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Abstract
Givenq-uniformhypergraphs (q-graphs) F,G and H , whereG is a spanning subgraph
of F , G is called weakly H -saturated in F if the edges in E(F) \ E(G) admit an
ordering e1, . . . , ek so that for all i ∈ [k] the hypergraph G ∪ {e1, . . . , ei } contains
an isomorphic copy of H which in turn contains the edge ei . The weak saturation
number of H in F is the smallest size of an H -weakly saturated subgraph of F .
Weak saturation was introduced by Bollobás in 1968, but despite decades of study our
understanding of it is still limited. The main difficulty lies in proving lower bounds
on weak saturation numbers, which typically withstands combinatorial methods and
requires arguments of algebraic or geometrical nature. In our main contribution in
this paper we determine exactly the weak saturation number of complete multipartite
q-graphs in the directed setting, for any choice of parameters. This generalizes a
theorem of Alon from 1985. Our proof combines the exterior algebra approach from
the works of Kalai with the use of the colorful exterior algebra motivated by the recent
work of Bulavka, Goodarzi and Tancer on the colorful fractional Helly theorem. In
our second contribution answering a question of Kronenberg, Martins and Morrison,
we establish a link between weak saturation numbers of bipartite graphs in the clique
versus in a complete bipartite host graph. In a similar fashion we asymptotically
determine the weak saturation number of any complete q-partite q-graph in the clique,
generalizing another result of Kronenberg et al.
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1 Introduction

Let F and H be q-uniform hypergraphs (q-graphs for short); we identify hypergraphs
with their edge sets. We say that a subgraph G ⊆ F is weakly H -saturated in F if the
edges of F \ G can be ordered as e1, . . . , ek such that for all i ∈ [k] the hypergraph
G ∪ {e1, . . . , ei } contains an isomorphic copy of H which in turn contains the edge
ei . We call such e1, . . . , ek an H -saturating sequence of G in F . The weak satura-
tion number of H in F , wsat(F, H) is the minimum number of edges in a weakly
H -saturated subgraph of F . When F is complete of order n, we simply write
wsat(n, H).

Weak saturation was introduced by Bollobás [4] in 1968 and is related to (strong)
graph saturation: G is H -saturated in F if adding any edge of F \ G would create a
new copy of H . However, a number of properties of weak saturation make it a more
natural object of study. Firstly, it follows from the definition that any graphG achieving
wsat(F, H) has to be H -free (we could otherwise remove an edge from a copy of H
in G resulting in a smaller example), while for strong saturation H -freeness may or
may not be imposed, resulting in two competing notions (see [18] for a discussion).
Secondly, a short subadditivity argument originally due to Alon [1] shows that for
every 2-uniform H , limn→∞ wsat(n, H)/n exists. Whether the same holds for strong
saturation is a longstanding conjecture of Tuza [24]. And thirdly, weak saturation
lends itself to be studied via algebraic methods, thus offering insight into algebraic
and matroid structures underlying graphs and hypergraphs.

The most natural case when F and H are cliques was the first to be studied. Let Kq
r

denote the complete q-graph of order r . Confirming a conjecture of Bollobás, Frankl
[10] and Kalai [13, 14] (independently) proved that wsat(n, Kq

r ) = (n
q

) − (n−r+q
q

)
.

Another proof has been given by Alon [1] and in hindsight this conjecture could
be also derived from an earlier paper of Lovász [16]. While the upper bound is a
construction that is easy to guess (a common feature in weak saturation problems),
all of the above lower bound proofs rely on algebraic or geometric methods, and no
purely combinatorial proof is known to this date.

In the subsequent years weak saturation has been studied extensively [1, 2, 5–8,
17–20, 22, 23, 25, 26]. Despite this, our understanding of weak saturation numbers is
still rather limited. For instance we do not know whether for q ≥ 3 we have a similar
limiting behavior as in the graph case, in that limn→∞ wsat(n, H)/nq−1 always exists;
this has been conjectured by Tuza [26].

In this paper we address the case when H = Kq
r1,...,rd is a complete d-partite

q-graph for arbitrary d ≥ q > 1. That is, V (H) is a disjoint union of sets R1, . . . , Rd

with |Ri | = ri and

E(H) =
{
e ∈

(
V (H)

q

)
: |e ∩ Ri | ≤ 1 for all i ∈ [d]

}
,

in particular, for q = 2 we recover the usual complete multipartite graphs. This is
perhaps the next most natural class of hypergraphs to consider after the cliques.
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For the host graph F , besides the clique it is natural to consider a larger complete
d-partite q-graph Kq

n1,...,nd . In the latter case we have a choice between the undirected
and directed versions of the problem. The former follows the definition of weak
saturation given at the beginning, while in the latter we additionally impose that the
new copies of H in F created in every step “point the same way”, i.e. have ri vertices
in the i-th partition class for all i ∈ [d] (see below for a formal definition).

