1, n) is not a loop), there is a covector Y
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ofMlit such that Yn−1 = + and Yn = 0. Setting Xr = Xr−1◦Y , and Xr+1 = Xr ◦+n ,
we obtain a chain

0n = X0 ≺ · · · ≺ Xr−1 ≺ Xr ≺ Xr+1

of lenght r + 1 of covectors of Mlit. Moreover, the restriction operation on oriented
matroids cannot increase the rank, thus the rank ofMlit cannot be bigger than the rank
of Mbig. Hence Mlit also has rank r + 1. ��
Example 4.5 (The braid oriented matroids in types A and B) The study of big oriented
matroids of Coxeter hyperplane arrangements in types A and B unveils a recursive
decomposition that, in view of the upcoming Sect. 4.2, explains the existence of a
maximal chain of modular flats. This important property was first studied by Stanley
under the name of supersolvability [78].

Type A. The big oriented matroid of the braid oriented matroid Bn is the braid
oriented matroid Bn+1. More precisely, if we relabel the elements i ∈ [n] by (1, i+1)
and the elements (i, j) ∈ ([n]2

)
by (i + 1, j + 1), then we recover the braid oriented

matroid Bn+1. Indeed, the topes of Bn
big are of the form X2k+1 where X is a tope

of Bn and 0 ≤ k ≤ n. If X corresponds to the permutation (σ (1), . . . , σ (n)) ∈ Sn ,
then X2k+1 corresponds to the permutation in Sn+1:

(σ (1)+ 1, . . . , σ (k)+ 1, 1, σ (k + 1)+ 1, . . . , σ (n)+ 1).

Type B. Consider the type B braid oriented matroid BB
n from Sect. 2.2.2, indexed

by the elements in
([±n]

2

)
. That is, BB

n is the sweep oriented matroid of the vertex set of

the cross-polytope. Then its big oriented matroid (BB
n )

big
is FL-isomorphic to BB

n+1
without one element (of those of the form (−i, i) ).

To see it, it is easier to consider first an enlarged version, with base elements

[−n, n] = {−n, . . . ,−1, 0, 1, . . . , n}

corresponding to the point configuration

B̃n = (−en, . . . ,−e1, 0, e1, . . . , en)

that contains the vertices of the cross-polytope together with the origin. The FL-
isomorphism class of the sweep orientedmatroid does not change, butwe get somenew
parallel elements. Namely, the elements labeled (−i, i), (−i, 0), and (0, i) become
parallel (with the same orientation) in the enlarged sweep oriented matroid B̃B

n =
Msw(B̃n). Now, relabel the elements [−n, n] ∪ ([−n,n]

2

)
to
([−n−1,n+1]

2

)
by sending

each i ∈ [±n] to the pair of parallel elements (−n − 1,−i), (i, n + 1); 0 to the triple
of parallel elements (−n− 1, n+ 1), (−n− 1, 0), (0, n+ 1); and leaving the pairs in([−n,n]

2

)
unchanged. Each tope X of the sweep oriented matroid B̃B

n is represented by
a centrally symmetric permutation σ of [−n, n]:

(−σ(n), . . . ,−σ(1), 0, σ (1), . . . , σ (n)).
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Under the relabeling we can read the topes X2k+1 of the big oriented matroid (B̃B
n )

big

as centrally symmetric permutations of [−n − 1, n + 1] representing topes of B̃B
n+1.

Namely, for 0 ≤ k ≤ n + 1, the tope X2k+1 corresponds to the centrally symmetric
permutation:

(−σ(n), . . . ,−σ(n − k + 1),−n − 1,−σ(n − k), . . . ,

σ (n − k), n + 1, σ (n + 1− k), . . . σ (n)).

whereas for n + 2 ≤ k ≤ 2n + 2 it corresponds to:

(−σ(n), . . . ,−σ(n − k + 1), n + 1,−σ(n − k), . . . ,

σ (n − k),−n − 1, σ (n + 1− k), . . . σ (n)).

This shows that (B̃B
n )

big
is FL-isomorphic to B̃B

n+1, and hence to BB
n+1.

If we want to consider the original configuration without the origin, we simply need
to remove all the elements of the big oriented matroid that involve a label using 0.
Every parallelism class conserves at least one representative except for the singleton
0, which was sent to the triple (−n − 1, n + 1), (−n − 1, 0), (0, n + 1) with our

relabeling. This shows that (BB
n )

big
is FL-isomorphic to BB

n+1 � (−n − 1, n + 1).

Remark 4.6 (On labeling and isomorphism) The labeling plays an important role in the
definition of a sweep oriented matroid and in Theorem 3.5. Indeed, non-isomorphic
big oriented matroids might arise from isomorphic sweep oriented matroids. (Here,
we mean FL-isomorphism, but the statement is also true for the other standard notions
of oriented matroid isomorphism.) For example, all sufficiently generic planar n-
point configurations give rise to FL-isomorphic sweep oriented matroids but their big
oriented matroids are not FL-isomorphic.

Remark 4.7 (On realizability) Note that, for a big oriented matroid M, realizability
as an oriented matroid (i.e. in the sense of (4)) is equivalent to realizability as a big
oriented matroid (i.e. in the sense of Definition 3.2). Indeed, any point configuration A
such thatMbig( Ā) =M can be extended (with the corresponding points at infinity) to
an oriented matroid realization ofM. And reciprocally, the restriction of any oriented
matroid realization of M to the elements indexed by [n] can be sent, after a suitable
projective transformation and dehomogenization, to a point configuration A such that
Mbig( Ā) =M.

In contrast, there are sweep oriented matroids that are realizable as an oriented
matroid but that are not of the form Msw( Ā) for any point configuration A. Indeed,
the non-realizable pentagon of [44] (see Fig. 10) gives rise to a non-realizable allow-
able sequence; that is, to a non-realizable big oriented oriented matroid of rank 3. The
associated sweep oriented matroid is an oriented matroid of rank 2, and thus realiz-
able (as an oriented matroid) [17, Cor. 8.2.3]. However, it is not the sweep oriented
matroid of a point configuration, because the corresponding big oriented matroid is
not realizable.
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Fig. 10 The allowable sequence (1, 2, 3, 4, 5) → (1, 2, 4, 3, 5) → (2, 1, 4, 3, 5) → (2, 1, 4, 5, 3) →
(2, 4, 1, 5, 3) → (2, 4, 5, 1, 3) → (4, 2, 5, 1, 3) → (4, 5, 2, 1, 3) → (4, 5, 2, 3, 1) → (4, 5, 3, 2, 1) →
(5, 4, 3, 2, 1) cannot be realized by a point configuration, because it would necessarily be a pentagon whose
sides and “parallel diagonals” meet as in the above picture, which is geometrically impossible [44]

We end this remark by noting that theUniversality Theorem for allowable sequences
of Hoffmann and Merckx [54] implies that it is (∃R)-hard to decide whether a big
oriented matroid is realizable.

4.2 Big OrientedMatroids and Tight Modular Hyperplanes

In this section we provide an alternative characterization of the FL-isomorphism
classes of big oriented matroids, and hence of sweep oriented matroids. It is purely
structural, without relying on the labeling of the elements. We show that they are
closely related to the concept of modular hyperplanes.

According to our definition, every big oriented matroidMbig on [n]∪([n]2
)
contains

the cocircuit Z = (+n, 0(n
2)

). Moreover, X(i, j) = 0 for any covector X such that
Xi = X j = 0; which is equivalent to the fact that for any i, j not in the same
parallelism class, the restriction ofMbig to the set {i, j, (i, j)} ⊂ E has rank 2. These
two properties show that the set of indices

([n]
2

)
form a modular hyperplane.

The flats of an oriented matroid M of rank r on E are the flats of its underlying
(unoriented) matroid M; that is, the zero-sets of its covectors. The poset of flats
ordered by inclusion forms a geometric lattice [17, 4.1.13]. The hyperplanes are the
flats of rank r − 1, and they arise as zero-sets of cocircuits. A flat F is called modular
if rk(F)+ rk(G) = rk(F ∧ G)+ rk(F ∨ G) for any other flat G, where rk(·) is the
rank function of the geometric lattice (for a flat F , rk(F) coincides with the rank of
the oriented matroidM

∣
∣
F ). Modular flats have many interesting properties, and play

an important role in the theory of matroids, see [21, 77].
Hence, a modular hyperplane is a hyperplane F ⊂ E such that rk(F ∧ G) =

rk(F ∩ G) = rk(G) − 1 for any flat G not contained in F . Said differently, F ∩ G
is a hyperplane inM

∣∣
G . In [21, Cor. 3.4] it is shown that a hyperplane is modular if

and only if it intersects every line (flat G with rk(G) = 2). Equivalently, if for every
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pair of elements x, y ∈ E � F that are not parallel nor a loop, there is some element
z ∈ F such that for every covector X with Xx = X y = 0 we have Xz = 0. We will
say that a modular hyperplane F is tight if there is no z ∈ F such that F � z is a
modular hyperplane ofM

∣∣
E�z .

The following result gives a characterization of big oriented matroids similar to the
one given in [17, Sect. 6.4] for the rank 3 case.

Proposition 4.8 Let M be an oriented matroid on ground set E = [n] ∪ ([n]2
)

such
that:

(1) there exists a cocircuit Z of M such that {e ∈ E | Ze = 0} = ([n]
2

)
(i.e. Z = [n]),

(2) for any (i, j) ∈ ([n]2
)
, for any covector X of M, if two coordinates among Xi , X j ,

X(i, j) are zero, then the third one is zero too.

Then, up to reorientation, M is the big oriented matroid of the sweep oriented matroid
M
∣∣
([n]2 )

.

In a realizable setting, and without parallel elements and loops, the conditions on
M amount to asking that the real vector representing (i, j) is in the intersection of
the 2-plane spanned by the real vectors representing i and j and the hyperplane given
by the cocircuit Z (which contains all the vectors corresponding to elements in

([n]
2

)
).

One can check that the example depicted in Fig. 8 satisfies this condition.

Proof We need to prove that, after the reorientation of some elements of the ground
set, the restrictionM

∣
∣
([n]2 )

is a sweep oriented matroid, i.e. it satisfies Lemma 3.8, and

the covectors of M are exactly those obtained from the covectors ofM
∣∣
([n]2 )

as in

Theorem 4.1.
We can assume that, after a suitable reorientation of M we have that Z =

(+n, 0([n]2 )). Note that M
∣
∣[n] cannot have loops, as witnessed by Z ; and that if i

and j are parallel, then (i, j) must be a loop. We will from now on assume that M
does not have parallel elements, as it simplifies the exposition.

Let us show that for any two covectors X , Y ∈ M such that Xi = Yi = −, X j =
Y j = +we have X(i, j) = Y(i, j) �= 0. Assume the contrary. Then the axiom Definition
3.1 on oriented matroids would imply the existence of a covector T ∈ M such that
Ti = −, Tj = + and T(i, j) = 0. A second application of the axiom Definition
3.1 between T and Z would give the existence of a covector T ′ ∈ M such that
T ′i = T ′(i, j) = 0 and T ′j = +, which contradicts the second assumption onM. Hence,
we can reorient (i, j) so that for any covector X ofM with Xi = − and X j = +, we
have X(i, j) = +.

To check thatM
∣
∣
([n]2 )

is a sweep orientedmatroid, it suffices to look at all restrictions

of the form

M
∣∣{i, j,k,(i, j),( j,k),(i,k)}

for 1 ≤ i < j < k ≤ n. This gives an oriented matroid of rank at most 3. One can
easily check that with our conditions there are only three possible configurations, none
of which violates the condition from Lemma 3.8.
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Moreover, it is clear that any covector X of M can be obtained from the covector
X
∣∣
([n]2 )

ofM
∣∣
([n]2 )

by the method described at the beginning of Sect. 4.1. Indeed, our

reorientation on
([n]
2

)
implies that the ordered partition of [n] given by (I− = {i | Xi =

−}, I0 = {i | Xi = 0}, I+ = {i | Xi = +}) is refined by the ordered partition J
induced by X

∣∣
([n]2 )

, in such a way that either I0 = ∅ or I0 is an entire part of J . Thus

X is of the form (X
∣∣
([n]2 )

)k for some k.

