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Abstract
Let n ≥ 2k ≥ 4 be integers,

([n]
k

)
the collection of k-subsets of [n] = {1, . . . , n}. Two

families F ,G ⊂ ([n]
k

)
are said to be cross-intersecting if F ∩ G �= ∅ for all F ∈ F

and G ∈ G. A family is called non-trivial if the intersection of all its members is
empty. The best possible bound |F | + |G| ≤ (n

k

) − 2
(n−k

k

) + (n−2k
k

) + 2 is established
under the assumption that F and G are non-trivial and cross-intersecting. For the
proof a strengthened version of the so-called shifting technique is introduced. The
most general result is Theorem 4.1.

Keywords Subsets · Intersection · Maximal size

1 Introduction

Let n, k be integers, n ≥ 2k ≥ 4. Let [n] = {1, . . . , n} be the standard n-element set,([n]
k

)
the collection of its k-subsets. Subsets of

([n]
k

)
are called k-graphs or k-uniform

families. A family F ⊂ ([n]
k

)
is called intersecting if F ∩ F ′ �= ∅ for all F, F ′ ∈ F .

Similarly, if F ∩ G �= ∅ for all F ∈ F and G ∈ G then F ,G ⊂ ([n]
k

)
are called

cross-intersecting.
For a family F set ∩F = ∩{F : F ∈ F}. If ∩F = ∅ then F is called non-trivial

and if ∩F �= ∅ then it is called a star. For i ∈ [n] let Si =
{
S ∈ ([n]

k

) : i ∈ S
}
be the

full star, k is understood from the context. Note that |Si | = (n−1
k−1

)
.

Let us recall the Erdős–Ko–Rado Theorem, one of the central results in extremal
set theory.
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Theorem 1.1 ([6]) Suppose that F ⊂ ([n]
k

)
, n ≥ 2k ≥ 4 and F is intersecting. Then

|F | ≤
(
n − 1

k − 1

)
. (1.1)

The full star shows that (1.1) is best possible.
The Hilton–Milner Theorem shows in a strong way that for n > 2k only full stars

achieve equality in (1.1).

Theorem 1.2 ([16]) Suppose that F ⊂ ([n]
k

)
, n > 2k ≥ 4, F is intersecting and

non-trivial. Then

|F | ≤
(
n − 1

k − 1

)
−

(
n − k − 1

k − 1

)
+ 1. (1.2)

For k �= 3 the only family providing equality in (1.2) is the Hilton–Milner Family,

H(n, k) =
{
H ∈ ([n]

k

) : 1 ∈ H , [2, k + 1] ∩ H �= ∅
}

∪{[2, k+1]}. For k = 3 the tri-

angle family T (n, k) =
{
T ∈ ([n]

k

) : |T ∩ [3]| ≥ 2
}
is the only other family attaining

the bound (1.2).
By now there are dozens of papers proving and reproving results related to these

basic theorems ([1, 2, 4, 5, 8, 10–13, 17–20], etc.).
The author might lack modesty, but he pretends to have found a closely related

natural question that has not been investigated before.

Prblem 1.3 Let F ,G ⊂ ([n]
k

)
be non-trivial cross-intersecting families. Determine or

estimate

h(n, k) := max
{|F | + |G|}. (1.3)

The construction that we propose is really simple. Let A = {
A1, A2

}
where

A1, A2 ∈ ([n]
k

)
are disjoint. Set

B =
{
B ∈

([n]
k

)
: B ∩ Ai �= ∅, i = 1, 2

}
.

Clearly, |B| = (n
k

) − 2
(n−k

k

) + (n−2k
k

)
. Note that for k fixed and n → ∞,

|B| = k2
(
n − 2

k − 2

)
+ O

((
n − 3

k − 3

))
.

Theorem 1.4 Let n > 2k ≥ 4 be integers. Then

h(n, k) = 2 +
(
n

k

)
− 2

(
n − k

k

)
+

(
n − 2k

k

)
, (1.4)
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moreover for k ≥ 3 up to automorphism the above example is unique.

Let us recall the shifting partial order that can be traced back to Erdős, Ko and Rado
[6]. For two k-sets A = {x1, . . . , xk} and B = {y1, . . . , yk}where x1 < x2 < . . . < xk ,
y1 < . . . < yk we say that A precedes B and denote it by A ≺ B if xi ≤ yi for all
1 ≤ i ≤ k. A family F ⊂ ([n]

k

)
is called initial or shifted if A ≺ B and B ∈ F always

imply A ∈ F .
Note that the full star S1 and the Hilton–Milner Family as well as T (n, k) andmany

other important families are initial.
Erdős, Ko and Rado invented the shifting operator (cf. definition below) that main-

tains the size of a family along the intersection or cross-intersection properties. It
might destroy non-triviality, but there are certain ways to circumvent this difficulty
(cf. [11]).

In great contrast the families A and B defined above are not initial. In fact
the answer for initial families is completely different. Define P = ([k+1]

k

)
, R ={

R ∈ ([n]
k

) : |R ∩ [k + 1]| ≥ 2
}
. It is easy to check that P and R are non-trivial and

cross-intersecting.

Theorem 1.5 Suppose thatF ,G ⊂ ([n]
k

)
are non-trivial, cross-intersecting initial fam-

ilies, then for n ≥ 2k ≥ 4,

|F | + |G| ≤ k + 1 +
∑

2≤i≤k

(
k + 1

i

)(
n − k − 1

k − i

)
. (1.5)

Note that for fixed k and n → ∞ the RHS is
(k+1

2

)(n−2
k−2

) + O
((n−3

k−3

))
, i.e., it is

asymptotic to k+1
2k h(n, k).

For the proof of Theorem 1.4 we need the following old result.

Theorem 1.6 ([13]) Let k ≥ � > 0 be integers. Suppose that n ≥ k + �, F ⊂ ([n]
k

)
,

G ⊂ ([n]
�

)
and the families F ,G are non-empty and cross-intersecting. Then

|F | + |G| ≤
(
n

k

)
−

(
n − �

k

)
+ 1. (1.6)

Moreover unless n = k + � or k = � = 2 the equality is strict for |G| > 1.

Since in [13] uniqueness was not proven, we provide a full proof of (1.6). This
proof uses no computation what the reader might find nice.

Let us recall some standard notations. For subsets A, B define F(A) = {F\A :
A ⊂ F ∈ F}, F(B) = {F ∈ F : F ∩ B = ∅} and if A ∩ B = ∅ then set F(A, B) =
{F\A : A ⊂ F ∈ F , F ∩ B = ∅}. If A = {i}, B = { j} then we use the shorthand
notations F(i), F( j), F(i, j), etc. Let us mention that F(A, B) is a family on the
ground set [n] \ (A∪ B). The notation F(A, A∪ B) is also quite common for disjoint
sets A, B. Note that F(A, A ∪ B) = F(A, B) in this case.

