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Abstract
Extending the idea from the recent paper by Carbonero, Hompe, Moore, and Spirkl,
for every function f : N → N∪{∞} with f (1) = 1 and f (n) �

(3n+1
3

)
, we construct

a hereditary class of graphs G such that the maximum chromatic number of a graph
in G with clique number n is equal to f (n) for every n ∈ N. In particular, we prove
that there exist hereditary classes of graphs that are χ -bounded but not polynomially
χ -bounded.
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1 Introduction

Given a class of graphs C its χ -bounding function is the function χC : N → N ∪ {∞}
defined as

χC(n) = sup{χ(G) : G ∈ C and ω(G) = n},

where χ(G) and ω(G) denote, respectively, the chromatic number and the clique
number of G. A class of graphs C is χ -bounded if there is a function f : N → N

such that χ(G) � f (ω(G)) for every graph G ∈ C, or equivalently if χC(n) is finite
for every n ∈ N. A class C is polynomially χ -bounded if such a function f can be
chosen to be a polynomial. A class C is hereditary if it is closed under taking induced
subgraphs.

A well-known and fundamental open problem, due to Esperet [6], has been to
decide whether every hereditary class of graphs which is χ -bounded is polynomially
χ -bounded. We provide a negative answer to this question. More generally, we prove
that χ -bounding functions may be arbitrary, so long as they are bounded from below
by a certain cubic function.

Theorem 1 Let f : N → N ∪ {∞} be such that f (1) = 1 and f (n) �
(3n+1

3

)
for

every n � 2. Then there exists a hereditary class of graphs G such that χG(n) = f (n)

for every n ∈ N.

On the other hand, χ -bounding functions are not entirely arbitrary. For instance,
Scott and Seymour [11] proved that every hereditary class of graphs C with χC(2) = 2
satisfies χC(n) � 22

n+1
.

The proof of Theorem 1 is heavily based on the idea used by Carbonero, Hompe,
Moore, and Spirkl [2] in their very recent solution to another well-known problem
attributed to Esperet [12]. They proved that for every k ∈ N, there is a graph G with
ω(G) = 3 and χ(G) � k such that every triangle-free induced subgraph of G has
chromatic number at most 4. Their proof, in turn, relies on an idea by Kierstead and
Trotter [8], who proved in 1992 that the class of oriented graphs excluding a directed
path on four vertices as an induced subgraph is not χ -bounded. We further generalise
the aforesaid result of Carbonero, Hompe, Moore, and Spirkl [2] to higher clique
numbers. Specifically, we prove the following general bound, which we use to derive
Theorem 1.

Theorem 2 For every pair of integers n and k with k � n � 2, there exists a graph G
with clique number n and chromatic number k such that every induced subgraph of
G with clique number m < n has chromatic number at most

(3m+1
3

)
.

In case that n is a prime number, we prove a better bound, which matches the bound
of 4 from [2] when n = 3.

Theorem 3 For every pair of integers p and k with p a prime and k � p, there exists
a graph G with clique number p and chromatic number k such that every induced
subgraph of G with clique number m < p has chromatic number at most

(m+2
3

)
.
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In the first version of this paper [1], we proved a weaker version of Theorem 3 with(m+2
3

)
replaced by mm2

. Despite the worse bound obtained, that alternative proof may
still be of interest. The mere qualitative statement that for every prime p, there are
graphs with clique number p and arbitrarily large chromatic number whose induced
subgraphs with clique number less than p have bounded chromatic number suffices
to imply the negative answer to Esperet’s question.

After [1] appeared, Girão et al. [7] proved another generalisation of the aforesaid
qualitative version of Theorem 3. Namely, they proved that for every graph F with at
least one edge, there are graphs of arbitrarily large chromatic number and the same
clique number as F in which every F-free induced subgraph has chromatic number
at most some constant cF depending only on F . They also showed the analogous
statement where clique number is replaced by odd girth.

See [12] and [9] for recent surveys on χ -boundedness and polynomial χ -
boundedness.

2 Proof

First, we show that Theorem 2 implies Theorem 1.