It remains to check that, for every covector Y ∈M∣∣
([n]2 )

, all covectors Y k obtained

by the method described in Sect. 4.1 are indeed covectors ofM. We do it by induction
on k. Observe first that Y 1 = Z ◦ Ỹ , where Ỹ is any covector inM whose restriction
to
([n]
2

)
gives Y . Thus, we have Y 1 ∈M.

Now, for an odd k0 ∈ [2lY ], we apply the Elimination Axiom (V3) to the covectors
Y k0 and (−Z) ◦ Y k0 , and the smallest element i0 ∈ p−1Y ({ k0+1

2 }) to obtain a covector

T . We claim that T = Y k0+1. Indeed, for all i where pY (i) < k0+1
2 we have Ti =

Y k0
i = (−Z)i = −. For all i ∈ p−1Y ({ k0+1

2 }), we have Ti0 = 0 and T(i0,i) = Y k0
(i0,i)

=
(−Z)(i0,i) = 0, so the second hypothesis on M implies that Ti = 0. Let i where
pY (i) > k0+1

2 . We assume that i > i0, the other case is analogous. We have that

T(i0,i) = Y k0
(i0,i)

�= 0 and Ti0 = 0, so Ti �= 0 by the second hypothesis. This forces that
Ti = + as otherwise T ◦ Z would satisfy (T ◦ Z)i0 = −(T ◦ Z)i = (T ◦ Z)(i0,i),
which contradicts our assumption on the reorientation.

To conclude, if k0 is even, then Y k0+1 = Y k0 ◦ (−Z). ��
We get the following characterization as a direct corollary.

Theorem 4.9 A simple oriented matroidM is FL-isomorphic to a big oriented matroid
if and only if it has a tight modular hyperplane.

Proof It is straightforward to check that in a big oriented matroid the elements indexed
by
([n]
2

)
form a modular hyperplane that is tight up to the simplification of parallel

elements.
For the converse, let E be the ground set of M, and F ⊆ E a tight modular

hyperplane. We will relabel the elements of E � F by [n], where n = |E � F |. Now,
for each (i, j) ∈ ([n]2

)
there is an element z ∈ F in the line spanned by i and j by

the modularity of F . We add to M an element parallel to z labeled by (i, j) ∈ ([n]2
)
.

We obtain this way an isomorphic oriented matroidM′. Note that, since the modular
hyperplane F ⊆ E is tight, for each z ∈ F there are some i, j ∈ E � F such that i, j, z
are collinear. Hence, z is parallel to (i, j) andM′

�z is isomorphic toM.We conclude
thatM′∣∣[n]∪([n]2 )

is isomorphic toM. It satisfies the conditions of Proposition 4.8 and

is hence isomorphic to a big oriented matroid. ��
A consequence of this observation is that we can extend the process to determine

the big oriented matroid from the sweep oriented matroid to any oriented matroid with
a modular hyperplane (not necessarily tight). For sweep oriented matroids, this relies
on the labeling of the elements (see Remark 4.6). Arbitrary modular hyperplanes also
need a similar extra information. Let M be an oriented matroid on a ground set E
with a modular hyperplane F . To simplify the exposition, we will assume that M is
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simple (no loops or parallel elements), that E � F = [n], that F ∩ ([n]2
) = ∅, and

that all the elements of E � F lie in a common halfspace defined by F . (We could
omit this simplification by adding information to the decoration, but it unnecessarily
complicates the notation.)

We will decorate the elements in F by constructing maps δ : F → 2(
[n]
2 ) and

ε : ([n]2
) → {+,−} that associate a subset of elements of

([n]
2

)
to each f ∈ F and a

sign to each pair in
([n]
2

)
. This is donewith the following algorithm.We start decorating

each element in F with an empty set. For every (i, j) ∈ ([n]2
)
, let f ∈ F be the element

of F in the flat spanned by i and j . We add to the decoration δ( f ) of f the ordered
pair (i, j); and we set ε(i, j) = + if there is a covector X ∈M such that Xi = 0 and
X j = X f �= 0, or ε(i, j) = − otherwise.We will call this information the decoration
of F induced by M.

We will show that we can recover M from M′ =M
∣∣
F , its restriction to F , and

the decoration. To state our result, we introduce valid decorations, which are those
that can be obtained with the procedure above. For any simple oriented matroid M′

on the ground set F , we call a valid decoration a couple of maps δ : F → 2(
[n]
2 ) and

ε : ([n]2
)→ {+,−} for a certain n, such that:

• the decorations form a partition of
([n]
2

)
, with empty parts accepted:

([n]
2

) =⋃
f ∈F δ( f ) with δ( f ) ∩ δ( f ′) = ∅ whenever f �= f ′; and

• the covectors X ∈M, seen as elements of {+,−, 0}([n]2 ) by considering X(i, j) =
ε(i, j)X f if (i, j) ∈ δ( f ), satisfy the transitivity condition from Lemma 3.8.

The following result should be seen as the oriented version of [19, Thm. 2.1],
which similarly characterizes when an (unoriented) matroid can be extended so that
its ground set is a modular hyperplane of the larger matroid.We have deferred its proof
to Appendix B, since it relies on the proof of Theorem 4.1.

Corollary 4.10 If M′ is a simple oriented matroid on F with a valid decoration (δ, ε),
then M′ can be extended to a unique oriented matroid M for which F is a modular
hyperplane and (δ, ε) is the decoration of F induced by M.

In particular, an oriented matroid M with a modular hyperplane F is completely
determined byM

∣∣
F together with the decoration of F induced by M.

4.3 Not Every OrientedMatroid is a Little OrientedMatroid

Little oriented matroids are always acyclic, meaning that +n is a tope. A first guess
could be that all acyclic oriented matroids can be extended to a big oriented matroid.
After all, this is trivially the case for realizable oriented matroids. Moreover, it is also
true for rank 3 oriented matroids. Although stated in a different language, this follows
directly from [17, Thm. 6.3.3] and [42, Lemma 1]2, which was first proved in the
uniform case in [76]. (Actually, their result is stronger, as the sweep oriented matroid
they construct is Dilworth in the sense of the upcoming Sect. 5.1.)

2 This is usually presented in the context of “topological sweepings” of arrangements of pseudolines, for
example in [39, 42]. Note that the notation in these references collides slightly with ours, see Sect. 1.1.
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Theorem 4.11 [17, Thm. 6.3.3] Every loopless acyclic oriented matroid M of rank 3
is the little oriented matroid of a sweep oriented matroid.

However, contrary to the rank 3 case, starting at rank 4 there exist acyclic oriented
matroids that cannot be extended to big oriented matroids. The proof of Theorem 4.11
in [17] uses Levi’s extension lemma, that states that every arrangement of pseudolines
can be extended with an extra pseudoline through two given points. We use a famous
counterexample to the analogous statement in rank 4 by Richter-Gebert [72] to present
an acyclic oriented matroid that cannot be extended to a big oriented matroid.

Theorem 4.12 [72, Cor. 3.4] There is an oriented matroid RG of rank 4 with ground
set [12] with two topes U and T such that no extending pseudoplane intersects U and
T simultaneously.

Thismeans that ifRG′ is an orientedmatroid on [12]∪{ f } such thatRG′
∣∣[12] = RG,

then it cannot contain covectors U ′, T ′ ∈ RG′ such thatU ′∣∣[12] � U andT ′
∣∣[12] � T

but U ′
f = T ′f = 0.

Theorem 4.13 The reorientation of RG sending U to +12 is acyclic, but it is not the
little oriented matroid of any sweep oriented matroid.

Proof After a suitable reorientation, assume that U = +12. Suppose that there is a big
oriented matroid M on [12] ∪ ([12]2

)
such thatM

∣∣[12] = RG. It contains a cocircuit
U ′ ∈M with U ′

i = Ui = + for all i ∈ [12] and U ′
(i, j) = 0 for all (i, j) ∈ ([12]2

)
.

Let X be a covector inRG such that [X , T ] forms an interval of length 2 in the face
lattice of RG. This means that there are 1 ≤ i0 < j0 ≤ 12 such that Xi0 = X j0 = 0
and Xi � Ti for all i ∈ [12]\{i0, j0}. Let X ′ be a covector inM such thatX ′

∣∣[12] = X .

Hence, we have X ′(i0, j0)
= 0 and X ′

∣∣[12] � T . Hence RG′ = M
∣∣[12]∪{(i0, j0)} is an

extension of RG whose covectors U ′∣∣[12]∪{(i0, j0)} and X ′
∣∣[12]∪{(i0, j0)} contradict the

special property of RG. ��

5 Lattices of Flats of Sweep OrientedMatroids

5.1 Dilworth Sweep OrientedMatroids

It is also interesting to understand the underlying (unoriented)matroidMsw associated
to a sweep oriented matroid Msw. In particular, because it plays an essential role in
the enumeration of sweeps [17, Sec. 4.6]. In the realizable case, this was done by
Edelman [32] and Stanley [80], who showed that, under certain genericity constraint,
Msw can be obtained fromMlit via the operation of Dilworth truncation.

We will work directly with the axiomatic of (unoriented) matroids in terms of
geometric lattices of flats, which was already mentioned in Sect. 4.2. We refer to [86]
for a comprehensive reference on (unoriented) matroids.

Recall that if M is an oriented matroid on ground set E , a flat of M is a subset
F ⊆ E that is the zero-set of a covector of M (there is X ∈ M such that F = {e ∈
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E | Xe = 0}). The set FM of all flats of M, ordered by inclusion, has the special
structure of a geometric lattice; that is, a finite atomistic semimodular lattice. If M
has no loop, its minimal element is ∅. (Note that this order is reversed from the order
on the covectors in the face lattice of M.) Conversely, any geometric lattice can be
seen as the lattice of flats of a matroid. Let S ⊆ E . There is only one minimal flat
F that contains S. The rank of S is the length of any maximal chain from ∅ to F
inFM. It is denoted rkM(S), or rkM(S). The rank function satisfies the submodular
inequality:

rkM(A)+ rkM(B) ≥ rkM(A ∩ B)+ rkM(A ∪ B).

Theflats and the rank functiongive twocryptomorphicways to define the underlying
(unoriented)matroidM of the orientedmatroidM. IfM(V ) is thematroid associated
to a real vector configuration V = (v1, . . . , vn), the flats correspond to the sets of
vectors in a same linear subspace and the rank of S ⊆ E is the dimension of the linear
subspace generated by {vi | i ∈ S}.

The flats of the braid arrangement Bn are in correspondence with the (unordered)
partitions of [n], and the lattice of flats of Bn is just the lattice of partitions of [n].
Similarly, each flat of a sweep oriented matroid can be associated to a partition, and
the sweeps corresponding to orderings of this partition correspond to the covectors
with this zero-pattern.

We will need the oriented and unoriented notions of weak maps, which are the
matroidal version of perturbing a configuration to a more special position. If M and
M′ are two oriented matroids on the same ground set E , we say that there is a weak
map fromM toM′ if for every covector X ∈M′, there is a covector Y ∈M such that
X � Y . Note that every strong map is also a weak map, but not the other way round
(the definition of strong maps is given in Sect. 3.3). IfM andM′ are two unoriented
matroids on the same ground set E , we say that there is a weak map fromM toM′ if
for any subset F ⊆ E we have rkM′(F) ≤ rkM(F). Note that a weak map between
oriented matroids induces a weak map on the underlying unoriented matroids (cf. [17,
Cor. 7.7.7]).

The idea behind the Dilworth truncation is the following: ifF is a geometric lattice
and we remove the elements of rank 1, we obtain a poset F ′ that is not necessarily
a geometric lattice. The most generic way to augment it with all the joins needed to
fulfill the semimodularity condition gives rise to a matroid called the first Dilworth
truncation ofF . The construction works in more generality when the elements of rank
≤ k are removed, giving rise to the kth Dilworth truncation, but we will not need it in
such generality ([29], see also [22]).