Let us close this section by an inequality that we need in Sect. 3. Somewhat sur-
prisingly the proof is via linear independence.
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Proposition 1.7 Let m, p, q, a, b be integers 0 ≤ p < q ≤ m − p, 0 ≤ a ≤ b < m.
Then

(
m

p

)
−

∑

0≤i<a

(
b

i

)(
m − b

p − i

)
≤

(
m

q

)
−

∑

0≤i<a

(
b

i

)(
m − b

q − i

)
. (1.7)

Proof Let us consider the inclusion matrix T = T (p, q,m) defined in the following
way. Let P1, P2, . . . , P(mp)

be a list of all p-subsets of [m] and Q1, . . . , Q(mq)
a list of

all q-subsets of [m]. The (i, j)-th entry t(i, j) of T is:

t(i, j) =
{
0 if Pi �⊂ Q j ,

1 if Pi ⊂ Q j .

It is well-known (cf. e.g. [3]) that T has full rank
(n
p

)
, that is, the rows are linearly

independent over the rationals.

Define P =
{
P ∈ ([m]

p

) : |P ∩ [b]| ≥ a
}
. Then the corresponding rows of T form

a |P| by (n
q

)
submatrix T0 with linearly independent rows. Note that for Q ∈ (m

q

)
with

|Q ∩ [b]| < a, the column corresponding to Q in T0 consists entirely of 0. Hence
omitting these columns will not alter the row-independence. As the number of rows
and columns of the reduced matrix equals the left and right side of (1.7), the inequality
follows. ��

2 Shifting and SomeMore Tools

For a family F ⊂ ([n]
k

)
and integers 1 ≤ i �= j ≤ n one defines the shifting (operator)

Si j by

Si j (F) = {
Si j (F) : F ∈ F

}

where

Si j (F) =
{
F ′ := (F \ { j}) ∪ {i} if i /∈ F, j ∈ F and F ′ /∈ F ,

F otherwise.

Note that
∣∣Si j (F)

∣∣ = |F | and Si j (F) ⊂ ([n]
k

)
. It is well known (cf. [9]) that if F ,G

are cross-intersecting, then Si j (F) and Si j (G) are also.
In the present paper we are mostly dealing with non-trivial families. However it

might happen that F is non-trivial but Si j (F) is a star. The next statement is easy to
prove.

Fact 2.1 (cf. e.g. [14]) Suppose that F ⊂ ([n]
k

)
is non-trivial but Si j (F) is a star. Then

Si j (F) ⊂ Si and (i) F(i) ∩ F( j) = ∅, (ii) F ∩ {i, j} �= ∅ for all F ∈ F .
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The cross-intersecting families F ,G ⊂ ([n]
k

)
are called saturated if they cease to

be cross-intersecting upon the addition of any new k-set H ∈ ([n]
k

)
.

For a family F ⊂ ([n]
k

)
and a positive integer � define

T (�)(F) =
{
H ∈

([n]
�

)
: H ∩ F �= ∅ ∀F ∈ F

}
.

With this notation F and G are saturated iff F = T (k)(G) and G = T (k)(F).

Claim 2.2 Suppose that F ,G ⊂ ([n]
k

)
are cross-intersecting and saturated and

F ∩ {i, j} �= ∅ for all F ∈ F (equivalently {i, j} ∈ T (2)(F)). Then Si j ={
S ∈ ([n]

k

) : {i, j} ⊂ S
}

⊂ G. �

Claim 2.3 Let 1 ≤ i �= j ≤ n, F ⊂ ([n]
k

)
. Then

∣∣∣T (2)(F)

∣∣∣ ≤
∣∣∣T (2) (

Si j (F)
)∣∣∣ .

�

For a family F ⊂ ([n]
k

)
and an integer �, 0 ≤ � ≤ k define the �-shadow σ�(F) :={

H ∈ ([n]
�

) : ∃F ∈ F , H ⊂ F
}
.

Let us recall the shadow theorem of Sperner [21].

|σ�(F)|
/(

n

�

)
≥ |F |

/(
n

k

)
. (2.1)

This has an important consequence for us.

Lemma 2.4 Let m, a, b be positive integers, m ≥ a + b. Suppose that A ⊂ ([m]
a

)
and

B ⊂ ([m]
b

)
are cross-intersecting. Then

|A|
(m
a

) + |B|
(m
b

) ≤ 1. (2.2)

Proof Define the family of complements Bc = {[m]\B : B ∈ B}. By the cross-
intersecting property A ∪ Bc is an antichain. Consequently σa(Bc) ∩ A = ∅. In
view of (2.1) |B|

(nb)

(n
a

) + |A| ≤ (n
a

)
which is equivalent to (2.2). ��

Let us prove a corollary of (2.1) for initial families.

Lemma 2.5 Let F ⊂ ([n]
k

)
be initial and q a positive integer, q < n. Let P ⊂ R ⊂ [q]

with |R| ≤ k. Then

|F (P, [q])|
/(

n − q

k − |P|
)

≤ |F (R, [q])|
/(

n − q

k − |R|
)

. (2.3)
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Proof Set d = |R \ P|. Note that R ⊂ [q] implies R\P ≺ S for every S ∈ ([q+1,n]
|R\P|

)
.

Take a set F ∈ F satisfying F ∩ [q] = P and a d-element subset S of F\[q]. Then
(F ∪ (R \ P)) \ S ≺ F implies that F\([q] ∪ S) is in F (R, [q]). Now (2.3) follows
from (2.1). ��

3 The Proof of Theorem 1.5

Let us define Hi = [k+1]\{i} for 1 ≤ i ≤ k+1. Let H ⊂ ([2,n]
k

)
. Then Hk+1 ≺ Hk ≺

. . . ≺ H1 ≺ H . LetH = F or G. Non-triviality impliesH ∩ ([2,n]
k

) �= ∅. By initiality
([k+1]

k

) = {H1, . . . , Hk+1} ⊂ H follows. By cross-intersection |H ∩ [k + 1]| ≥ 2 for
all H ∈ F ∪ G. For P ⊂ [k + 1], 2 ≤ |P| ≤ k define F(P) = F

(
P, [k + 1]\P)

and

α(P) = |F(P)|
/(n−k−1

k−|P|
)
. Define β(P) analogously using G instead of F .

In view of Lemma 2.5 for P ⊂ R � [k + 1], α(P) ≤ α(R).

Claim 3.1 If P ∩ Q = ∅ then

α(P) + β(Q) ≤ 1. (3.1)

Proof If Q = [k + 1]\P then F(P) and G(Q) are cross-intersecting and (k − |P|) +
k − |Q| = k − 1 ≤ n − (k + 1) implies that we can apply Lemma 2.4. Then (3.1)
follows from (2.2). If Q � [k + 1] \ P then we can deduce (3.1) using monotonicity:
β(Q) ≤ β([k + 1] \ P). ��

Let us use (3.1) to prove the main lemma.