Proof of Theorem 1 Assuming Theorem 2 Fix a function f : N → N ∪ {∞} such that
f (1) = 1 and f (n) �

(3n+1
3

)
for every n � 2. By Theorem 2, for every pair of integers

n and k with k � n � 2, there exists a graph Hn,k with clique number n and chromatic
number k such that every induced subgraph of Hn,k with clique number m < n is(3m+1

3

)
-colourable.

We now consider two cases. If f (n) is finite, we put Hn = {Hn, f (n)}. Otherwise
f (n) = ∞, and we put Hn = {Hn,k : k � n}. Finally, we let H = ⋃∞

n=2Hn , and we
let G be the hereditary closure of H, i.e., the family of all induced subgraphs of the
graphs inH.

We now argue that χG(n) = f (n) for all n ∈ N. The claim holds trivially for n = 1,
so assume n � 2. If f (n) = ∞, then the sequence of graphs {Hn,k : k � n} ⊆ G all
have clique number equal to n and have unbounded chromatic number, thus showing
that χG(n) = ∞, as claimed. Otherwise, f (n) is finite. The graph Hn, f (n) ∈ G shows
that χG(n) � f (n). For the reverse inequality, letG ∈ G be such thatω(G) = n. Then
there exist integers k and n∗ with k � n∗ � n such that G is an induced subgraph of
Hn∗,k ∈ H. The unique graph of H with clique number n is Hn, f (n). So if n∗ = n,
then χ(G) � χ(Hn, f (n)) = f (n), and if n∗ > n, then χ(G) �

(3n+1
3

)
. Combining

these inequalities, we conclude that

f (n) � χG(n) � max{(3n+1
3

)
, f (n)} = f (n),

and the theorem follows. �	
The rest of the paper is devoted to proving Theorem 2. We begin with the following

lemma.
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Lemma 4 For every positive integer k, there is a graph Gk and an acyclic orientation
of its edges with the following properties:

(1) χ(Gk) = k;
(2) for every pair of vertices u and v, there is at most one directed path from u to v

in Gk;
(3) there is a directed path in Gk on k vertices;
(4) there is a k-colouring φ of Gk such that φ(u) 
= φ(v) for any two distinct

vertices u and v such that there is a directed path from u to v in Gk.

Variouswell-known constructions of triangle-free graphswith arbitrarily high chro-
matic number, such as Zykov’s [13] andTutte’s [3, 4], satisfy the condition of Lemma 4
once the edges are oriented in a way that follows naturally from the construction. See
[2] and [8] for an explicit construction of the graphsGk with the appropriate acyclic ori-
entations, based onZykov’s construction. It is only implicit that the acyclic orientations
of the graphs in [2] and [8] satisfy all of the properties in the conclusion of Lemma 4,
so for the sake completeness we provide a proof based on Tutte’s construction.

Proof of Lemma 4 Weproceedby inductionon k. Thebase case k = 1 followsby taking
a single-vertex graph as G1. For the induction step, assume Gk−1 is an acyclically
oriented graph satisfying conditions (1)–(4) for k − 1. To construct Gk , begin with a
stable set S with |S| = (k − 1)(|V (Gk−1)| − 1) + 1, and for every subset X of S with
|X | = |V (Gk−1)|, add an isomorphic copy GX of Gk−1 (with the same orientation as
in Gk−1) and an arbitrary perfect matching between the vertices in X and the vertices
of GX , oriented from X to GX . This clearly preserves acyclicity of the orientation.
Since the vertices in S have in-degree zero, either every directed path is contained in
some copy GX of Gk−1, or the starting vertex u is contained in S and every other
vertex is contained in some copy GX of Gk−1. As every vertex in S has at most one
edge to each copy GX of Gk−1, the induction hypothesis implies that condition (2) is
preserved. Any directed path on k − 1 vertices in GX extends to a directed path on k
vertices in Gk by adding a vertex from S, so (3) holds. Any colouring of the copies
GX of Gk−1 with a common palette of k − 1 colours extends to a k-colouring of Gk

by using a single new colour on S, which shows that χ(Gk) � χ(Gk−1) + 1 and
condition (4) is preserved. Finally, suppose there exists a (k − 1)-colouring of Gk .
Then, since |S| > (k − 1)(|V (Gk−1)| − 1), there is a monochromatic set X ⊂ S with
|X | = |V (Gk−1)|. Since X andGX are connected by a perfect matching, at most k−2
colours are used on GX , which contradicts the fact that χ(GX ) = χ(Gk−1) = k − 1.
Hence χ(Gk) = k, as claimed in (1). �	