Definition 5.1 [22, Prop. 7.7.5]LetMbe amatroid onground set E . The first Dilworth
truncationofM, denoted D1(M), is definedon the ground set

(E
2

)
and its rank function

is given by:

rkD1(M)(∅) = 0,

rkD1(M)(F) = min
S∈S(F)

rS(F) for ∅ �= F ⊆
(

E

2

)
,
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where S (F) is the set of (unordered) partitions S = {F1, . . . , Fl} of F (F = F1 ∪
· · · ∪ Fl , Fk �= ∅ for all k ∈ [l], and Fk ∩ Fh = ∅ for all k �= h) and rS(F) =(∑l

k=1 rkM(
⋃{i, j | (i, j) ∈ Fk})

)− l.

The flats of rank 1 of D1(M) are exactly the flats of rank 2 (i.e. the lines) of
M. As noted by Brylawski [22] and Mason [61, Sec. 2.1], in the realizable case
the Dilworth truncation can be geometrically realized by intersecting all the lines
of M with a generic affine hyperplane. If A is generic enough (in the sense that
incomparable flats spanned by its subsets are never parallel), then the hyperplane at
infinity fulfills this genericity condition and Msw( Ā) is the first Dilworth truncation
of Mlit( Ā). Otherwise, we only get a weak map of D1(Mlit( Ā)), as Msw( Ā) will
be in less general position. This result extends to (not necessary realizable) sweep
oriented matroids.

Theorem 5.2 Let M be a sweep oriented matroid on
([n]
2

)
. Then there is a weak map

from D1(Mlit) to M.

The proof needs an auxiliary lemma.

Lemma 5.3 Let Mlit be the little oriented matroid of the sweep oriented matroid M.
If I is a flat of Mlit of rank at least two, and J is the minimal flat in M that contains{
(i, j)

∣∣ i, j ∈ I
}
, then rkM(J ) = rkMlit(I )− 1.

Proof Let I ′ = {(i, j) ∈ ([n]2
) ∣∣ i, j ∈ I }. ThenM∣∣

I ′ is a sweep oriented matroid with

little orientedmatroidMlit
∣∣
I , and their respective ranks are rkMlit(I )−1 and rkMlit(I )

by Lemma 4.4. Therefore, rkM(J ) = rkMlit(I ) − 1, because the rank function of a
restriction is just the restriction of the rank function, see [22, Prop 7.3.1]. ��

Proof of Theorem5.2 We want to show that rkM(G) ≤ rkD1(Mlit)(G) for every G ⊆
([n]
2

)
. Let F be a minimal flat of D1(Mlit) that contains G, so that rkD1(Mlit)(F) =

rkD1(Mlit)(G). Then there exists an unordered partition {I1, . . . , Il} of a subset of [n]
into flats of Mlit of rank at least two such that F = ⊔l

k=1
{
(i, j)

∣∣ i, j ∈ Ik
}
and

rkD1(Mlit)(F) =∑l
k=1(rkMlit(Ik)− 1).

Indeed, let S = {F1, . . . , Fl} be a partition of F that minimizes rS(F), and let
Ik =⋃{

i, j
∣∣ (i, j) ∈ Fk

}
. The submodular inequality shows that rkMlit(I1 ∪ I2)−

1 ≤ rkMlit(I1)+ rkMlit(I1)− 2 whenever I1 ∩ I2 �= ∅. We can therefore assume that
the Ik’s are disjoint. Moreover, these parts Ik have to be flats of Mlit. Otherwise, if
there was some e /∈ Ik such that rkMlit(Ik) = rkMlit(Ik ∪ {e}), then we could add to
F all the pairs (i, e) and (e, i) with i ∈ Ik without augmenting its rank, but F was
taken to be a flat.

Let Jk be the minimal flat in M that contains
{
(i, j)

∣∣ i, j ∈ Ik
}
; and let J be the

join of all the Jk in the lattice of flats of M. The submodularity of geometric lattices
implies that rkM(J ) ≤∑l

k=1 rkM(Jk). Moreover, such a J contains all the Jk , hence
it contains F , which contains G; and therefore rkM(G) ≤ rkM(J ). We conclude by
Lemma 5.3, that implies that for any k, rkM(Jk) = rkMlit(Ik)− 1. ��
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In view of this result, we will say that a sweep oriented matroid M is Dilworth
if the weak map predicted by Theorem 5.2 is actually an equality and we have M =
D1(Mlit).

This is the case if for any flat F ofM associated to a partition I = (I1, . . . , Il) we
have

rkM(F) =
(

l∑

k=1
rkMlit(Ik)

)

− l. (6)

In other words, coplanarities inM are induced by coplanarities inMlit. For sweep
oriented matroids that come from a point configuration, it prevents the case where
some subspaces spanned by disjoint subsets of points are parallel.

Note that Dilworth sweep oriented matroids provide an oriented version of the
matroid operation of Dilworth truncation. However, contrary to the unoriented case,
such a truncation is often not unique andmay evennot exist, as shownbyTheorem4.13.

Even if Theorem 5.2 only works at the level of unoriented matroids, we expect that
a stronger statement holds at the level of oriented matroids. The following conjecture
is true for sweep oriented matroids of rank 2 (by [17, Thm. 6.3.3]), and for sweep
oriented matroids arising from point configurations (it suffices to make a generic
projective perturbation that removes unwanted parallelisms).

Conjecture 5.4 For any sweep oriented matroidM there is a Dilworth sweep oriented
matroid M′ such that there is a weak map from M′ to M, and M and M′ have the
same little oriented matroid.

5.2 Bounds on the Number of Sweep Permutations

One motivation for studying the lattice of flats of an oriented matroid is that it com-
pletely determines its f -vector, as shown by the celebrated Las Vergnas-Zaslavsky
Theorem [17, Thm 4.6.4].

Theorem 5.5 The number of topes of an oriented matroid M only depends on its
lattice of flats F . More precisely, this number is:

(−1)rχF (−1),

where r is the rank of M, and χF is the characteristic polynomial of F .

We can therefore adapt [32, Thm. 3.4],3 and [80, Thm. 7] to oriented matroids. As
noted by Stanley in [80], for fixed r the bound is a polynomial in n of degree 2(r −1).

3 There is a small typo in the statement of [32, Thm. 3.4] but the correct statement can be recovered from
[32, Cor. 3.2] with d = n − k − 1.
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Theorem 5.6 Let M be a sweep oriented matroid on
([n]
2

)
of rank r . Then its number

of sweep permutations is bounded from above by:

|�(M)| ≤
� r−1

2 �∑

i=0
2c(n, n − r + 1+ 2i),

where the c(n, n − i) are the unsigned Stirling numbers of the first kind.
The equality is obtained for example for realizable sweep oriented matroids that

come from generic configurations of n points in R
r−1.

Proof We demonstrate how the proof of [32, Thm. 3.4] and [80, Thm. 7] extends
to our set-up. We repeat the main ideas for the reader’s convenience and refer to
these references for more details. We denote by Gr

n the geometric lattice obtained by
removing all elements of rank greater than r from the Boolean lattice on [n] and adding
a top element. This is the lattice of flats of any generic point configuration of n points
in R

r−1. The computation and evaluation of the characteristic polynomial of D1(Gr
n)

gives the right hand side of the inequality (see [32, Co. 3.2]), which is the number of
topes of any oriented matroid whose lattice of flats is D1(Gr

n) via Theorem 5.5. This
is the case for the sweep oriented matroids arising from generic configurations.

By [58, Cor. 9.3.7], it suffices to show that there is a weak map from D1(Gr
n) to

M, because this implies that the coefficients of the characteristic polynomial of M
are bounded by those of the characteristic polynomial of D1(Gr

n). Note that for any
subset F ⊆ [n], we have rkGr

n
(F) = min(|F |, r). Like in any matroid, Mlit satisfies

rkMlit(F) ≤ |F |, and hence there is a weak map from Gr
n to Mlit. It follows from

Definition 5.1 of the Dilworth truncation by its rank function that this induces a weak
map from D1(Gr

n) to D1(Mlit). It follows from Theorem 5.2 that there is a weak map
from D1(Gr

n) toM. ��

6 Pseudo-sweeps

Even if the little oriented matroid does not change, the poset of sweeps of a point
configuration is not invariant under admissible projective transformations (in the sense
of [89, App. 2.6]). In this section we describe a larger poset, the poset of pseudo-
sweeps, that contains the sweeps with respect to all possible choices of “hyperplane
at infinity”. It is a poset of cellular strings, and as such it can be defined at the level
of oriented matroids. Thus it exists even for those oriented matroids that are not little
oriented matroids of any sweep oriented matroid.

6.1 Pseudo-sweeps

With the presentation of SP(A) as amonotone path polytope introduced in Sect. 2.3.3,
we know that sweep permutations of a point configuration A can be interpreted as
coherent monotone paths of the zonotope Z( Ā) with respect to a linear form (which
we called the height). Non-coherent monotone paths also give rise to permutations of
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the elements of A, which we will call pseudo-sweep permutations. They can be read
in terms of k-sets. A k- set of A is a k-element subset S ⊆ A for which there is an
affine hyperplane strictly separating S from A � S. See [62, Ch. 11] for background.

For simplicity, assume that A = (a1, . . . , an) ∈ R
d×[n] does not contain repeated

points. A pseudo-sweep permutation of A is a permutation σ ∈ Sn such that{
aσ(i)

∣∣ 1 ≤ i ≤ k
}
is a k-set for all 1 ≤ k ≤ n. Note that we are still sweeping

with a hyperplane, although we are allowed to slightly change its direction every time
the hyperplane hits a point, as long as the new hyperplane does not cross one of the
already visited points.

This point of viewcanbe extended to obtain orderedpartitions (and lift the constraint
of not having repeated points). Consider a sequence of affine functionals γr (x) =
〈ur , x〉 − cr for 1 ≤ r ≤ m such that for each point ai ∈ A there is an r with
γr (ai ) = 0, γs(ai ) > 0 for all s < r , and γs(ai ) < 0 for all r < s; and such that for
each 1 ≤ r ≤ m there is some i such that γr (ai ) = 0. The sets Ir =

{
i
∣∣ γr (ai ) = 0

}

with 1 ≤ r ≤ m form an ordered partition of [n], which we call a pseudo-sweep of A.
There is another way to interpret pseudo-sweeps of A and monotone paths/cellular

strings of Z( Ā) in terms of hyperplane arrangements, which extends to oriented
matroids.

A gallery of a hyperplane arrangement (without parallels) is a sequence of chambers
(topes) such that adjacent chambers are separated by exactly one hyperplane. More
generally, a gallery of an oriented matroid is a collection of topes T 0, . . . , T m+1 such
that S(T i , T i+1) is a parallelism class for all i . A gallery is minimal if no parallelism
class is crossed twice. We will work with acyclic oriented matroids and we will be
interested in their minimal galleries from +n to its opposite −n .

This definition can be relaxed to accept paths that go accross some covectors (other
than subtopes). A cellular string of M with respect to +n is a sequence of non-
tope covectors (X1, . . . , Xm) that are such that X1 ◦ +n = +n , Xm ◦ −n = −n ,
and Xi ◦ −n = Xi+1 ◦ +n for all i . This notation is consistent with the notion of
cellular string for a polytope with respect to a linear functional given in Sect. 2.3.3.
Indeed, for a hyperplane arrangement which is the normal fan of a zonotope Z, its
cellular strings are equivalent to the cellular strings of Z with respect to a linear
functional that is minimized at the vertex corresponding to +n . (Minimal galleries are
in correspondence with monotone paths.)

Note that an allowable sequence is just a cellular string on the braid arrangement
based at the tope indexed by the permutation id = (1, 2, . . . , n), and that its galleries
correspond to simple allowable sequences.

The following lemma sums up the relations between these objects in the realizable
case. It is illustrated in Fig. 11, where the example of B2 from Figs. 4 and 7 is revisited.