Lemma 3.2 Let 2 ≤ i ≤ k
2 and let P, Q ∈ ([k+1]

i

)
be disjoint. Then

|F(P)| + |G(Q)| + |G([k + 1] \ P)| + |F([k + 1] \ Q)|
≤

(
n − k − 1

k − i

)
+

(
n − k − 1

i − 1

)
. (3.2)

Proof From (3.1) we derive the following three inequalities

|F(P)| + |G(Q)| ≤ (n−k−1
k−i

)
, (3.3)

α(P) + β([k + 1] \ P) ≤ 1, (3.4)

β(Q) + α([k + 1] \ Q) ≤ 1. (3.5)

Note that 2i ≤ k implies i − 1 < k − i and for n ≥ 2k, (k − i) + (i − 1) = k − 1 ≤
n − k − 1. Thus

(n−k−i
i−1

) ≤ (n−k−1
k−i

)
. Set γ = (n−k−1

i−1

)/(n−k−1
k−i

)
. Multiplying by

(n−k−1
i−1

)
the sum of (3.4) and (3.5) yields

|G([k + 1] \ P)| + |F([k + 1] \ Q)| + γ
(|F(P)| + |G(Q)|) ≤ 2

(
n − k − 1

i − 1

)
.
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Adding (1 − γ ) times (3.3) yields (3.2). ��
To deduce Theorem 1.5 from Lemma 3.2 is easy. Let us define for 0 ≤ i ≤ k,

fi = ∣∣{F ∈ F : |F ∩ [k + 1]| = i}∣∣. Define gi analogously. Obviously,

|F | = f0 + . . . + fk = f2 + . . . + fk−1 +
(
k + 1

k

)
,

|G| = g2 + . . . + gk−1 +
(
k + 1

k

)
.

For a fixed i , 2 ≤ i ≤ k
2 , averaging (3.2) over all choices of disjoint i-sets P and Q

yields

fi + gi + fk+1−i + gk+1−i ≤
(
k + 1

i

)(
n − k − 1

k − i

)
+

(
k + 1

k + 1 − i

)(
n − k − 1

i − 1

)
.

In case of k + 1 = 2q is even summing (3.3) over all ordered complementary pairs
(P, Q) we infer

fq + gq ≤
(
k + 1

q

)(
n − k − 1

k − q

)
.

Summing these inequalities we obtain

|F | + |G| ≤
∑

2≤ j≤k−1

(
k + 1

j

)(
n − k − 1

k − j

)
+ 2

(
k + 1

k

)
proving (1.5).

In case of equality, equality must hold all the way, in particular in (3.3) for all
2 ≤ i ≤ k+1

2 and all pairs of disjoint i-sets P and Q. Using uniqueness in case
of Sperner’s shadow theorem (3.1), we infer that one of F(P) and G(Q) must be
empty and the other the full set

([k+2,n]
k−i

)
. Using equality in Lemma 2.5 we eventu-

ally arrive at the conclusion that either F = ([k+1]
k

)
or G = ([k+1]

k

)
and the other is{

H ∈ ([n]
k

) : |H ∩ [k + 1]| ≥ 2
}
. �

Let us prove the analogous result for families of distinct uniformities as well.
First we define two pairs of CI families, n ≥ k + �, k > � ≥ 1.

Example 3.3 G1 = ([�+1]
�

)
, F1 =

{
F ∈ ([n]

k

) : |F ∩ [� + 1]| ≥ 2
}
.

Example 3.4 G2 =
{
G ∈ ([n]

�

) : 1 ∈ G
}

∪ {[2, � + 1]}, F2 =
{
F ∈ ([n]

k

) : 1 ∈ F, F∩
[2, � + 1] �= ∅}.

It should be clear that both pairs form initial CI families, G1 ⊂ G2, F2 ⊂ F1. Let
us define gi (n, k, �) = |Gi | + |Fi |, i = 1, 2. It is easy to check that gi (k + �, k, �) =(k+�

�

) = (k+�
k

)
and |F | + |G| ≤ (k+�

�

)
for all CI pairs F ⊂ ([k+�]

k

)
, G ⊂ ([k+�]

�

)
. This

takes care of the n = k + � case of the following.
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Theorem 3.5 Suppose that n ≥ k + �, k > � ≥ 1 and the initial families F ⊂ ([n]
k

)
,

G ⊂ ([n]
�

)
form a CI pair. Then (a) and (b) hold.

(a) If both F and G are non-trivial then

|F | + |G| ≤ g1(n, k, �) =
(
n

k

)
−

(
n−�−1

k

)
−(� + 1)

(
n−�−1

k − 1

)
+ (� + 1).

(3.6)

(b) F is trivial but non-empty and G is non-trivial, then

|F | + |G| ≤ g2(n, k, �) =
(
n − 1

k − 1

)
−

(
n − � − 1

k − 1

)
+

(
n − 1

� − 1

)
+ 1. (3.7)

Let us note that in the nearly trivial case � = 1, gi (n, k, 1) = (n−2
k−2

) + 2, i = 1, 2.

Strictly speaking case (a) does not exist: if G ⊂ ([n]
1

)
is initial and non-empty then

{1} ∈ G. Hence 1 ∈ F for all F ∈ F . In any case the inequalities (3.6) and (3.7) are
straightforward to verify for � = 1.

As we noted above for n = k + �, gi (n, k, �) = (n
k

) = (n
�

)
. Then |F | + |G| ≤ (k+�

�

)

follows from the CI property: if F ∈ F then ([k + �]\F) /∈ G.
Thus in the sequel we may assume that k ≥ � ≥ 2, n > k + �. The only reason that

we discussed the above cases is that we use them during the induction argument.
Assume that we have proved (3.6) and (3.7) for n − 1 and let us establish it for n.

Let us first consider (b), that is, 1 ∈ F for all F ∈ F . Then

|G| + |F | = |G(1)| + |G(1)| + |F(1)|, F(1) �= ∅ �= G(1).

As G(1),F(1) form a CI pair on [2, n] and � ≤ k − 1, (1.6) yields

|G(1)| + |F(1)| ≤
(
n − 1

k − 1

)
−

(
n − � − 1

k − 1

)
+ 1.

Adding to this the obvious |G(1)| ≤ (n−1
�−1

)
, (3.7) follows.