For the rest of the argument, we fix an arbitrary sequence (Gk)k∈N of graphs given
by Lemma 4. Now, for every pair of positive integers k and p, where p is a prime
number, we construct a graph Gk,p by adding edges to Gk as follows.

Let � be the directed reachability order of the vertices of Gk , that is, u � v if and
only if there is a (unique) directed path from u to v in Gk . Since the orientation of Gk

given by Lemma 4 is acyclic, � is indeed a partial order. For every pair of vertices u
and v in Gk such that u � v, let d(u, v) be the length of the unique directed path from
u to v in Gk (i.e., the number of edges in that path). The graph Gk,p has the same
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vertex set asGk and has the set {uv : u < v and d(u, v) 
≡ 0 (mod p)} as the edge set.
We consider each such edge uv as oriented from u to v. Since the original (oriented)
edges uv of Gk satisfy u < v and d(u, v) = 1, the graph Gk,p contains Gk as a
subgraph. Furthermore, every edge of Gk,p connects vertices with different colours in
a k-colouring φ of Gk claimed in Lemma 4. Therefore, χ(Gk,p) = k. Furthermore,
Gk,p is acyclic since Gk is acyclic.

Next,we examine cliques inGk,p (and its induced subgraphs). SinceGk,p is acyclic,
every clique of Gk,p induces a transitive tournament. Given a clique C of an acyclic
oriented graph, we let t(C) be the unique in-degree zero vertex of the transitive tour-
nament induced byC . We call t(C) the tail ofC . Given a cliqueC ofGk,p, we let r(C)

be the subset of Zp such that r(C) ≡ {d(t(C), v) : v ∈ C} (mod p). We call r(C)

the residue of the clique C . Note that 0 is always contained in r(C) since t(C) ∈ C .
Furthermore, |C | = |r(C)|, otherwise there would exist two distinct vertices u, v ∈ C
such that d(t(C), u) ≡ d(t(C), v) (mod p), and so d(u, v) ≡ 0 (mod p), which
would contradict the fact that u and v are adjacent. This observation allows us to
determine the clique number of Gk,p.

Lemma 5 For every positive integer k and every prime p � k, the graph Gk,p has
clique number p.

Proof Since Gk contains a directed path on k vertices and p � k, the graph Gk,p

contains a clique of size p. Conversely, if C is a clique in Gk,p, then |C | = |r(C)| �
|Zp| = p. �	

A rotation of a subset X ofZp is a subset ofZp of the form X+a = {x+a : x ∈ X}
for any a ∈ Zp. A subset of Zp is rooted if it contains 0. The rotation X + a of a
rooted subset X of Zp is rooted if and only if −a ∈ X . Let ∼p be the equivalence
relation on the rooted subsets of Zp such that X ∼p Y whenever Y is a rotation of X .
Let [X ]p denote the equivalence class of X in ∼p. For every proper rooted subset X
ofZp (such that X 
= Zp), since p is a prime, all rotations X +a of X with a ∈ Zp are
distinct. (Indeed, if X + a = X , then

∑
x∈X x ≡ ∑

x∈X (x + a) ≡ ∑
x∈X x + a · |X |

(mod p), so a · |X | ≡ 0 (mod p), which yields a ≡ 0 (mod p).) In particular, we
have |[X ]p| = |X |. Order every equivalence class arbitrarily, and for every proper
rooted subset X of Zp, let c(X) ∈ {1, . . . , |X |} denote the position of X in this
ordering.

Lemma 6 For every positive integer k, every prime p, and every induced subgraph G
of Gk,p with clique number m < p, we have χ(G) �

(m+2
3

)
.