All three above versions have been studied in the past. For q = 2, Kalai
[14] determined wsat(n, Kr ,r ) for large enough n. Kronenberg et al. [15] recently
extended it to wsat(n, Kr ,r−1) and asymptotically to all wsat(n, Ks,t ). No other val-
ues wsat(n, Kq

r1,...,rd ) are known except for r1 = · · · = rd = 1 when H is a clique and
a handful of closely related cases, e.g., when all ri but one are 1 [20]. When both H
and F are complete d-partite, for d = q Alon [1] solved the problem in the directed
setting. Moshkovitz and Shapira [18], building on Alon’s work, settled the undirected
case, determining wsat(Kd

n1,...,nd , K
d
r1,...,rd ). There has been no progress for d > q.

In our main contribution in this paper we settle completely the directed case for all
q and d. To state the problem formally, let r = (r1, . . . , rd) and n = (n1, . . . , nd) be
integer vectors such that 1 ≤ ri ≤ ni . Suppose N = N1 
 · · · 
 Nd where |Ni | = ni
and 
 denotes a disjoint union. Let Kq

n be the complete d-partite q-graph on N whose
partition classes are the Ni , and let Kq

r be an unspecified complete d-partite q-graph
on the same partition classes, with ri vertices in each Ni . Given a subgraph G of Kq

n , a
sequence of edges e1, . . . , ek in K

q
n is a (directed) Kq

r -saturating sequence of G in Kq
n

if: (i) Kq
n\G = {e1, . . . , ek}; (ii) for every j ∈ [k] there exists Hj ⊆ G ∪ {e1, . . . , e j }

isomorphic to Kq
r such that e j ∈ Hj and |V (Hj ) ∩ Ni | = ri for all i ∈ [d]. The

q-graph G is said to be (directed) weakly Kq
r -saturated in Kq

n if it admits a Kq
r -

saturating sequence in the latter. The (directed) weak saturation number of Kq
r in Kq

n ,
in notation w(Kq

n , Kq
r ), is the minimal number of edges in a weakly Kq

r -saturated
subgraph of Kq

n .

Theorem 1.1 For all d ≥ q ≥ 2, n and r we have

w(Kq
n , Kq

r ) =
∑

I∈([d]
q )

∏

i∈I
ni −

∑

I∈([d]
≤q)

∏

i∈I
(ni − ri ).

In the above formula
([d]
≤q

)
stands for the set of all subsets of [d] of size at most q, and

we use the convention that
∏

i∈∅(ni − ri ) = 1.
As mentioned, the d = q case of Theorem 1.1 was proved by Alon [1]. Hence

our result generalizes Alon’s theorem to arbitrary d ≥ q. When H is balanced, that
is when r1 = · · · = rd , there is no difference between the directed and undirected
partite settings. Writing Kq(r; d) for Kq

r ,...,r (d times), Theorem 1.1 thus determines
the weak saturation number of Kq(r; d) in complete d-partite q-graphs.

Corollary 1.2 For all d ≥ q ≥ 2 and n1, . . . , nd ≥ r ≥ 1 we have

wsat(Kq
n1,...,nd , K

q(r; d)) =
∑

I∈([d]
q )

∏

i∈I
ni −

∑

I∈([d]
≤q)

∏

i∈I
(ni − r).
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Our proof of Theorem 1.1 combines exterior algebra techniques in the spirit of [14]
with a new ingredient: the use of the colorful exterior algebra inspired by the recent
work of Bulavka, Goodarzi and Tancer on the colorful fractional Helly theorem [3].

Kronenberg et al. ([15], Section 5) remarked that while the values wsat(n, Kt,t )

and wsat(K�,m, Kt,t ) for � + m = n, which were determined in separate works, are
of the same order of magnitude, it is not obvious if there is any direct connection. In
our second contribution in this paper we establish such a connection using a tensoring
trick. As we have mentioned earlier, 2-graphs H satisfy wsat(n, H) = cHn + o(n),
and Alon’s proof of this fact [1] can be straightforwardly adjusted to show that
wsat(Kn,n, H) = c′

H · 2n + o(n) when H is bipartite. We show that in fact cH = c′
H .

A minor adjustment to our proof gives that, for any rational 0 < α < 1, the quan-
tities wsat(n, H) and wsat(Kαn,(1−α)n, H), when αn ∈ Z, are of the same order of
magnitude. Setting H = Kt,t answers the above question of [15].

For q ≥ 3 while we do not have (yet) the same knowledge of limiting constants,
a similar method determines asymptotically the weak saturation number of complete
d-partite d-graphs in the clique, generalizing Theorem 4 of [15].