Now let us turn to case (a). Bynon-triviality all four familiesG(1),F(1);G(1),F(1)
are non-empty. Using non-triviality and initiality [2, � + 1] ∈ G whence

([�+1]
�

) ⊂ G.
Thus

([2,�+1]
�−1

) ⊂ G(1), proving that G(1) is non-trivial. In the same way, F(1) is

non-trivial as well. Since G1(1) = {[2, �+1]}, we can’t hope for a proof of G(1) being
non-trivial. We simply use G(1) �= ∅ and (1.6):

|G(1)| + |F(1)| ≤
(
n − 1

k − 1

)
−

(
n − � − 1

k − 1

)
+ 1. (3.8)

Now we distinguish two cases.
(i) F(1) is non-trivial.

123



Combinatorica (2024) 44:15–35 23

Using the induction hypothesis yields

|F(1)| + |G(1)| ≤
(
n − 1

k

)
−

(
n − � − 1

k

)
− �

(
n − � − 1

k − 1

)
+ �. (3.9)

Adding (3.9) to (3.8) yields exactly (3.6).
(ii) F(1) is trivial.

As F is non-trivial, F(1) is non-empty. Also k > � implies k ≥ (� − 1) + 2.
Applying (3.7) to the CI-pair F(1), G(1) yields

|F(1)| + |G(1)| ≤
(
n − 2

k − 1

)
−

(
n − � − 1

k − 1

)
+

(
n − 2

� − 2

)
+ 1. (3.10)

To obtain (3.6) it is sufficient to prove that the RHS of (3.10) does not exceed the
RHS of (3.9).

(
n − 2

k − 1

)
−

(
n − � − 1

k − 1

)
+

(
n − 2

� − 2

)
+ 1

≤
(
n − 1

k

)
−

(
n − � − 1

k

)
− �

(
n − � − 1

k − 1

)
+ �.

Equivalently,

(
n − 2

� − 2

)
− (� − 2) − 1 ≤

(
n−2

k

)
−

(
(n − 2) −(� − 2) − 1

k

)

−((� − 2) + 1)

(
(n − 2)−(� − 2)−1

k − 1

)
. (3.11)

To derive (3.11) from (1.7) simply setm = n−2, q = k, p = �−2, a = 2, b = �−2.
To conclude the proof we only have to check the inequalities 0 ≤ �−2 < k ≤ n−�

where the last one is valid by n ≥ k + �. �

4 The Proof of Theorem 1.4

Let us fix k ≥ � ≥ 1, n ≥ k + � and define G0 = {U , V } where U and V are two

disjoint �-subsets of [n]. Set F0 =
{
F ∈ ([n]

k

) : F ∩U �= ∅, F ∩ V �= ∅
}
.

Obviously F0 and G0 are cross-intersecting and

|F0| + |G0| =
(
n

k

)
− 2

(
n − �

k

)
+

(
n − 2�

k

)
+ 2 =: h(n, k, �). (4.1)

Moreover, for � ≥ 2 both F0 and G0 are non-trivial.
Let F ⊂ ([n]

k

)
, G ⊂ ([n]

�

)
be cross-intersecting. In the case n = k + �, h(n, k, �) =

(k+�
k

)
and the bound |F | + |G| ≤ ( n

k+�

)
is very easy to prove. Just note that F ∈ F
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implies [n]\F /∈ G. If � = 1 and |G| = r > 1 then |F | ≤ (n−r
k−r

)
is obvious. Now

(n−r
k−r

)+r ≤ (n−2
k−2

)+2 = h(n, k, 1). I.e., in the case � = 1, (4.2) provides themaximum
of |F | + |G| for cross-intersecting families subject to |G| ≥ 2 without requiring that
F is non-trivial. Our main result shows that (4.2) provides the maximum in general.

Theorem 4.1 Let k ≥ � ≥ 2, n > k + �. Suppose that F ⊂ ([n]
k

)
and G ⊂ ([n]

�

)
are

non-trivial and cross-intersecting. Then

|F | + |G| ≤ h(n, k, �). (4.2)

Moreover, unless k = � = 2, up to symmetry F0,G0 are the only families achieving
equality in (4.2).

Let us note that in the case k = � = 2 there are two more essentially dif-
ferent constructions: F1 = G1 = ([3]

2

)
and F2 = {(1, 2), (2, 3), (3, 4)}, G2 =

{(1, 3), (2, 3), (2, 4)}. For fixed k, � and n → ∞, h(n, k, �) = (�2 − o(1))
(n−2
k−2

)

while g1(n, k, �) from Theorem 3.5 satisfies g1(n, k, �) =
((

�+1
2

) − o(1)
) (n−2

k−2

)
.

For large n and k ≥ 3 these show that h(n, k, �) > g1(n, k, �). To prove it for all
n > k + �, k ≥ 3 is not evident.

Proposition 4.2 Let n > k + �, k ≥ 3, � ≥ 2. Then

g1(n, k, �) < h(n, k, �). (4.3)

Note that Theorem 3.5 and (4.3) imply Theorem 4.1 for shifted (initial) families.
Nevertheless shifting (cf. Sect. 2) plays a crucial role in the proof of Theorem 4.1.

Recall that (i, j) and more generally (x1, . . . , xr ) denote a set where we know that
i < j , x1 < . . . < xr .

Let us now prove (4.3) in a more general form that will be useful later.

Proposition 4.3 Suppose thatF ⊂ ([n]
k

)
, G ⊂ ([2�]

�

)
are non-trivial, cross-intersecting

and saturated. Let n > k + �, k ≥ � ≥ 2, k ≥ 3. Then

|F | + |G| ≤ h(n, k, �) and the inequality is strict unless |G| = 2. (4.4)

Proof Let us define the family Tr of r -transversals of G by

Tr =
{
T ∈

([2�]
r

)
: T ∩ G �= ∅ for all G ∈ G

}
, 1 ≤ r ≤ k.

Set tr = |Tr |. Note that tr = (2�
r

)
for � < r ≤ k. The non-triviality of G implies t1 = 0.

Also,

t� =
(
2�

�

)
− |G|. (4.5)
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Lemma 4.4 For 2 ≤ r < �,

tr ≤
(
2�

r

)
− 2

(
�

r

)
. (4.6)

Let us prove (4.4) assuming (4.6). Note that saturatedness, i.e., the maximality of
|F | + |G| implies

|F | =
∑

2≤r≤k

tr

(
n − 2�

k − r

)

and using (4.5)

|F | + |G| = |G| +
∑

2≤r<k
r �=�

tr

(
n − 2�

k − r

)
+

((
2�

�

)
− |G|

)(
n − 2�

k − �

)
.

Setting g = |G|−2 and noting that for G0 = {[�], [� + 1, 2�]} equality holds in (4.6),

|F | + |G| ≤ h(n, k, �) − g

((
n − 2�

k − �

)
− 1

)
≤ h(n, k, �).

��
To prove (4.6) we show

(
2�

r

)
− tr ≥ 2

(
�

r

)
, (4.7)

i.e., there are at least 2
(
�
r

)
subsets R ∈ ([2�]

r

)
that are not transversals (covers) of G.