Lemma 6.1 Let A = (a1, . . . , an) ∈ R
d×[n] be a point configuration; let H Ā be

the hyperplane arrangement in R
d+1 composed of the linear hyperplanes H i ={

x ∈ R
d+1 ∣∣ 〈x , āi 〉 = 0

}
(oriented towards āi ) for ai ∈ A, where ā = (a, 1);

and let Z( Ā) =∑n
i=1[−āi , āi ] be the associated zonotope.

There is a bijection between:

(i) pseudo-sweeps of A,
(ii) cellular strings of H Ā with respect to the all-positive tope +n, and
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Fig. 11 The hyperplane arrangementHB̄2
. To depict the arrangement, it is intersected with the unit sphere

and stereographically projected from the south pole (0, 0,−1).We obtain an arrangement of circles, oriented
so that the positive side is the interior. Two sweeps, corresponding to the permutation 2̄, 1̄, 1, 2 and the
ordered partition 2̄1, 1̄2 are depicted; and also the pseudo-sweep that is not a sweep corresponding to
the permutation 1̄, 2, 1, 2̄. (This resumes the example of Fig. 7, where the monotone paths corresponding
to these two permutations were depicted.) To represent these pseudo-sweeps, an oriented ray from the
all-positive tope (containing the origin) to its opposite (at infinity) is depicted. The order in which the
circles are crossed gives the corresponding permutation. If the ray meets more than one circle at the same
time, then one recovers an ordered partition. Note that this gives an alternative method to construct the
sweep hyperplane arrangement SH(B2). Indeed, it is not hard to see that when one does this procedure
(intersection of H Ā with the unit sphere plus stereographic projection), the hyperplanes spanned by the
origin and the intersections of all possible pairs of spheres are precisely those of SH(A). This is why, under
this representation, sweeps correspond to straight rays emanating from the origin

(iii) h-monotone cellular strings of Z( Ā) (h-coherent subdivisions of h(Z( Ā)));

and if moreover A does not have repeated points, then there is a bijection between:

(i) pseudo-sweep permutations of A,
(ii) minimal galleries of H Ā from the tope +n to its opposite −n, and

(iii) h-monotone paths of Z( Ā).

Proof The proof amounts simply to translate between definitions (the definition of
cellular strings induced by a projection was given in Sect. 2.3.3). We omit the details
and only give some indications.

To a sequence of affine functionals γr (x) = 〈ur , x〉 − cr for 1 ≤ r ≤ m such that
for each point ai ∈ A there is an r with γr (ai ) = 0, γs(ai ) > 0 for all s < r , and
γs(ai ) < 0 for all r < s; we can associate

(i) the ordered partition I1, . . . , Im of [n] given by Ir =
{
i
∣∣ γr (ai ) = 0

}
,

(ii) the sequence of non-tope covectors X1, . . . , Xm obtained by considering the
sign of evaluating γr on each of the points of A, and

(iii) the sequence F1, . . . , Fm of faces of Z( Ā), where Fr is the face of Z( Ā)

minimized by the linear functional �r : R
d+1 → R given by (x, xd+1) →

〈ur , x〉 − cr xd+1.

One can easily check that the conditions imposed on γ1, . . . , γm imply that these
sequences are a pseudo-sweep of A, a cellular string of H Ā with respect to the
all-positive tope +n , and a h-monotone cellular string of Z( Ā), respectively. And
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Fig. 12 The pseudo-sweeps of the point configuration B2. Without the trivial sweep, they index a non-pure
cellular complex that retracts to the boundary of the sweep polytope SP(B2) from Fig. 4, a 1-sphere

conversely, for any pseudo-sweep or cellular string ofH Ā or Z( Ā), one can find such
a sequence of affine functionals. This is direct for pseudo-sweeps and cellular strings
of H Ā. For cellular strings F1, . . . , Fm of Z( Ā), we associate to each face Fr an
affine map γr obtained by restricting the linear functional minimized by Fr in Z( Ā)

to the hyperplane xd+1 = 1.
The map that associates the partition I1, . . . , Im to the sequence X1, . . . , Xm with

(Xr )i = 0 if i ∈ Ir , (Xr )i = − if i ∈ Is with s < r and (Xr )i = + if i ∈ Is with
s > r , is hence a bijection between pseudo-sweeps and cellular strings of H Ā. And
similarly the map that sends a cellular string X1, . . . , Xm ofH Ā to the cellular string
F1, . . . , Fm of Z( Ā) given by

Fr =
∑

(Xr )i=+
{−āi } +

∑

(Xr )i=−
{āi } +

∑

(Xr )i=0
[−āi , āi ]

is also a bijection.
The second part of the statement arises from the observation that these bijections

are order-preserving. ��
In particular, we can define pseudo-sweeps of a realizable oriented matroid in terms

of its cellular strings. We extend this definition to abstract oriented matroids.

Definition 6.2 A pseudo-sweep of an acyclic oriented matroid M is an ordered
partition (I1, . . . , Im) arising from a cellular string (X1, . . . , Xm) of M via Ii =
S(Xi ◦+n, Xi ◦−n), that is, Ii is the set of zeros of Xi .
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Remark 6.3 If A′ is a (full-dimensional) admissible projective transformation of A,
then any sweep of A′ gives rise to a pseudo-sweep of A. Indeed, under an admissible
projective transformation a pencil of parallel hyperplanes is mapped into a pencil of
hyperplanes containing a codimension 2 flat that does not intersect conv(A). The k-
sets defined by these hyperplanes clearly give rise to a pseudo-sweep. However, not all
pseudo-sweeps arise this way. For example, if {a1, . . . , a6} are the vertices of a regular
hexagon in cyclic order, then [1, 2, 3, 6, 5, 4] is a pseudo-sweep permutation that is
not a sweep of any of its projective transformations. (Because in every realization the
vector a6 − a3 is a positive linear combination of the vectors a1 − a2 and a5 − a4.)

Remark 6.4 (Pseudo-sweeps and shellings) One of Stanley’s motivations for studying
sweep permutations in [80] is that they are in correspondence with Bruggesser–Mani
line-shelling orders of polytopes [18]. For a convex polytope P and a line � through its
interior, this is the order in which the facets of P become visible to a point following �

from the interior of P to infinity, plus the order in which the remaining facets lose
visibility when the point returns from the opposite side to the interior of P along �.
Now, let P◦ be the polar of P with respect to an interior point p of P , and let � be
a line through p. (Here, we are considering the usual projective polarity, as in [62,
Sec. 5.1], but after a translation by − p.) Since � contains p, which is mapped to
the hyperplane at infinity by polarity, the set of points in � corresponds to a family of
parallel affine hyperplanes orthogonal to a common direction. The shelling order given
by � coincides with the sweep permutation of the vertices of P◦ with respect to this
direction. Thus, sweep permutations of a point configuration in convex position are in
bijection with line shelling orders of the polar polyhedron for lines that go through the
center of polarity (here, the origin, which is the image of the hyperplane at infinity).

Actually, not only sweeps, but all pseudo-sweeps, give rise to shelling orders. And
this is true in the more general level of oriented matroids. Indeed, every pseudo-sweep
of M induces a shelling order of the (Edmonds-Mandel) face lattice of the tope +n

[36, Sec. 3.VI], see also [17, Sec. 4.3]. (To the best of our knowledge, it is still an
open problem whether the opposite of this lattice, called the Las Vergnas face lattice,
is shellable.) Pseudo-sweep shellings have been recently rediscovered by Heaton and
Samper in the special case ofmatroid polytopes under the nameof broken line shellings
[56].

6.2 The Poset of Pseudo-sweeps and the Generalized Baues Problem

Just like sweeps, pseudo-sweeps can be naturally ordered by refinement.We denote by
�̃(M, T ) the poset of pseudo-sweeps ofM. Topological properties of this poset have
been studied in the context of a special case of the generalized Baues problem (GBP)
of Billera and Sturmfels [23] concerning the homotopy of the poset of subdivisions
induced by a projection of polytopes; see [71] for a nice survey. We recall that by
the topology of a poset P we mean the topology of its order complex �(P): the
simplicial complex whose simplices are the chains of P (see [14] or [17, Sec. 4.7]).

Billera, Kapranov and Sturmfels [16, Thm. 2.3] showed that the strong version of
the GBP, as considered in [71, Q. 2.3], holds for monotone paths of polytopes. This
implies that, in the realizable case, the poset of sweeps of a point configuration is a
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deformation retract of the poset of pseudo-sweeps. For the case of zonotopes, Björner
[13, Thm. 2] gave an alternative combinatorial proof for the weak version of the GBP
(in the sense of [71, Q. 2.2]) that extends to oriented matroids. Namely, he proved
that the poset of pseudo-sweeps of an oriented matroid is homotopy equivalent to a
sphere (once the trivial sweep ([n]) is removed). A further generalization to shellable
CW-spheres, for an appropriate definition of cellular strings induced by shellings, was
proven in [2].

Theorem 6.5 ([13, Thm. 2]) The poset of pseudo-sweeps of an oriented matroid M
of rank r with respect to a tope T without the trivial sweep has the homotopy type of
an (r − 2)-sphere.

Note that, by Corollary 3.9, for oriented matroids that admit a sweep oriented
matroid (in the sense that they are the little oriented matroid of some sweep oriented
matroid) the poset of sweeps is an explicit (r − 2)-sphere embedded in the poset of
pseudo-sweeps. We will show that it is in fact a deformation retract; thus proving
the strong GBP for cellular strings of little oriented matroids. In the realizable case,
this holds by [16, Thm. 2.3]. In the more general case, Björner also remarks that he
expects the poset of pseudo-sweeps to retract to a subcomplex homeomorphic to a
(r − 2)-sphere [13, below Thm. 2], but does not provide a candidate subcomplex.

Theorem 6.6 Let Mlit be the little oriented matroid of a sweep oriented matroid Msw.
Then the poset of sweeps ofMsw is a strong deformation retract of the poset of pseudo-
sweeps of Mlit; and the poset of non-trivial sweeps is a strong deformation retract of
the poset of non-trivial pseudo-sweeps.

The proof of Theorem 6.6 needs some auxiliary results concerning (combinatorial)
homotopy theorems. We refer to [14] for a very good introduction to the topic. First,
we present a result that allows us to weaken the statement to prove, as a consequence of
the fact that the homotopy extension property holds for order complexes of subposets
(c.f. [53, Ch. 0]). Then we recall three results on the homotopy type of posets: the
Carrier Lemma, Quillen’s Fiber Theorem and Babson’s Lemma (the last two being
corollaries of the first one). Next, inspired by [2], we use the function that returns
the first part of an ordered partition to show the contractibility of some subsets of
pseudo-sweeps and sweeps, thanks to Babson’s Lemma. Finally, we combine all these
results to prove that the inclusion induces a homotopy equivalence.

The first result that we need shows that it suffices to prove a weaker statement,
namely that the inclusion is a homotopy equivalence. A CW pair of a cell complex
(such as a simplicial complex) is a pair (X , A) consisting of a cell complex X and a
subcomplex A. In particular, if S is a subposet of P , then (� (P) ,� (S)) is a CW
pair.

Lemma 6.7 ([53, Prop. 0.16 and Cor. 0.20]) If (X , A) is a CW pair and the inclusion
A ↪→ X is a homotopy equivalence, then A is a strong deformation retract of X.

Wewill use the following version of the Carrier Lemma, from [14]. For a simplicial
complex� and a space T , letC : � → 2T be an order-preserving map (C(σ ) ⊆ C(τ )

for all σ ⊆ τ ). A mapping f : ‖�‖ → T is carried by C if f (‖σ‖) ⊆ C(σ ) for
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all σ ∈ �, where ‖·‖ denotes the associated geometric realization of the simplicial
complex.

Lemma 6.8 (Carrier Lemma [14, Lem. 10.1]) Let C : � → 2T be an order-preserving
map such that C(σ ) is contractible for all σ ∈ �. If f , g : ‖�‖ → T are both carried
by C, then f and g are homotopy equivalent, f ∼ g.

We will also need Quillen’s Fiber Theorem [70]. For a poset Q and x ∈ Q,
let Q≥x =

{
y ∈ Q

∣∣ y ≥ x
}
. For the claim about the carrier, see the proof in [14,

Thm. 10.5].