Proof We will colour the vertices of G by triples of integers (a, b, c) with m �
a � b � c � 1. Since there are

(m+2
3

)
choices for such a triple, this will be a

(m+2
3

)
-colouring of G.

For eachvertexv ofG, leta(v)be themaximumsize of a clique inGwith tailv. Thus
m � a(v) � 1. Let B(v) be the intersection of the residues of all cliques of size a(v)

with tail v in G. Since 0 belongs to the residue of every clique, we have 0 ∈ B(v). Let
b(v) = |B(v)|, so that a(v) � b(v) � 1. Let c(v) = c(B(v)), so that b(v) � c(v) � 1,
as |[B(v)]p| = |B(v)| = b(v). Finally, let ψ(v) = (a(v), b(v), c(v)). We have
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m � a(v) � b(v) � c(v) � 1 for every v, so it remains to show that ψ is a proper
colouring of G.

Suppose for the sake of contradiction that some two vertices u and v of G with
ψ(u) = ψ(v) are connected by an edge of G oriented from u to v. Let d ∈ Zp be
such that d(u, v) ≡ d (mod p). Since u and v are adjacent in G, we have d 
= 0.
Observe that if C is a clique in G with residue X and tail v, then prepending u to
C and possibly removing the unique vertex w in C with d(v,w) ≡ −d (mod p) (if
it exists) gives us a clique with residue (X + d) ∪ {0} and tail u. Therefore, since
a(u) = a(v), the residue of every clique of size a(v) with tail v must contain −d.
Thus−d ∈ B(v), and if X is the residue of a clique of size a(v)with tail v, then X +d
is the residue of a clique of the same size with tail u. Hence B(u) ⊆ B(v) + d, and
since b(u) = b(v), we further conclude that B(u) = B(v) + d. Since 0 belongs to
the residue of every clique, both B(u) and B(v) are rooted and B(u) ∼p B(v). Thus
B(u) = B(v), as c(u) = c(v). However, since b(u) = b(v) � m < p and d 
= 0,
we have B(u) = B(v) + d 
= B(v), which is a contradiction. This shows that ψ is a
proper colouring of G, as desired. �	

By combining Lemmas 5 and 6, we have so far proven Theorem 3. Next, we extend
the construction to non-primes in order to prove Theorem 2.

For every triple of positive integers k, n, pwith p prime and p > 2n, we construct a
subgraph Gk,n,p ofGk,p by including the edge uv if and only if d(u, v) ≡ x (mod p)
where x ∈ {±1,±2, . . . ,±(n − 1)}. We will now determine the clique number and
the chromatic number of Gk,n,p.

Lemma 7 Let k, n, and p be positive integers with p prime, p > 2n, and k � n. Then
Gk,n,p has clique number n and chromatic number k.

Proof We have χ(Gk) = χ(Gk,p) = k. Since Gk is a subgraph of Gk,n,p and Gk,n,p

is a subgraph of Gk,p, it follows that χ(Gk,n,p) = k. Next, we determine the clique
number of Gk,n,p.

Let I = {n, n + 1, . . . , p − n} ⊂ Zp. Note that uv is an edge of Gk,n,p if and
only if u < v and d(u, v) /∈ {0} ∪ I (mod p). Since Gk contains a directed path on k
vertices and n � k, the graph Gk,n,p has clique number at least n. It remains to show
that Gk,n,p has clique number at most n.

Let C be a clique in Gk,n,p, and let v = t(C). If there are vertices x, y ∈ C with
d(v, y) ∈ I +d(v, x) (mod p), then either y < x and d(y, x) = d(v, x)−d(v, y) =
−(d(v, y)−d(v, x)) ∈ −I = I (mod p), or x < y andd(x, y) = d(v, y)−d(v, x) ∈
I (mod p). In either case, xy is not an edge of Gk,n,p, contradicting the assumption
that C is a clique. Thus the set r(C) is disjoint from the set

⋃
x∈C (I + d(v, x)) =

I + r(C), which implies that r(C) contains at most one of i and p − n + i for each
i ∈ {1, 2, . . . , n−1}. Since r(C) ⊂ {0, 1, . . . , n−1, p−n+1, p−n+2, . . . , p−1},
we conclude that |C | = |r(C)| � n. �	