To this end pick an arbitrary x ∈ [�] and a G ∈ G with x /∈ G. Then all
(
�−1
r−1

)
subsets

R ∈ ([2�]\G
r

)
satisfying x ∈ R are non-covers. Summing this over the 2� choices

for x we infer that there are at least 2�
(
�−1
r−1

)/
r = 2

(
�
r

)
non-covers, as desired. This

concludes the proof of (4.6).
To prove (4.2) we introduce a special way of simultaneously transforming the two

families. We call it shifting ad extremis. Let us say that two families F and G are
CI if they are cross-intersecting. We proved in [9] that this property is maintained
by shifting, that is Si j (F) and Si j (G) are CI as well. Consequently we can keep on
applying Si j simultaneously for arbitrary pairs 1 ≤ i < j ≤ n. However it might
happen that Si j (F) or Si j (G) ceases to be non-trivial.

Throughout the whole proof we keep assuming that |F | + |G| is maximal. Con-
sequently, whenever G(i, j) = ∅ its counterpart F(i, j) must be full, i.e., F(i, j) ={
F ∈ ([n]

k

) : (i, j) ⊂ F
}
. Similarly, if F(i, j) = ∅ then G(i, j) is full.

The important thing about the shifting process is that if Si j (F) or Si j (G) is trivial (a
star) then we renounce at Si j and choose an arbitrary different pair (i ′, j ′) and perform
Si ′ j ′ . We should stress three things. First, by abuse of notation, we keep denoting the
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current families by F and G. Second, since i < j , the sum
∑

F∈F
∑

x∈F
x + ∑

G∈G
∑

y∈G
y

keeps decreasing. Third, we return to previously failed pairs 1 ≤ i < j ≤ n, because
it might happen that at a later stage in the process Si j does not destroy non-triviality
any longer. The important thing is that shifting ad extremis eventually produces two
non-trivial families F and G that are CI and for each 1 ≤ i < j ≤ n one of (a), (b)
and (c) holds.
(a) Si j (F) = F and Si j (G) = G.
(b) Si j (F) is a star.
(c) Si j (G) is a star.

Then we say that (F ,G) is shifted ad extremis. We are going to see below that this
is a very strong property.

For H = F or G let us define an ordinary graph T2(H) where (i, j) is an edge of
T2(H) ifH(i, j) = ∅. By the maximality of |F | + |G|, for K = {F ,G}\{H}, K(i, j)
is full.

Fact 4.5 T2(F) and T2(G) are cross-intersecting.

Proof Suppose the contrary and fix (i, j) ∈ T2(F) and (a, b) ∈ T2(G) that are disjoint.
By n ≥ k + � we can find G ∈ ([n]

�

)
and H ∈ ([n]

k

)
satisfying G ∩ {i, j, a, b} = (i, j),

H ∩ {i, j, a, b} = (a, b) and H ∩ G = ∅.
By the maximality of |G| + |F |, G ∈ G and H ∈ F , a contradiction. ��
We should note that if (b) holds for (i, j) then (i, j) ∈ T2(F), but not necessarily

vice versa.
If (a) holds for all 1 ≤ i < j ≤ n thenF andG are initial and |F |+|G| ≤ g1(n, k, �)

follows from Theorem 3.5. Consequently we may assume that (b) or (c) holds for at
least one pair (i, j).

Let us first show that we may assume without loss of generality that Si j (G) is a
star for some 1 ≤ i < j ≤ n. If k = � then if necessary we could interchange F
and G. Let k > � and assume that F̃ := Si j (F) is a star. Set G̃ = Si j (G). Note that∣∣F̃

∣∣ = ∣∣F̃(i)
∣∣ and the two families F̃(i), G̃(i) are non-empty CI. Since k − 1 ≥ �,

Theorem 1.6 yields

∣∣F̃(i)
∣∣ + ∣∣G̃(i)

∣∣ ≤
(
n − 1

k − 1

)
−

(
n − � − 1

k − 1

)
+ 1.

Using |F | + |G| = ∣∣F̃
∣∣ + ∣∣G̃

∣∣ and
∣∣G̃

∣∣ = ∣∣G̃(i)
∣∣ + ∣∣G̃(i)

∣∣ we infer

|F | + |G| ≤
(
n − 1

k − 1

)
+

(
n − 1

� − 1

)
−

(
n − � − 1

k − 1

)
+ 1 <

(
n

k

)
− 2

(
n − �

k

)
+ 2

for n > k + �, where the last inequality is (5.8) from [15].
Since G(i, j) = ∅ but G(i) and G( j) are non-empty,we can choose K , H ∈ G with

K ∩ (i, j) = {i}, H ∩ {i, j} = { j}. Let us fix these K and H maximizing |K ∩ H |.
In view of Fact 2.1, |K ∩ H | ≤ � − 2.
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Lemma 4.6 Suppose that x �= i , y �= j but x ∈ K\H, y ∈ H\K. Then {x, y} is in
(c).

Proof To simplify notation assume x < y for the proof. The case y < x can be treated
in the sameway. Since Sxy(H) =: H ′ = (H\{y})∪{x} and |H ′∩K | = |H∩K |∪{x},
H ′ /∈ G. Consequently, (x, y) cannot be of type (a). In view of (i, j) ∩ (x, y) = ∅, it
is not of type (b) either. ��

In view of the fullness of F(x, y), F(i, j) and F(i, j) are both non-empty.
At this point let us clarify our plan for proving (4.2). There is a Plan A and a Plan B.

Plan A is to find a pair (i, j) of type (c) with the additional property that F(i, j) is
non-trivial. Then use induction.

Accordingly Plan B relates to the case that no such (i, j) exists. In this casewe show
that F and G are of a rather restricted type, e.g., they are shifted on [n]\{i, j, x, y},
{i, j, x, y} is a transversal for F etc. Eventually we use these structural properties to
prove (4.2).
Case A. There are 1 ≤ i < j ≤ n so that (i, j) is of type (c) and F(i, j) is
non-trivial.

We assume that (4.2) has been proved for all pairs k′ ≥ �′ ≥ 2 with k′ + �′ < k + �

and apply induction. As noted before, for � = 1 and k ≥ 2, (4.2) holds wheneverF ,G
are CI and |G| ≥ 2. This can serve as a base for the induction.

To prove (4.2) first note that G(i, j) = ∅ implies

|F(i, j)| + |G(i, j)| =
(
n − 2

k − 2

)
. (4.8)

Note also that G(i, j) = ∅ and non-triviality imply that G(i, j) and G(i, j) are non-
empty.