Theorem 6.9 (Quillen’s Fiber Theorem [70]) Let f : P → Q be an order-preserving
map of posets. If f −1(Q≥x ) is contractible for all x ∈ Q, then f induces a homotopy
equivalence between �(P) and �(Q) whose homotopy inverse is carried by C(σ ) =
f −1(Q≥min σ ).

For this variant of Quillen’s Fiber Theorem, known as Babson’s Lemma [7, Lem. 1
in Sec. 0.4.3], see also [82, Lem. 3.2].

Lemma 6.10 (Babson’s Lemma [7]) If an order-preserving map of posets f : P → Q
fulfills

(i) f −1(x) is contractible for all x ∈ Q, and
(ii) f −1(x) ∩ P≥y is contractible for all x ∈ Q and y ∈ P with f (y) ≤ x,

then f induces a homotopy equivalence between �(P) and �(Q).

Moreover, we will need the following lemmas certifying the contractibility of
certain subsets of pseudo-sweeps and sweeps. If F ⊆ [n] is the zero-set of a non-
negative covector Z ofMlit, we denote by�(Msw)⊆F the sets of sweeps (I1, . . . , Im)

with I1 ⊆ F . Similarly, we denote by �̃(Mlit,+n)⊆F the sets of pseudo-sweeps
(I1, . . . , Im) with I1 ⊆ F .

Lemma 6.11 Let F ⊆ [n] be the zero-set of a non-negative covector Z of Mlit, then
�̃(Mlit,+n)⊆F is contractible.

Proof The proof of [2, Lem. 5.5] can be adapted to prove that �̃(Mlit,+n)⊆F is
contractible. First, we note that with the same proof we can make a slightly stronger
statement. Namely, they define a map f : ω(P,O, a) → D(P,O, a), between
certain posets ω(P,O, a) and D(P,O, a) that we describe below, and show that
it induces a homotopy equivalence. However, the exact same proof also shows that
f : ω(P,O, a) ∩ f −1(I ) → I induces a homotopy equivalence for any order ideal
(lower set) I of D(P,O, a).

To match their notations, we call P the poset opposite to the big face lattice ofMlit

(the atoms of P are the topes of Mlit and its 1-skeleton is the tope graph) and O the
orientationof the topegraph that goes from−n to+n . For a topea, the posetω(P,O, a)

is the poset of partial cellular strings ending at a (i.e. sequences of non-tope covectors
(X1, . . . , Xm) such that X1 ◦−n = −n , Xm ◦+n = a, and Xi ◦+n = Xi+1 ◦−n for
all i). Therefore taking a = amax = +n we have that ω(P,O, amax ) = ω(P,O) is
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exactly the poset of cellular strings of Mlit with respect to −n , which is in bijection
with �̃(Mlit,+n). However, their partial order is the opposite of our refinement order
and the cellular strings have to be read in reverse order. The poset D(P,O, a) is the
poset of the non-tope covectors X such that X ◦ +n = a. Therefore, D(P,O, amax )

corresponds to the half-interval [0,+n) in the face lattice of Mlit.
If we take I the lower set of D(P,O, amax ) corresponding to the interval [Z ,+n),

their function f : ω(P,O, amax ) ∩ f −1(I ) → I corresponds to the function that
sends the pseudo-sweep (I1, . . . , Im) ∈ �̃(Mlit,+n)⊆F to the non-negative covec-
tor Y ∈ [Z ,+n) with zero-set I1. Hence it induces a homotopy equivalence from
�̃(Mlit,+n)⊆F to [Z ,+n), which has a contractible order poset because it has a
unique minimal element. ��

We wish to prove the same when restricted to sweeps. For this, we use an aux-
iliary result from [9]. Let M ⊆ {+,−, 0}E be the set of covectors of an oriented
matroid on E . Then, each element e ∈ E defines two halfspaces

{
X ∈M

∣∣ Xe = +}
and

{
X ∈M

∣
∣ Xe = −}, and a hyperplane

{
X ∈M

∣
∣ Xe = 0

}
.

Lemma 6.12 Let M be the set of covectors of an oriented matroid. Then, any non-
empty intersection of one or more halfspaces and hyperplanes, seen as a subposet of
the face lattice, is contractible.

Proof This is a consequence of [9, Prop. 15]. Indeed, an intersection of halfspaces and
hyperplanes is a COM, because it satisfies Face symmetry and Strong elimination, see
[9, Def. 1]. ��
Lemma 6.13 Let F ⊆ [n] be the zero-set of a non-negative covector Z of Mlit, then
�(Msw)⊆F is contractible.

Proof Inspired by the proof of [2, Lem. 5.5], we apply Babson’s Lemma 6.10 with
the function f from the subposet of sweeps �(Msw)⊆F to the half-open interval of
the face lattice [Z ,+n) that sends a sweep (I1, . . . , Im) to the non-negative covector
with zero-set I1.

Let Y be a covector in [Z ,+n), with zero-set G ⊆ F .

(i) f −1(Y ) is the set of sweeps whose first part is G. It is not empty because Y must be
of the form Ỹ 1 for a covector Ỹ ∈Msw (in the sense of Definition 4.2), and such
Ỹ corresponds to a sweep with first part G. Moreover, f −1(Y ) is the intersection
of halfspaces

{
X ∈Msw

∣∣ X(i, j) = +} for all i ∈ G, j /∈ G and i < j , and{
X ∈Msw

∣∣ X(i, j) = −} for all i ∈ G, j /∈ G and i > j . By Lemma 6.12 it is
contractible.

(ii) Let J = (J1, . . . , Jr ) be a sweep in�(Msw)⊆F such that f (J ) ≤ Y , i.e. G ⊆ J1.
The intersection f −1(Y )∩ (�(Msw)⊆F )≥J is the set of sweeps that refine J and
whose first part is G. As for f −1(Y ), this set is an intersection of halfspaces. It
is not empty because it contains the sweep corresponding to J ◦ Ỹ . Hence it is
contractible.

It follows from Babson’s Lemma that �(Msw)⊆F is homotopy equivalent to
[Z ,+n), which has a contractible order poset because it has a uniqueminimal element.

��
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Proof of Theorem 6.6 To simplify the exposition, we denote by P = �̃(Mlit,+n) the
poset of pseudo-sweeps of Mlit with respect to +n , by S = �(Msw) the poset of
sweeps of Msw, and by Q = [0,+n) the half-open interval between 0 and +n in the
face lattice of Mlit (this is its Edmonds-Mandel lattice without the top element).

By Lemma 6.7 it suffices to show that the inclusion map ι : S ↪→ P induces a
homotopy equivalence. As in the proof of Lemmas 6.11 and 6.13, let f : P → Q
be the map that sends a pseudo-sweep (I1, . . . , Im) to the non-negative covector with
zero-set I1.

S = �(Msw) P = �̃(Mlit,+n)

Q = [0,+n)

ι

fg

For any covector Z ∈ Q with zero-set F , we have that ( f ◦ ι)−1(Q≥Z ) =
�(Msw)⊆F , which is contractible by Lemma 6.13.

We conclude by Quillen’s Theorem 6.9 that f ◦ ι : S → Q induces a homo-
topy equivalence with a homotopy inverse g : Q → S carried by C(σ ) =
( f ◦ ι)−1(Q≥min σ ).

We will show that g ◦ f : P → S is a homotopy inverse of the inclusion map
ι : S ↪→ P . We trivially have that g ◦ f ◦ ι ∼ idS from the fact that ( f ◦ ι) and g are
homotopy inverses.

It remains to show that ι ◦ g ◦ f ∼ idP . Now, for σ in the order complex
of P , let C ′(σ ) = ∥

∥ f −1(Q≥min f (σ ))
∥
∥. Note that f −1(Q≥min f (σ )) is of the form

�̃(Mlit,+n)⊆F where F is the first part of the smallest ordered partition in σ . It is
therefore contractible by Lemma 6.11. We claim that idp and ι◦ g ◦ f are both carried
by C ′, and thus that they must be homotopy equivalent by Lemma 6.8. Indeed, idP is
trivially carried by C ′; and so is ι ◦ g ◦ f because g is carried by C .

The same proof works if we restrict to non-trivial sweeps in S and P . ��

7 Allowable Graphs of Permutations and Sweep Acycloids

In this section we present an alternative generalization of allowable sequences to
high dimensions that is closer to the original formulation, in terms of moves between
permutations. As we will see, the resulting objects naturally have the structure of
acycloids, and we recover sweep oriented matroids as a special case.

7.1 Allowable Graphs of Permutations

In this setting it is useful to see a permutation σ ∈ Sn as the word [σ(1), . . . , σ (n)]
on the alphabet [n]. A substring of σ is then a contiguous sequence of characters, of
the form [σ( j), σ ( j + 1), . . . , σ (k)] for certain 1 ≤ j < k ≤ n. Such a substring is
said to be increasing if σ( j) < σ( j + 1) < . . . < σ(k).
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Definition 7.1 Let � ⊆ Sn be a set of permutations, and σ, σ ′ ∈ �. We define
an allowable sequence in � from σ to σ ′ as a sequence of permutations of �:
σ = σ0, . . . , σl = σ ′ such that

(M1) for each 1 ≤ k ≤ l the move from σk−1 to σk consists of reversing a set mk of
one or more disjoint substrings of σk−1;

(M2) each pair i, j is reversed at most once along the path. In other words, there is at
most one move mk such that i and j are in the same substring of mk .

A move is simple if it consists of a single substring of two elements; and an
allowable sequence is simple if all its moves are.

For example, (1, 3, 2, 6, 5, 4)
[3,2],[6,5,4]−−−−−−−→ (1, 2, 3, 4, 5, 6) and (6, 5, 4, 3, 1, 2)

[1,2]−−→
(6, 5, 4, 3, 2, 1) are valid moves, the second being moreover simple. The sequence

(1, 2, 3, 4, 5)
[1,2,3]−−−→ (3, 2, 1, 4, 5)

[1,4]−−→ (3, 2, 4, 1, 5)
[2,4],[1,5]−−−−−→ (3, 4, 2, 5, 1)

is an allowable sequence from (1, 2, 3, 4, 5) to (3, 4, 2, 5, 1) in S5; whereas

(1, 2, 3, 4, 5)
[1,2,3]−−−→ (3, 2, 1, 4, 5)

[1,4]−−→ (3, 2, 4, 1, 5)
[3,2,4],[1,5]−−−−−−−→ (4, 2, 3, 5, 1)

is not an allowable sequence in S5, because the pair {2, 3} is reversed twice. In fact,
in an allowable sequence from the identity permutation, only increasing substrings
can be reversed. Note that if there is a move m from σ to γ , then from γ to σ there
is the reverse move m whose substrings are s = [sk, . . . , s0] for each substring
s = [s0, . . . , sk] of m. This way, every allowable sequence can be reversed.

Anotherway to describe allowable sequences is by looking at the set of pairs that are
reversed at each move. For a permutation σ , we denote by inv(σ ) its set of inversions;
that is, the set of pairs (i, j) ∈ ([n]2

)
such that i < j and σ(i) > σ( j). We denote by

# the symmetric difference operation on sets.

Definition 7.2 If there is a movem from a permutation σ to a permutation γ , we define
the set of inversions of the move m by invm= inv(σ )# inv(γ ).

For example, for the move (1, 3, 2, 6, 5, 4)
[3,2],[6,5,4]−−−−−−−→ (1, 2, 3, 4, 5, 6) we obtain the

set of inversions {(2, 3), (4, 5), (4, 6), (5, 6)}.
The conditions defining allowable sequences become:

(M1’): if (a, b) or (b, a) is in invmk and (b, c) or (c, b) is in invmk , then (a, c) or (c, a)

is in invmk ;
(M2’): the inversion sets invmk are pairwise disjoint.

Note also that invm = invm .

Remark 7.3 An allowable sequence in the sense of Goodman and Pollack in [44,
46–48] is exactly what we call an allowable sequence from id = (1, 2, . . . , n) to
id = (n, n − 1, . . . , 1) in Sn .