Next we examine the maximum size of a clique in an induced subgraph of Gk,n,p

that is induced by the vertices of a clique in Gk,p. This will allow us to compare the
chromatic number of induced subgraphs of Gk,p and Gk,n,p that have the same vertex
set.
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Lemma 8 Let k, n, and p be positive integers with p prime, p > 2n, and k � n.
Then for every clique C of Gk,p, the induced subgraph Gk,n,p[C] of Gk,n,p contains
a clique of size at least n

p |C |.
Proof LetC be a clique inGk,p . For each i ∈ Zp, let Ji = {i, i+1, . . . , i+n−1} ⊂ Zp.
Since each i ∈ Zp is contained in exactly n of the p sets J0, . . . , Jp−1, by the pigeon-
hole principle, there exists i ∈ Zp such that |r(C) ∩ Ji | � n

p |r(C)|. Let Ci = {v ∈
C : d(t(C), v) ∈ Ji (mod p)}. It follows that |Ci | = |r(C) ∩ Ji | � n

p |r(C)| = n
p |C |.

It remains to show that Ci is a clique in Gk,n,p.
Let x and y be distinct vertices in Ci . Since x, y ∈ C , they are adjacent in Gk,p, so

d(t(C), x) 
≡ d(t(C), y) (mod p), and we can assume without loss of generality that
x < y. It follows that d(x, y) = d(t(C), y) − d(t(C), x) ∈ {±1,±2, . . . ,±(n − 1)}
(mod p), as d(t(C), x), d(t(C), y) ∈ Ji (mod p). Hence x and y are adjacent in
Gk,n,p. We conclude that Ci is indeed a clique in Gk,n,p. �	
Lemma 9 Let k, n, and p be positive integers with p prime, p > 2n, and k � n, and let
G be an induced subgraph of Gk,n,p with m = ω(G) < n. Then χ(G) �

(�mp/n�+2
3

)
.

Proof Let G ′ = Gk,p[V (G)]. Lemma 8 yields ω(G ′) � �mp/n�. The fact that G is
a subgraph of G ′ and Lemma 6 yield χ(G) � χ(G ′) �

(�mp/n�+2
3

)
. �	

Theorem 2 now follows from Lemma 7, Lemma 9, and the following theorem of
Schur [10] on the gaps between prime numbers.

Theorem 10 For every integer n � 2, there is a prime p such that 2n < p < 3n.

3 Concluding Remarks

To better understand χ -bounding functions, it is of course of interest to improve the
bound of

(3m+1
3

)
in Theorem 2 (and equivalently this same lower bound function for

f in Theorem 1).
A slight tweak to the last step of the proof improves this bound slightly to

(2m
3

) +
o(m3). To do this, instead of using Theorem 10, we can use the fact that for any
ε > 0, there exists a nε such that for every n � nε , there is always a prime p with
2n < p < (2 + ε)n. This follows from the prime number theorem that the number
of primes at most n is asymptotically equal to n/ ln n. For a more recent and explicit
result on the gaps between primes, see [5].

One may hope that another way to further improve this bound would be to improve
the bound of

(m+2
3

)
in Lemma 6. However, in our construction, Lemma 6 is in some

sense best possible. For every prime p, we have been able to construct a graph G ′
k

(with k large enough) that satisfies the conclusion of Lemma 4, and such that for every
positive integer m < p, the graph G ′

k,p (as constructed from G ′
k) contains an induced

subgraph with clique number m and chromatic number
(m+2

3

)
. So any improvements

would require an entirely new construction.
In the other direction, the only result restrictingχ -bounding functions is that of Scott

and Seymour [11] stating that if a hereditary class of graphs C satisfies χC(2) � 2,
then C is χ -bounded. We conjecture the following generalisation.
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Conjecture 11 For every integer k � 2, if C is a hereditary class of graphs such that
χC(n) � k for every positive integer n � k, then the class C is χ -bounded.

Data Availability: There is no dataset associated with this manuscript.
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