Applying Theorem 1.6 to the non-empty CI families
(
F(i, j),G(i, j)

)
and(

F(i, j),G(i, j)
)
yields

∣
∣F(i, j)

∣
∣ + ∣

∣G(i, j)
∣
∣ ≤

(
n − 2

k − 1

)
−

(
n − � − 1

k − 1

)
+ 1, (4.9)

∣∣F(i, j)
∣∣ + ∣∣G(i, j)

∣∣ ≤
(
n − 2

k − 1

)
−

(
n − � − 1

k − 1

)
+ 1. (4.10)

Moreover, the inequalities are strict unless
∣∣G(i, j)

∣∣ = 1,
∣∣G(i, j)

∣∣ = 1, respectively.
Finally, we need to prove

∣
∣F(i, j)

∣
∣ + |G(i, j)| ≤

(
n − 2

k

)
− 2

(
n − � − 1

k

)
+

(
n − 2�

k

)
. (4.11)

To prove (4.11) using the induction hypothesis we construct a non-trivial family G̃ ⊂([n]\(i, j)
�−1

)
satisfying

∣∣G̃
∣∣ ≥ |G(i, j)| + 2.

First note that the non-triviality of G and G(i, j) = ∅ and (i, j) being of type (c)
imply that G(i, j) and G(i, j) are disjoint and G(i, j)∪G(i, j)∪G(i, j) is non-trivial
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on [n] \ (i, j). In the case G(i, j) = ∅, we set G̃ = G(i, j) ∪ G(i, j) and apply
the induction hypothesis to the pair

(
F(i, j), G̃

)
. Noting

∣∣G̃
∣∣ ≥ 2, (4.11) follows. If

G(i, j) �= ∅ let Ĝ be its shade,

Ĝ =
{
Ĝ ∈

([n] \ (i, j)

� − 1

)
: ∃G ∈ G(i, j),G ⊂ Ĝ

}
.

By Sperner’s Shadow Theorem,

∣∣Ĝ
∣∣ ≥ |G(i, j)| n − �

� − 1
. (4.12)

We define G̃ = Ĝ ∪ G(i, j) ∪ G(i, j). Obviously G̃ ⊂ ([n]\(i, j)
�−1

)
and the pair

(
F(i, j), G̃

)
is CI. The final piece to prove is

∣
∣G̃

∣
∣ ≥ |G(i, j)| + 2. (4.13)

Since for n > k+� every (�−2)-subset of [n]\(i, j) is contained in (n−2)−(�−2) >

k ≥ � subsets of size � − 1,
∣∣Ĝ

∣∣ ≥ � + 1. Thus in proving (4.13) we may assume
|G(i, j)| ≥ �. From (4.12) we infer

∣∣G̃
∣∣ ≥ |G(i, j)| + |G(i, j)|n − 2� + 1

� − 1

≥ |G(i, j)| + �

� − 1
(n − 2� + 1) > |G(i, j)| + 1

proving (4.13). �

Remark The above proof shows that (4.2) holds in the case n = k + � + 1 even if
F(i, j) is trivial. Indeed, the RHS of (4.11) is

(k+�−1
k

) − 2. Above we constructed

G̃ ⊂ ( [n]
�−1

)
so that F(i, j) and G̃ are CI on the (k + � − 1)-set [n]\(i, j). Thus

|F(i)| + ∣∣G̃
∣∣ ≤ (k+�−1

k

)
. Hence (4.13) implies (4.11).

From now on we assume n ≥ k + � + 2.
CaseB. For all pairs (i, j) of type (c), F(i, j) is a star.
Let z(i, j) denote an element common to all members of F(i, j). Let us set Z =

{i, j, x, y} from Lemma 4.6. We claim that (a, b) is of type (a) for all (a, b) ⊂ [n]\ Z .
First note that (a, b) is not of type (b) because of Fact 4.5. Should it be of type (c),

we infer (a, b) ∈ T2(G) whence all k-sets F ⊂ [n] satisfying F ∩{i, j, a, b} = (a, b)
are inF(i, j). Since the same holds for all k-sets with F∩{i, j, x, y} = {x, y},F(i, j)
is non-trivial, a contradiction. Note that this argument shows z(i, j) ∈ {x, y} ⊂ Z as
well.

Note that via Lemma 4.6, |K ∩ H | = � − 2 follows as well. Set W = [n] \ Z =
(w1, . . . , wn−4). Define K̃ = {i, x, w1, . . . , w�−2}, H̃ = { j, y, w1, . . . , w�−2}. Since
all pairs in W are of type (a), K , H ∈ G imply K̃ , H̃ ∈ G. WLOG assume K = K̃ ,
H = H̃ .
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Fact 4.7 If |L ∩ Z | ≤ 2 for some L ∈ G then L ∩ Z = {i, x} or { j, y}.

Proof From L ∩ (i, j) �= ∅ and L ∩ (x, y) �= ∅, |L ∩ Z | ≥ 2 follows. We have to
show that L ∩ Z is neither {i, y} nor { j, x}. By symmetry assume L ∩ Z = {i, y}. By
shiftedness on W , L̃ = {i, y, w1, . . . , w�−2} ∈ G. However this contradicts G(x) ∩
G(y) = ∅. ��

Corollary 4.8 G(x, j) = ∅ = G(i, y).

Proof If G ∈ G(x, j) then |G ∩ Z | ≥ 2 implies G ∩ Z = {i, y}, a contradiction. ��

Corollary 4.9 {x, j} and {i, y} are of type (c).

Proof By Corollary 4.8 and the maximality of |F |+ |G|, bothF(x, j) andF(i, y) are
full. This implies that {x, j} and {i, y} could not be of type (b). Should, say, {x, j} be of
type (a), we infer according to whether x < j or j < x that {x, y, w1, . . . , w�−2} ∈ G
or {i, j, w1, . . . , w�−2} ∈ G. Both contradict Fact 4.7. ��

Fact 4.10 Z is a transversal of F .

Proof Since F(x, y) is full z(i, j) ∈ {x, y}.
However, if F ∈ F satisfies F ∩ Z = ∅ then F ∈ F(i, j) but z(i, j) /∈ F , a

contradiction. ��

Now we are in a position to prove an important lemma.

Lemma 4.11 Set V = Z ∪ (w1, . . . , wk+�−4), |V | = k + �. Then for all F ∈ F and
G ∈ G,

F ∩ G ∩ V �= ∅.

Proof Arguing for contradiction choose F ∈ F ,G ∈ Gwith F∩G∩V = ∅ and among
such sets |F ∩G| is as small as possible. Choose v ∈ F ∩G. Then F ∩ Z �= ∅ implies
|F ∩ (w1, . . . , wk+�−4)| ≤ k−2 andby |G∩Z | ≥ 2, |G ∩ (w1, . . . , wk+�−4)| ≤ �−3.