We need to introduce another concept before our main definition.
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Definition 7.4 A set of permutations � ⊆ Sn is symmetric if σ ∈ � for all σ ∈ �,
where σ is the reverse of σ , defined by σ(t) = σ(n − t + 1) for all t ∈ [n].
Definition 7.5 Consider a set of permutations� ⊆ Sn and a setL of moves such that:

(P1) � is symmetric,
(P2) for any σ, σ ′ ∈ �, there is an allowable sequence from σ to σ ′ whose moves

belong to L,
(P3) for m, s ∈ L, either invm = invs or invm ∩ invs = ∅.
The graph with vertex set � and whose edges are the pairs of permutations differing
by a move in L is an allowable graph of permutations.

An allowable graph of permutations is simple if L consists only of simple moves.

Lemma 7.6 The graph is completely determined by � and does not depend onL. More
precisely, σ, σ ′ ∈ � form an edge if and only if there is no σ ′′ ∈ � \ {σ } such that
inv(σ )# inv(σ ′′) � inv(σ )# inv(σ ′).

Proof Suppose that σ, σ ′ ∈ � form an edge. It means that there is a move m in Lwith
inversion set inv(σ )# inv(σ ′). Suppose that σ ′′ ∈ L satisfies inv(σ )# inv(σ ′′) ⊆
inv(σ )# inv(σ ′). For any move m′ in L along an allowable sequence from σ to σ ′′
we have invm′ ⊆ inv(σ )# inv(σ ′′), thus invm′ ∩ invm �= ∅. We deduce from (P3) that
invm′ = invm , thus inv(σ )# inv(σ ′′) = inv(σ )# inv(σ ′).

Reciprocally, suppose that σ, σ ′ ∈ � do not form an edge and let σ ′′ ∈ � \ {σ }
be the neighbor of σ on an allowable sequence from σ to σ ′. By (M2), we have
inv(σ )# inv(σ ′′) ⊆ inv(σ )# inv(σ ′), as if there was a pair in inv(σ )# inv(σ ′′)\
inv(σ )# inv(σ ′), then it would be reversed twice in the allowable sequence: first
between σ and σ ′′ and later between σ ′′ and σ ′. Moreover, σ ′ �= σ ′′ because σ and
σ ′′ form an edge, and thus inv(σ )# inv(σ ′′) �= inv(σ )# inv(σ ′). ��

We will therefore usually identify � with the corresponding allowable graph, and
directly call � an allowable graph of permutations.

Remark 7.7 The set of moves can be recovered from the graph by gathering all moves
between adjacent permutations in the graph.

Remark 7.8 If � forms an allowable graph of permutations and ω ∈ Sn , then ω ◦
� = {

ω ◦ σ
∣∣ σ ∈ �

}
is still an allowable graph of permutations. Sometimes it is

convenient to suppose that the identity permutation id belongs to �, as Goodman and
Pollack did, which can always be obtained by multiplying by an ω that is the inverse
of a permutation in �.

Remark 7.9 Note that in the case of a simple allowable graph of permutations Condi-
tion (P3) is redundant. However, the example of Fig. 13 shows that it is necessary in
the general case and this is why we needed to fix a set of moves in Definition 7.5.

In this example, a valid set of moves L would necessarily contain all the moves
represented with the arrows (and their reverse), which are all the singletons {[i, j]}
for (i, j) ∈ ([n]

2

)
. However, in order to satisfy Condition (P2), L also has to con-

tain the move {[1, 2], [3, 4]} represented by the dashed segment joining permutations
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Fig. 13 Example of a set of permutations that do not satisfy the definition of allowable graph of permutations.
Neither graphs with or without the dashed segment are partial cubes

(3, 4, 5, 2, 1) and (4, 3, 5, 1, 2), since there is no other allowable sequence between
these two permutations. Indeed, we can see that the edges adjacent to (3, 4, 5, 2, 1)
are labeled [2, 5] and [4, 5] but those pairs should not be reversed on an allowable
sequence to (4, 3, 5, 1, 2). Thus, both conditions (P3) and (P2) cannot be satisfied
simultaneously.

We need to have both conditions in order to have the structure of acycloids, as stated
in Theorem 7.12.

7.2 Sweep Acycloids

Acycloids are combinatorial objects widely studied in connection with the characteri-
zation of tope sets of oriented matroids, c.f. [41, 51]. They are equivalent to antipodal
partial cubes (see [57]), a concept well-studied in metric graph theory. A graph is a
partial cube if it is (isomorphic to) an isometric subgraph of a hypercube graph, and
it is antipodal (also called symmetric even [15]) if for every vertex v there exists
exactly one vertex ṽ, called the antipode of v, such that the distance from v to ṽ is
larger than the distance from v to any neighbor of ṽ.
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Following [51], we introduce acycloids in terms of its topes, which are subsets of
sign-vectors. We use the same notation for the notions of reorientation, support and
parallelism classes of oriented matroids from Sect. 3.1, which carry on verbatim to
arbitrary subsets of sign vectors.

Definition 7.10 A collection of sign-vectors T ⊆ {+,−, 0}E is the set of topes of an
acycloid if and only if it satisfies the following axioms4:

(T1) X , Y ∈ T implies X = Y (this set is called the support of the acycloid),
(T2) X ∈ T implies −X ∈ T ,
(T3) if X �= Y ∈ T then there exists f ∈ S(X , Y ) such that − f

X ∈ T .

These three axioms are satisfied by the topes of an oriented matroid but they are
not sufficient; there are examples of acycloids that are not oriented matroids, see [52,
Sec. 7].

To describe the link between allowable graphs of permutations and acycloids, we

associate a sign-vector Xσ in {+,−}([n]2 ) to each permutation σ ∈ Sn via the map (5).
For simplicity, we will sometimes implicitly identify permutations and sign-vectors
when it is clear from the context. For a set of permutations � ⊆ Sn , we denote

T� = {
Xσ

∣∣ σ ∈ �
} ⊆ {+,−}([n]2 ).

Lemma 7.11 Let � ⊆ Sn form an allowable graph of permutations, and let T� ⊆
{+,−}([n]2 ) be the set of sign-vectors associated to its permutations. Then the inversion
sets of the moves in L coincide with the parallelism classes of T�.

Proof First, the fact that � is symmetric and the existence of a valid path between
σ and σ for any σ ∈ � implies that any pair {i, j} is in the inversion set of at least
one move in L, which is necessarily unique by the disjointness condition (P3). Hence,
the inversion sets of the moves in L define equivalence classes on the pairs

([n]
2

)
. It is

straightforward to check that these coincide with the parallelism classes of T�. ��
Theorem 7.12 Let � ⊆ Sn form an allowable graph of permutations. Then T� ⊂
{+,−, 0}([n]2 ) is the set of topes of an acycloid.

Proof The support of all the covectors is
([n]
2

)
, and we have symmetry by definition.

Hence, it suffices to verify that T� satisfies the reorientation property (T3). Let X , Y ∈
T� and σ, γ ∈ � be the associated permutations. Let σ = γ0, . . . , γl = γ be an
allowable sequence from σ to γ . S(X , Y ) corresponds to the pairs reversed along this
path. Let Z be the sign-vector associated to γ1 by the map (5). Then Z is in T� and
Z =− invm X where m is the move from σ to γ1. Lemma 7.11 shows that invm is the
parallelism class of any pair {i, j} reversed by m. ��

We can characterize which acycloids arise from allowable graphs of permutations.
We do it in a slightly more general context.

4 Recall that the parallelism class f of f is the set of elements e ∈ E such that X f = Xe for all covectors
X or X f = −Xe for all covectors X . The reorientation −F X is the signed vector Z such that Z f = −X f
for all f ∈ F and Z f = X f otherwise. The separation set S(X , Y ) of covectors X , Y are the elements
e ∈ E such that (Xe, Ye) ∈ {(+,−), (−,+)}.
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Definition 7.13 A sweep acycloid is an acycloid on the ground set
([n]
2

)
such that

(i) its topes fulfill the transitivity condition from Lemma 3.8; namely for every cov-
ector X and every choice of 1 ≤ i < j < k ≤ n, the triple (X(i, j), X( j,k), X(i,k))

is orthogonal to the sign vector (+,+,−), and
(ii) its parallelism classes verify the transitivity condition Definition 7.2; namely, if

(i, j) or ( j, i) coincides with ( j, k) or (k, j), then it also coincides with (i, k)

or (k, i).

As we show in Proposition 7.15 below, sweep acycloids are essentially equivalent
to allowable graphs of permutations. The only nuance is that sweep acycloids might
have some elements outside its support, which under the map (5) would give rise
to some partitions that are not permutations. In this case, there would be pairs of
elements that belong to the same part in all the partitions. However, up tomerging non-
singleton parts and relabeling, one can suppose that these maximal ordered partitions
are permutations. We recover then an allowable graph of permutations.

These operations of merging and relabeling do not affect the tope-graphs.

Lemma 7.14 Let T ⊆ {+,−, 0}([n]2 ) be a sweep acycloid with support S ⊆ ([n]
2

)
. For

1 ≤ i < j ≤ n, if (i, j) /∈ S, then the restriction of T to
([n]�{ j}

2

)
is a sweep acycloid

with isomorphic tope-graph.

Proof That this restriction is a sweep acycloid is straigthforward from the definition.
Moreover, from the characterization in Lemma 3.8 one sees that for X ∈ T and
k �= i, j , the values of X on the pairs (i, k) (resp. (k, i)) and ( j, k) (resp. (k, j))
determine each other uniquely (the sign depending on the relative order of i, j, k),
because X(i, j) = 0. Therefore, there is a bijection between topes (resp. parallelism
classes) of T and topes (resp. parallelism classes) of the restriction. ��

If T is the tope set of a sweep acycloid, we denote by �T = {
IX
∣∣ X ∈ T

}
the set

of associated ordered partitions.

Theorem 7.15 If � ⊆ Sn forms an allowable graph of permutations, then T� is the
set of topes of a sweep acycloid. Conversely, if T is the tope set of a sweep acycloid
of full support

([n]
2

)
, then �T forms an allowable graph of permutations.

Proof Thefirst claim follows directly fromTheorem7.12. Indeed, the topes of the form
Xσ for a permutation σ ∈ Sn fulfill the transitivity condition fromLemma 3.8 by con-
struction. Moreover, the parallelism classes of T� are the moves of� by Lemma 7.11,
and they fulfill condition Definition 7.2 by definition.

For the second claim, note first that �T is clearly symmetric by (T2). Following
Lemma 7.11, we set L to be the moves whose inversion sets are parallelism classes
of the topes. By construction, two distinct moves in this family are either disjoint, or
they are reverse to each other and have the same set of inversions.

Finally, let σX , σY ∈ �T be the permutations associated to the topes X , Y ∈ T . We
will prove that they are joined by an allowable sequence by induction on the cardinality
of the symmetric difference of their inversion sets. By the reorientation property (T3),
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there is an element f ∈ S(X , Y ) such that Z =− f
X ∈ T . The parallelism class f

corresponds to amovem ∈ L such that invm ⊆ invσX # invσY . Hence, Z is associated
to a permutation σZ such that invσZ # invσY = (invσX # invσY )\ invm . By induction
there is an allowable sequence σZ → · · · → σY with labels in L. Note that m is
not a label of this path because its inversion set is disjoint from invσZ # invσY . Then,

σX
m−→ σZ → · · · → σY is an allowable sequence from σX to σY . ��

7.3 Sweeps and Potential Sweeps of Sweep Acycloids

With Handa’s notation from [52], a face of an acycloid T ⊆ {+,−, 0}E is a sign-
vector X ∈ {+,−, 0}E such that X ◦ T ∈ T for all T ∈ T ; and a coboundary of
T is a sign-vector X ∈ {+,−, 0}E that conforms to a tope (which means that there
is a tope that refines it) and such that, for every T ∈ T with X ◦ T = T we have
X ◦ (−T ) ∈ T . In the language of partial cubes, faces correspond to gated subgraphs,
and coboundaries are antipodal subgraphs. In an acycloid, every gated subgraph is
antipodal, which shows that every face is a coboundary (see [57] for definitions and
details). In general, the converse is not true. However, if T is the set of topes of
an oriented matroid, then faces and coboundaries coincide, and correspond to the
covectors of the oriented matroid.