Consequently we can pickw ∈ (w1, . . . , wk+�−4)withw /∈ F ∪G. By shiftedness
F ′ := (F\{v}) ∪ {w} is in F . However, F ′ ∩ G ∩ V = ∅ and |F ′ ∩ G| < |F ∩ G|, a
contradiction. ��

Seeing �−3 in the proof the careful readermightwonder,what about the case � = 2 ?
Actually, that case is readily settled by Fact 4.7. If � = 2 it implies G = {{i, x}, { j, y}}
and (4.2) follows together with uniqueness.

Let us use Lemma 4.11 to prove (4.2) in an important special case.

Proposition 4.12 Suppose that G(n) = ∅ and k > �. Then (4.2) holds. Moreover,
inequality is strict unless |G| = 2.
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Proof Note that the fullness of F(i, j) and F(x, y) imply that F(n) is non-trivial. In
view of Lemma 4.11, F(n) and G are CI. The same is true for F(n) and G. Thus

|F(n)| + |G| − 2 ≤
(
n − 1

k

)
− 2

(
n − � − 1

k

)
+

(
n − 2� − 1

k

)
,

|F(n)| + |G| − 2 ≤
(
n − 1

k − 1

)
− 2

(
n − � − 1

k − 1

)
+

(
n − 2� − 1

k − 1

)
.

Adding these yields |F | + |G| ≤ (n
k

) − 2
(n−�

k

) + (n−2�
k

) + 2 − (|G| − 2). ��
As useful as Proposition 4.12 might look, it is not needed in the rest of the proof.

We believe that it might be useful in other situations. On the other hand one can use
Lemma 4.11 to settle the case k = � as well.

Claim 4.13 If G(n) = ∅ then G ⊂ V for all G ∈ G.

Proof Suppose thatu ∈ G\V for someG ∈ G. ThenLemma4.11 impliesG\{u}∩F �=
∅ for all F ∈ F . Consequently the same holds for (G \ {u}) ∪ {n} =: G ′. Now the
maximality of |G| + |F | implies G ′ ∈ G. Hence G(n) �= ∅. ��

If k = � and G(n) = ∅ then Claim 4.13 and Lemma 4.4 imply (4.2) together with
uniqueness.

Recall that for a ∈ {i, x}, b ∈ { j, y}, (a, b) is of type (c) and F(a, b) is trivial. Let
z = z(a, b) ∈ F for all F ∈ F(a, b). Recall that z ∈ {x, y} ⊂ Z . This implies that
{a, b, z} ∩ F �= ∅ for all F ∈ F . That is, for each of the four choices of (a, b) there
is a T , (a, b) ⊂ T ∈ (Z

3

)
where T is a transversal of F . Using this for (a, b) = (i, j)

and {x, y} we infer that at least two of the four sets in (Z
3

)
are transversals ofF . Could

it be three or four?

Proposition 4.14 Exactly two members, T , T ′ ∈ (Z
3

)
are transversals ofF . Moreover,

either {T , T ′} = {
Z\{x}, Z\{i}} or {T , T ′} = {

Z\{y}, Z\{ j}}.

Proof If T ∈ (Z
3

)
is a transversal of F then saturatedness implies that all �-sets

containing T are in G. In particular, GT := T ∪ {w1, . . . , w�−3}. For a transversal
T ∈ (Z

3

)
define z(T ) by T = Z\{z(T )}. If for two transversals T , T ′, {z(T ), z(T ′)} =

{i, j} or {x, y} then G(T ) and G(T ′) contradict G(i)∩G( j) �= ∅ or G(x)∩G(y) �= ∅,
respectively. This implies that we could not have three or more such T . Finally, if
{z(T ), z(T ′)} = {i, y} or { j, x} then there is no transversal of size 3 containing {i, y}
or { j, x}, respectively. This concludes the proof. ��

Let us suppose that T = {i, x, j} and T ′ = {i, x, y}.
Claim 4.15 There exist F, F ′ ∈ F such that F ∩ Z = {i} and F ′ ∩ Z = {x}.
Proof By Proposition 4.14, there is some F ∈ F satisfying F ∩ {x, j, y} = ∅. By
Fact 4.10, F ∩ Z = {i}. Considering the non-transversal {i, j, y} we obtain F ′ ∈ F
with F ′ ∩ Z = {x}. ��
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Since T ∩ H = { j}, G( j) is non-trivial. Let us show:

Claim 4.16 F( j) is non-trivial.

Proof Since F(i, x) is full, the only candidates for membership in ∩F( j) are i and
x . However, F, F ′ from Claim 4.15 are in F( j) and F ∩ F ′ ∩ Z = ∅. ��

Applying the induction hypothesis to F( j) and G( j) yields

|F( j)| + |G( j)| ≤
(
n − 1

k

)
− 2

(
n − �

k

)
+

(
n − 2� + 1

k

)
+ 2. (4.14)

Here we distinguish two cases, namely k > � and k = �. If k > �, i.e., k − 1 ≥ � then
we apply (1.6) to the non-empty CI pair F( j) and G( j):

|F( j)| + |G( j)| ≤
(
n − 1

k − 1

)
−

(
n − � − 1

k − 1

)
+ 1. (4.15)

The sum of (4.14) and (4.15) is:

|F | + |G| ≤
(
n

k

)
− 2

(
n − �

k

)
+

(
n − 2�

k

)
+ 2 −

((
n−�−1

k − 1

)
−

(
n − 2�

k − 1

)
−1

)
.

That is, to prove (4.2) we need to show,

(
n − � − 1

k − 1

)
−

(
n − 2�

k − 1

)
=

(
n − � − 2

k − 2

)
+

(
n − � − 3

k − 2

)
+ . . .

(
n − 2�

k − 2

)
> 1.

This is true for n ≥ k + � + 1, k ≥ 3 by
(n−�−2

k−2

) ≥ (k−1
k−2

) = k − 1 > 1.
The second case is k = �.
Since {i, x, y} is a transversal of F , |F( j)| = |F1| + |F2| where

F1 = {
F ∈ F : j ∈ F, F ∩ {i, x} �= ∅}

and F2 = F({y, j}, Z).

For G ∈ G( j), Fact 4.7 implies {i, x} ⊂ G. Thus

|G( j)| = ∣
∣G({i, x, y}, Z)

∣
∣ + ∣

∣G({i, x}, Z)
∣
∣.