Augmentedwith a top element, the set of faces of an acycloid forms a lattice, the big
face lattice of the acycloid [52]. Face lattices of acycloids lack many nice properties
of those of oriented matroids. In particular, they are not always graded.

We can translate these concepts to sweeps. To this end, define the composition
I ◦ J of two ordered partitions I = (I1, . . . , Il) and J = (J1, . . . , Jl ′) of [n] as

I ◦ J = (I1,1, . . . , I1,r1 , . . . , Il,1, Il,rl ),

where for any k ∈ {1, . . . , l}, (Ik,1, . . . , Ik,rk ) is the sequence (Ik∩ J1, Ik∩ J2, . . . , Ik∩
Jl ′) where the empty parts are removed. That is, the ordered partition of the elements
of Ik induced by J .

Definition 7.16 Let � ⊆ Sn be an allowable graph of permutations.

• A sweep of � is an ordered partition I such that I ◦ σ ∈ � for all σ ∈ �.
• A potential sweep of� is an ordered partition I of [n] refined by some permutation
in� and such that any sweep permutation σ ∈ � that refines I satisfies I ◦σ ∈ �.

Lemma 7.17 Let � ⊆ Sn form an allowable graph of permutations and let T� be its
associated sweep acycloid. Then the sweeps of � are in bijection with the faces of T�

and the potential sweeps of � are in bijection with the coboundaries of T�.

Proof We prove first the equivalence between potential sweeps and coboundaries. It
is clear that X I is a coboundary of T� for any potential sweep I of �. Indeed, if σ

refines I , it implies that X I conforms to Xσ , i.e. X I ◦ Xσ = Xσ . Moreover, I ◦σ ∈ �

implies that X I ◦ (−Xσ ) = X I ◦ Xσ = X I◦σ is in T�.
For the converse statement, let Y be a coboundary of T�. We need to show that it

is of the form X I for an ordered partition I of [n]. Then it is clear from the definitions
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that I is a potential sweep of �. Suppose that there are 1 ≤ i < j < k ≤ n such that
(Y(i, j), Y( j,k), Y(i,k)) is one of the forbidden patterns in Lemma 3.8. Let σ ∈ � be a
sweep permutation such that Z := Y ◦ Xσ = Xσ . We denote σ̃ the permutation in
� such that Z̃ := Y ◦ (−Xσ ) = X σ̃ . The fact that Z and Z̃ satisfy the transitivity
condition implies that the forbidden pattern of Y must be one of the last six ones
(with two zeroes). We consider the case (Y(i, j), Y( j,k), Y(i,k)) = (0, 0,−), the other
ones are similar. Thenwemust have {(Z(i, j), Z( j,k), Z(i,k)), (Z̃(i, j), Z̃( j,k), Z̃(i,k))} =
{(+,−,−), (−,+,−)}, i.e. the elements i, j, k are ordered k, i, j and j, k, i in σ and
σ̃ . As a consequence of condition Definition 7.2, in any allowable sequence in� from
σ to σ̃ , there must be a permutation where the elements i, j, k are ordered k, j, i . Such
τ satisfies Y ◦X τ = X τ . Indeed, any pair (k, l)with Y(k,l) �= 0 satisfies Z(k,l) = Z̃(k,l),
thus it cannot be reversed in an allowable sequence from σ to σ̃ . But then the covector
Y ◦ (−X τ ) should belong to T� while it has the forbidden pattern (+,+,−). We
conclude that any coboundary satisfies the transitivity condition from Lemma 3.8.

To finish, it is clear that any sweep I of � gives a covector X I ∈ {+,−, 0}([n]2 )

such that for any σ ∈ �, X I ◦ Xσ = X I◦σ ∈ T�, thus X I is a face of T�. For the
converse, note that any face Y of T� is a coboundary, and hence it must be of the form
X I associated to a potential sweep I . The condition of being a face shows that this
potential sweep is indeed a sweep. ��
Note in particular that the poset of sweeps of an allowable graph of permutations,
augmented with a top element, is always a lattice, as it is isomorphic to the big face
lattice of an acycloid.

7.4 Sweep OrientedMatroids from Sweep Acycloids and Allowable Graphs of
Permutations

The set of topes of an orientedmatroid is always an acycloid, but the converse statement
is not true. However, the conditions in the definition of sweep acycloid guarantee that,
whenever they correspond to an oriented matroid, it is a sweep oriented matroid.

Note that, for this, the transitivity condition Definition 7.2 on the parallelism classes
of sweep acycloids is necessary. Indeed, (+,+,+), (−,−,−), (−,+,+), (+,−,−)

satisfy the conditions of Lemma 3.8 (they are orthogonal to (+,+,−)) and they are
the topes of an oriented matroid, but not a sweep oriented matroid. This gives an
acycloid whose topes fulfill the transitivity condition from Lemma 3.8 and that arises
from an oriented matroid, but that is not a sweep oriented matroid. However, thanks
to Lemma 7.17, we know that the conditions on topes and subtopes in the definition
of sweep acycloids extend to the whole set of covectors.

Corollary 7.18 The set of topes of a sweep oriented matroid is a sweep acycloid.
Conversely, if a sweep acycloid is the set of topes of an oriented matroid, then it is a
sweep oriented matroid.

The following hierarchy summarizes our current knowledge:

Theorem 7.19
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{
Posets of sweeps of point configurations

}

�

{
Posets of sweeps of sweep oriented matroids

}

⊆

{
Posets of sweeps of sweep acycloids

}

Goodman and Pollack’s unrealizable pentagon proves that the first inclusion is
strict. For the second inclusion, it is known that there are acycloids that are not oriented
matroids, but we do not know of any example that has the additional structure given
by the transitivity condition from Lemma 3.8.

Corollary 7.18 allows us to use characterizations of acycloids arising from oriented
matroids to characterize which allowable graphs of permutations arise from sweep
oriented matroids. We know three families of such characterizations, summarized
in [57, Cor. 7.2]. In the language of permutations, da Silva’s characterization [31,
Thm. 4.1] concerns sweeps and potential sweeps. Handa’s characterization is stated
in terms of contractions. If � is an allowable graph of permutations, and m ∈ L is one
of its moves, the elementary contraction �/m is obtained by taking all permutations
γ ∈ � that are separated from another permutation of � by m, and replacing the
substring m by its minimal element. One obtains this way a new set of permutations
on the ground set [n]� m ∪ {min(m)}. For a collection of moves M = {m1, . . . , ml},
the contraction �/M , is defined inductively by�/M = (((�/m1)/m2) · · · )/ml . The
characterization by Knauer andMarc [57, Cor. 7.2] is in terms of excluded partial cube
minors. This operation goes outside the scope of allowable graphs of permutations.
We will hence not present its details and refer the reader to the source [57].

Corollary 7.20 Let � form an allowable graph of permutations. The following condi-
tions are equivalent:

(i) � arises from a sweep oriented matroid,
(ii) every potential sweep of � is a sweep,

(iii) all its contractions are allowable graphs of permutations,
(iv) the graph is in F(Q−) in the sense of [57].

These characterizations might be useful to answer the question whether all sweep
acycloids are sweep oriented matroids. We have not been able to construct any coun-
terexample, but we do not have any evidence on why the properties defining sweep
acycloids should force these conditions to be satisfied.

Question 7.21 Is every sweep acycloid an oriented matroid?

8 Further Directions

Elementary Homotopies Between Sweep OrientedMatroids

In [39, 42] it is proven that if an allowable sequence has two consecutive moves with
disjoint support, then these can be merged into a single move and the result is still an
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allowable sequence; and that conversely, if a move consists of more than one disjoint
substrings, these can be split into two disjoint moves. These operations induce an
equivalence relation among sweep oriented matroids of rank 2 whose equivalence
classes are in correspondence with the associated little oriented matroids.

Extending this result to higher rank is closely related to some of the open questions
indicated in the paper. First of all, the higher analogue of the operation of merging
would consist in collapsing some flats of a sweep oriented matroid to get a flat whose
rank is lower than the one expected by (6). The reverse operation would break a
flat with unexpected low rank into pieces fulfilling (6). Understanding this procedure
would provide a method to prove Conjecture 5.4.

Even if the operations were well described, it is not clear that one could find a
connectivity result analogous to that by Felsner and Weil in rank 2 [42]. Note that,
even if Theorem 6.6 goes in this direction, as it shows that all sweep oriented matroids
are homotopy equivalent in the complex of pseudo-sweeps, it is not clear that there is
a way to do this where all the intermediate steps are also sweep oriented matroids.

Are All Sweep Acycloids Oriented Matroids?

Another natural problem that is left open is Question 7.21, which asks whether every
sweep acycloid is an oriented matroid. The answer would be very interesting in either
direction. If it is affirmative, then the two categories of sweep acycloids and sweep ori-
entedmatroidswould collapse into a single concept. Thiswouldmake allowable graphs
of permutations a useful alternative characterization of sweep oriented matroids. If,
on the contrary, the answer is negative, then it would be interesting to understand the
gap between the two categories.

We do not have any good reason to conjecture that every sweep acycloid is an
oriented matroid, beyond the fact that we could not find any. This does not tell much,
because the naive approaches to computationally generate all allowable graphs of
permutations of a certain size fail badly very soon because of the rapid growth of
these objects.

Allowable Graphs in Coxeter Groups

We already saw the hyperoctahedral group Bn naturally appear before. First, in
Sect. 2.2.2, because the permutahedron of type B is the sweep polytope of the
crosspolytope. Then also in Example 4.5 to explain the supersolvability of the associ-
atedmatroid. In fact, the definition of allowable graph extends naturally to any Coxeter
group, specially in the simple case; namely, a simple allowable graph of Coxeter per-
mutations is a symmetric set � of elements of the Coxeter group, in which for every
pair of elements w,w′ ∈ � there is a path from w to w′ following a reduced decom-
position of w−1w′. For the non-simple case one has to partition the generators into a
collection of disjoint subsets to define the allowable moves.
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Fig. 14 The first row shows a generic and a degenerate 2nd higher 5-permutahedra. The second row depicts
two combinatorially different generic 3rd higher 6-permutahedra

Higher Sweep Oriented Matroids and Permutahedra

Aswe saw in Sect. 5.1, sweep orientedmatroids are closely related to the first Dilworth
truncation. What about higher truncations? In the realizable case, instead of studying
the intersection of the lines spanned by the points of Awith a hyperplane (at infinity),
we would study the intersection of a flat F of codimension k (playing the role of
hyperplane at infinity) with every flat spanned by k + 1 points of A. In [80, Thm. 8],
Stanley states (in the polar formulation) that for a sufficiently generic choice of the flat,
this gives rise to an arrangement whose lattice of flats is the kth Dilworth truncation
of the original arrangement. Let’s call this operation the kth Dilworth truncation of
A with respect to F . Doing the kth Dilworth truncation of an standard (n − 1)-
simplex gives rise to “higher” analogues of braid arrangements, which are the normal
fans of the kth higher n- permutahedra. However, in comparison with the k = 1
case, there is no Sn-invariant subspace that gives a canonical choice for F . Indeed,
different choices for F can give rise to different combinatorial types of hyperplane
arrangements and zonotopes, even if the flats are sufficiently generic in the sense of
Stanley. See Fig. 14 for some examples. Nevertheless, every zonotope associated to a
kth Dilworth truncation of a point configuration still arises as the projection of some
kth higher permutahedron.
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Which Matroids are Little Oriented Matroids?

In Sect. 4.3 we proved that not every oriented matroid is a little oriented matroid. This
begs the question of which are the oriented matroids that are sweepable, in the sense
that they can be extended to a big oriented matroid. Or, at least, to find sufficient
conditions. For example, we know that realizable oriented matroids are sweepable,
and also all oriented matroids of rank 3, by Theorem 4.11.