Obviously,

|F1| ≤
(
n − 1

k − 1

)
−

(
n − 3

k − 1

)
,

∣∣G({i, x, y}, Z)
∣∣ ≤

(
n − 4

k − 3

)
.
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The important observation is that F({y, j}, Z) and G({i, x}, Z) are cross-intersecting
(k − 2)-graphs on [n] \ Z . By (2.2),

∣∣F({y, j}, Z)
∣∣ + ∣∣G({i, x}, Z)

∣∣ ≤ (n−4
k−2

)
. Thus

we infer

|F( j)| + |G( j)| ≤
(
n − 1

k − 1

)
−

(
n − 3

k − 1

)
+

(
n − 3

k − 2

)
. (4.16)

Adding this to (4.14) yields

|F | + |G| ≤
(
n

k

)
− 2

(
n−k

k

)
+

(
n−2k

k

)
+ 2 −

(
n−2k

k − 1

)
−

((
n−3

k−1

)
−

(
n−3

k−2

))
,

proving (4.2) with strict inequality for n > 2k. �

5 The New Proof of Theorem 1.6

Since simultaneous shifting maintains cross-intersection we may assume that F and
G are initial families. For G ∈ G define the quantity p(G) as the maximal integer p
with the property

∣∣G ∩ [2p + k − �]∣∣ ≥ p. (5.1)

Note that (5.1) is always satisfied for p = 0. This implies 0 ≤ p ≤ �.
In the case k = �, should p(G) = 0 hold for someG, then (3, 5, 7, . . . , 2k+1) ≺ G

follows. Indeed, otherwise if G = (x1, . . . , xk) then for some 1 ≤ p ≤ k, xp ≤ 2p
and thereby |G ∩ [2p]| ≥ p would hold.

Thus p(G) = 0 and shiftedness imply (3, 5, . . . , 2k+1) ∈ G.Weclaim that p(F) >

0 for all F ∈ F . In the opposite case we infer that (3, 5, . . . , 2k + 1) ∈ F . However,
F is initial, yielding (2, 4, . . . , 2k) ∈ F which contradicts cross-intersection.

In the k = � case, if necessary we interchange F and G. Then we can suppose that
p(G) > 0 for all G ∈ G.

Let us now define the map ϕ : G → ([n]
k

)
by ϕ(G) = G�[2p(G) + k − �] (�

denotes symmetric difference).

Lemma 5.1 (i) |ϕ(G)| = k,
(ii) ϕ is an injection with ϕ(G) /∈ F ,
(iii) ϕ(G) ∩ [�] �= ∅ for G �= [�].
Proof The maximal choice of p in (5.1) implies

∣∣G∩[2p(G)+k−�]∣∣ = p(G). Thus∣
∣G�[2p(G) + k − �]∣∣ = |G| + k − � = k, proving (i).

Let us show ϕ(G) �= ϕ(G ′) for G �= G ′ ∈ G. If p(G) = p(G ′) then this is
evident. Suppose that p(G)> p(G ′). Then ϕ(G) ∩ [2p(G) + k − �]= p(G) + k − �.
However

∣
∣G ′ ∩ [2p(G) + (k − �)]∣∣ < p(G) implies

∣
∣ϕ(G ′) ∩ [2p(G) + k − �]∣∣ =

p(G ′) + k − � + ∣∣G ′ ∩ [2p(G ′) + k − � + 1, 2p(G) + k − �]∣∣ < p(G) + k − �. This
shows that ϕ is injective.
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To prove ϕ(G) /∈ F first note that the maximal choice of p = p(G) implies that
for G = (x1, . . . , x�), xp+i > 2p + k − � + 2i , p < i ≤ �. Using shiftedness for G
we infer

(G ∩ [2p + k − �] ∪ {k − � + 2(p + 1), k − � + 2(p + 2), . . . , k − � + 2�}) ∈ G.

If ϕ(G) ∈ F then the shiftedness of F implies in the same way

([2p + k − �] \ G ∪ {k − � + 2p + 1, k − � + 2p + 3, . . . , k − � + 2� − 1}) ∈ F .

However these two sets are disjoint, a contradiction.
To prove (iii) is easy. If G �= [�] then let x be the minimal element of [�] \G. Now

[x −1] ⊂ G implies p(G) ≥ x −1 and 2p(G)+k−� ≥ x because p(G)+k−� ≥ 1
either by k > � or by k = � and p(G) ≥ 1. Hence x ∈ ϕ(G). ��

Let us deduce Theorem 1.6 from the lemma. By shiftedness [�] ∈ G. Set H ={
H ∈ ([n]

k

) : H ∩ [�] �= ∅
}
. By cross-intersectionF ⊂ H. By the lemmaϕ(G\{[�]})∩

F = ∅ and ϕ(G) ⊂ H as well. Consequently

|F | + |G| − 1 ≤ |H| =
(
n

k

)
−

(
n − �

k

)
proving(1.6). (5.2)

Let us show that the inequality is strict if |G| > 1 unless k = � = 2. By shiftedness
[�+1]\{�} =: G� ∈ G. Obviously, p(G�) = �. Thusϕ(G�) = (�, �+2, �+3, . . . , k+
�) =: H0 /∈ F by Lemma 5.1 (ii).

Proof Define H1 = (�, �+2)∪[�+4, k+ �+1]. Note that k ≥ 3 implies [�+4, k+
� + 1] �= ∅. Since H0 ≺ H1, H1 /∈ F . Should equality hold in (1.6), that is, in (5.2),
there is some G1 ∈ G with ϕ(G1) = H1.

Now H1 = G1�
[
2p(G1) + k − �

]
implies H1�

[
2p(G1) + k − �

] = G1.
Using p(G1)+ k− � > 0, 1 ∈ G1 follows. This implies p(G1) ≥ 1 and 2p(G1)+

k−� ≥ 2. Using also [�−1]∩ H1 = ∅we can prove successively p(G1) > �−1 and
therefore p(G1) = �. However H1�[k+�] = [�−1]∪ {�+1, �+3} is an (�+1)-set
contradicting H1 = ϕ(G1). This concludes the proof. ��

We should mention that in the case k = � = 2, H1 = (2, 4) and k + � = 4. Thus
H1 = ϕ(G1) with G1 = (1, 3). As a matter of fact, setting F = G = {(1, i) : 2 ≤
i ≤ n} gives equality in (1.6).

6 Concluding Remarks

In the present paper we considered the problem of determining the maximum of
|F | + |G| for families F ,G ⊂ ([n]

k

)
where F and G are cross-intersecting and non-

trivial.
Recently, in a joint paper with Jian Wang [14] we proved the following result

concerning the product |F ||G|.
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Theorem 6.1 ([14]) Let n ≥ 4k, k ≥ 8, and suppose that F ,G ⊂ ([n]
k

)
are cross-

intersecting and non-trivial. Then

|F ||G| ≤
((

n − 1

k − 1

)
−

(
n − k − 1

k − 1

)
+ 1

)2

. (6.1)

Note that in the above range (6.1) implies (1.2), that is, the Hilton–Milner Theorem.
Note that (6.1) can be proved easily for k = 2, n ≥ 4. However, we do not know

whether it holds for all (n, k) satisfying n ≥ 2k ≥ 4.
We hope that the inequality (4.2) will find application in a wide range of extremal

problems.As amatter of fact, in [15] it played an important role in the complete solution
concerning themaximum of |F |,F ⊂ ([n]

k

)
,F is intersecting and has covering number

at least 3.
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