As shown in [55], Euclidean orientedmatroids (see [17, Section 10.5]) always admit
topological sweepings (see Sect. 1.1). Is there a relation between being Euclidean and
being sweepable?Our example of non-sweepable orientedmatroid in Sect. 4.3 is based
on a well-known example of non-Euclidean oriented matroid.
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Appendix A. Another Fiber Polytope Construction

In this section we present another way to construct sweep polytopes as fiber polytopes.
As we will see, it is strongly related to the monotone path construction we gave in
Sect. 2.3.3.

Define the Lawrence polytope of a point configuration A ∈ R
d×[n] as

�( Ā) = conv
{
ei × (−āi ), ei × āi

∣∣ i ∈ [n]} ⊂ R
n+d+1.

Then the intersection of �( Ā) with the subspace x1 = · · · = xn is a homothety
of the zonotope Z( Ā), and the Cayley trick provides a bijection between (regular)
subdivisions of �( Ā) and (coherent) zonotopal tilings of Z( Ā), see [30, Sec. 9.2]. In
fact, the fiber polytopes associated to the canonical projections �2n−1 → �( Ā) and
�n → Z( Ā) are normally equivalent [81, Thm. 5.1].

Consider (the vertex set of) the standard (n − 1)-simplex �n−1 and the 0-
dimensional configuration O ∈ R

0×[n] consisting of n copies of a point. The chain of
linear maps
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�n−1 Ā Ō,
M Ā h

induces chains of projections between the corresponding Lawrence polytopes and
associated zonotopes, respectively, that can be arranged in the following commutative
diagram:

Z(�n−1) Z( Ā) Z(Ō)

�(�n−1) �( Ā) �(Ō)

M Ā

s

h

id×M Ā

id×s

id×h

Note that Z(�n−1) is just the cube�n , and Z(Ō) a segment, and hence� (Z(�n−1), s)
and �

(
Z( Ā), h

)
are the n-permutahedron and the sweep polytope SP(A) by Exam-

ple 2.6 and Proposition 2.8, respectively.
Moreover, �(�n−1) and �(Ō) are the (non-standard) (2n − 1)-simplex conv{

ei ± ei+n
∣∣ i ∈ [n]} and a prism over �n−1, respectively. The same proof as in [30,

Thm. 6.2.6] shows that � (�(�n−1), id×s) is a homothety of the n-permutahedron
embedded into R

2n . By Lemma 2.7 we obtain that:

Corollary A.1 The fiber polytope �
(
�( Ā), id×h

)
is a homothety of the sweep poly-

tope SP(A) embedded into R
n+d+1.

Appendix B. Proofs of Theorem 4.1 and Corollary 4.10

We include below the technical details of the proof of Theorem 4.1. We first recall the
notations and the statement of the theorem.

For a covector X of a sweep oriented matroid, let pX : [n] → [lX ] be the surjection
associated to the corresponding ordered partition. For each 1 ≤ k ≤ 2lX + 1, let

Xk ∈ {+,−, 0}[n]∪([n]2 ) be the sign-vector:

Xk
i =

⎧
⎪⎨

⎪⎩

− if pX (i) ≤ � k−1
2 �,

+ if pX (i) > � k
2�,

0 if k is even and pX (i) = k
2 .

for 1 ≤ i ≤ n;

Xk
(i, j) = X(i, j) for all 1 ≤ i < j ≤ n.

Theorem (4.1) If M is the set of covectors of a sweep oriented matroid, then

Mbig =
{

Xk
∣
∣ X ∈M, 1 ≤ k ≤ 2lX + 1

}

is the set of covectors of an oriented matroid.
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Proof We have to check that M satisfies the axioms of Definition 3.1, namely:

(V0) 0 ∈Mbig,
(V1) X ∈Mbig implies −X ∈Mbig,
(V2) X , Y ∈Mbig implies X ◦ Y ∈Mbig,
(V3) if X , Y ∈Mbig and e ∈ S(X , Y ) then there exists Z ∈Mbig such that Ze = 0

and Z f = (X ◦ Y ) f for all f /∈ S(X , Y ).

(V 0) 0n ∈ M, associated to the one part ordered partition ({1, 2, . . . , n}). Then
(0n)2 is the zero vector and it is inMbig.

(V 1) Let Xk be an element of Mbig. Then, −Xk = (−X)2lX+2−k , so it is still in
Mbig.

(V 2) Let Xk, Y h be two elements of Mbig. Then Xk ◦ Y h = (X ◦ Y )t , where
t = 2(r1 + . . .+ r k−1

2 −1)+ 1 if k is odd (with the same notations as in the definition

of the composition between two ordered partitions), t = 2(r1 + . . . + r k
2−1) + j if

k is even and j is the index corresponding to h when the elements of Ik are ordered
according to Y (that is to say, for all i ∈ Ik , pX◦Y (i) ≤ � t−1

2 � ⇔ pY (i) ≤ � h−1
2 � and

pX◦Y (i) > � t
2� ⇔ �pY (i)� > � h

2 �).
(V 3) Let Xk, Y h be two elements of Mbig, and e ∈ S(Xk, Y h). It remains to find

Z ∈ M and r ∈ {1, . . . , 2lZ + 1} such that (Zr )e = 0 and (Zr ) f = (Xk ◦ Y h) f for
any f /∈ S(Xk, Y h). e can be of two types: e = (i, j) or e = i .

In both cases, it will be convenient to define

E− =
{

p | 1 ≤ p ≤ n and {(Xk)p, (Y
h)p} ∈ {{−,−}, {0,−}}

}

=
{

p ∈ {1, . . . , n} \ S(Xk, Y h) | (Xk ◦ Y h)p = −
}
,

E+ =
{

p | 1 ≤ p ≤ n and {(Xk)p, (Y
h)p} ∈ {{+,+}, {0,+}

}
,

E0 =
{

p | 1 ≤ p ≤ n and {(Xk)p, (Y
h)p} = {0, 0}

}
.

Then E− ∪ E+ ∪ E0 = {1, . . . , n}\S(Xk, Y h) and part of the condition is that
(Zr )p = ε for all p ∈ Eε, ε ∈ {−,+, 0}.
(1) If e = (i, j), up to exchanging Xk and Y h , one can suppose that X(i, j) = −

and Y(i, j) = +. Let Z ∈ M be given by (V 3) on M. For any r we will have
that (Zr )e = 0 and (Zr ) f = (Xk ◦ Y h) f for any f /∈ S(Xk, Y h) of the form
f = (p, q), because in that case, f is an index for X and Y that is not in S(X , Y ).
Can we find r such that (Zr )p = (Xk ◦ Y h)p for any 1 ≤ p ≤ n such that
p /∈ S(Xk, Y h) ? It is sufficient to check that pZ (p) < pZ (q) for all (p, q) ∈
E− × E+ ∪ E− × E0 ∪ E0 × E+ and pZ (p) = pZ (q) for all (p, q) ∈ E0 × E0.
(p, q) ∈ E0 × E0 and p < q implies that X(p,q) = Y(p,q) = 0, hence Z(p,q) = 0
and pZ (p) = pZ (q).
If E0 �= ∅, we take r = 2pZ (q) for any q ∈ E0. Then, we treat the case
(p, q) ∈ E− × E0, since the case (p, q) ∈ E0 × E+ is similar. If p < q,
then {(Xk)(p,q), (Y h)(p,q)} ∈ {{+,+}, {+, 0}} and Z(p,q) = +. If p > q,
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then {(Xk)(q,p), (Y h)(q,p)} ∈ {{−,−}, {−, 0}} and Z(q,p) = −. In any case,
pZ (p) < pZ (q), thus (Zr )p = −.
If E0 = ∅, there may be several possibilities for r . The same reasoning as prece-
dently shows that for any (p, q) ∈ E− × E+, pZ (p) < pZ (q). Hence there is at
least one appropriate r which separates the parts that contain elements in E− from
parts that contain elements in E+.

(2) If e = i for some 1 ≤ i ≤ n, up to exchanging Xk and Y h , one can suppose that
(Xk)i = − and (Y h)i = +.
First, we consider the case where E0 = ∅. We take Z = X ◦ Y and r = 2pX◦Y (i)
(corresponding to the part of i in Z ). It only remains to check that if p ∈ E− (resp.
E+), than (Zr )p = − (resp. +).
p ∈ E− ⇒ pY (p) < pY (i) ⇒ pZ (p) < pZ (i) ⇒ (Zr )p = −,
p ∈ E+ ⇒ pX (p) > pX (i) ⇒ pZ (p) > pZ (i) ⇒ (Zr )p = +.
If E0 �= ∅, let j be the smallest element of E0. Than pX (i) < pX ( j) and pY (i) >

pY ( j), thus (i, j) ∈ S(X , Y ). Let Z ∈M be given by axiom (V 3) applied toMwith
X , Y and (i, j). Than, for any k ∈ E0 other than j , Z( j,k) = 0 because X( j,k) = 0 and
Y( j,k) = 0 (resp. Z(k, j) = 0 because X(k, j) = 0 and Y(k, j) = 0), and thus Z(i,k) = 0
(resp. Z(k,i) = 0), because Z(i, j) = 0 and M satisfies the transitivity condition from
Lemma 3.8. We choose r = 2pZ (i) (corresponding to the part of Z that contains i
and all k ∈ E0). Then:

p ∈ E− ⇒
{

pX (p) < pX ( j)

pY (p) ≤ pY ( j)
or

{
pX (p) = pX ( j)

pY (p) < pY ( j)
⇒ pZ (p) < pZ ( j) ⇒ (Zr )p = −,

p ∈ E+ ⇒
{

pX (p) > pX (i)

pY (p) ≥ pY ( j)
or

{
pX (p) = pX (i)

pY (p) > pY ( j)
⇒ pZ (p) > pZ ( j) ⇒ (Zr )p = +.

��
For the proof of Corollary 4.10, recall that for any simple oriented matroidM′ on

the ground set F , we call a valid decoration a couple of maps δ : F → 2(
[n]
2 ) and

ε : ([n]2
)→ {+,−} for a certain n, such that:

• the decorations form a partition of
([n]
2

)
, with empty parts accepted:

([n]
2

) =⋃
f ∈F δ( f ) with δ( f ) ∩ δ( f ′) = ∅ whenever f �= f ′; and

• the covectors X ∈M, seen as elements of {+,−, 0}([n]2 ) by considering X(i, j) =
ε(i, j)X f if (i, j) ∈ δ( f ), satisfy the transitivity condition from Lemma 3.8.

Corollary (4.10) IfM′ is a simple oriented matroid on F with a valid decoration (δ, ε),
then M′ can be extended to a unique oriented matroid M for which F is a modular
hyperplane and (δ, ε) is the decoration of F induced by M.

In particular, an oriented matroid M with a modular hyperplane F is completely
determined byM

∣∣
F together with the decoration of F induced by M.

Proof The proof is very simple, as it relies entirely on Theorem 4.1, but it involves
some auxiliary oriented matroids and some cumbersome notation to identify them.

With the help of the decoration, we will first add toM′ the elements of
([n]
2

)
to get

a new oriented matroid M̃′ on F ∪ ([n]2
)
. We do this by adding for each f ∈ F the
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parallel elements (i, j) = ε(i, j) f for (i, j) ∈ δ( f ). The restriction of M̃′ to
([n]
2

)
is

a sweep oriented matroid, as it fulfills the transitivity condition from Lemma 3.8 by
hypothesis. We want to apply Theorem 4.1 to find the associated big oriented matroid.
While Theorem 4.1 is only stated to extend a matroid from

([n]
2

)
to [n]∪([n]2

)
, the same

proof carries on almost verbatim to extend a matroid from F ∪ ([n]2
)
to F ∪ [n] ∪ ([n]2

)
.

We associate a family of covectors Xk on F ∪ [n] ∪ ([n]2
)
to every covector X of M̃′

in the very same way, just ignoring the entries in F when generating the values for [n]
in Xk . These are the covectors of an oriented matroid M̃ (by the same argument as in
Theorem 4.1), and its restriction to [n] ∪ F is the desired oriented matroid M. ��
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