Theorem 1.3 For every bipartite 2-uniform graph H we have

lim
n→∞

wsat(n, H)

n
= lim

n→∞
wsat(Kn,n, H)

2n
. (1)

Furthermore, for any d ≥ 2 and 1 ≤ r1 ≤ · · · ≤ rd we have

wsat(n, Kd
r1,...,rd ) = r1 − 1

(d − 1)!n
d−1 + O(nd−2). (2)

The rest of the paper is organized as follows. In Sect. 2 we give a construction for the
upper bound in Theorem 1.1. In Sect. 3 we review the algebraic tools, setting the stage
for the lower bound proof in Sect. 4. In Sect. 5 we discuss weak saturation in the clique
and prove Theorem 1.3.
Notation.As usual, [n] abbreviates the set {1, . . . , n}. The symbol
 denotes a disjoint
union of sets. For a setM and integerq ≥ 0,

(M
q

)
and

( M
≤q

)
denote the set of all subsets of

M of size exactly q and of size most q, respectively.We use± to denote an unspecified
factor of either +1 or −1.

Kq
n denotes the complete q-uniform hypergraph (q-graph) of order n. When the

vertex set of the said q-graph is [n], wewrite Kq
[n]. The complete d-partite q-graphwith

ni vertices in the i-th partition class is denoted by Kq
n1,...,nd ; when n1 = · · · = nd = n

we write simply Kq(n; d).
Note that in Sects. 2, 3, and 4 we work solely in the directed partite setup (The-

orem 1.1), while in Sect. 5 we deal with the undirected partite and the clique setups
(Theorem 1.3). In the directed setup our q-graphs are defined on a vertex set N of
size n with a fixed d-partition N = N1 
 · · · 
 Nd , where |Ni | = ni for all i ∈ [d].
Consequently, we use Kq

n to denote the complete d-partite q-graph on N with respect
to this partition. (Up to a graph isomorphism, Kq

n is uniquely determined by q and n,
thus we do not display N in the notation.) For any M ⊆ N the induced subgraph of
Kq
n on M is denoted by Kq

n [M]. The directed weak saturation number defined above
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is denoted by w(Kq
n , Kq

r ), as opposed to wsat(Kq
n1,...,nd , K

q
r1,...,rd ) in the undirected

setting, a similar notation was employed in [15].

2 Theorem 1.1: The Upper Bound

In this section we prove the upper bound in Theorem 1.1 by exhibiting a weakly
Kq
r -saturated q-graph G. Fix a subset R ⊆ N such that |R ∩ Ni | = ri for every

i ∈ [d] and set

� :=
{
S ∈

(
N \ R

≤ q

)
: |S ∩ Ni | ≤ 1 for each i ∈ [d]

}
.

We define G via its complement in Kq
n as follows. For every S ∈ � choose an edge

λ(S) ∈ Kq
n [R ∪ S] satisfying S ⊆ λ(S). Note that the assignment λ is injective, as

λ(S)∩ (N \ R) = S. Recall that we associate hypergraphs with their edge sets. Define

G := Kq
n \

⋃

S∈�

λ(S),

so that

|E(G)| =
∑

I∈([d]
q )

∏

i∈I
ni −

∑

I∈([d]
≤q)

∏

i∈I
(ni − ri ).

Notice that the choices of λ(S) are not unique, but as the next lemma shows, each
of them yields a weakly Kq

r -saturated q-graph. Such non-uniqueness is a common
occurrence in weak saturation: for instance, every n-vertex tree is an extremal example
for weak triangle saturation in Kn .

Lemma 2.1 The q-graph G defined above is weakly Kq
r -saturated. Therefore,

w(Kq
n , Kq

r ) ≤ |E(G)| =
∑

I∈([d]
q )

∏

i∈I
ni −

∑

I∈([d]
≤q)

∏

i∈I
(ni − ri ).

Proof For each 0 ≤ k ≤ q let

Gk := G ∪ {T ∈ Kq
n : |T \ R| ≤ k},

and put G−1 := G. We claim that adding any new edge L ∈ Kq
n with |L\R| = k

to Gk−1 creates a new copy of Kq
r containing L . This gives rise to a Kq

r -saturating
sequence between Gk−1 and Gk and, by extension, between G = G−1 and Gq = Kq

n .
First, notice that G0 is obtained from G−1 by adding the sole missing edge λ(∅).

Doing so creates a new copy of Kq
r , namely Kq

n [R]. For an arbitrary k, suppose that
L is a missing edge in Gk−1 such that S := L\R is of size k. Observe that every
T ∈ Kq [R ∪ S] is an edge in Gk−1 unless T = L . Indeed, if |T \R| < k then
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this holds by definition of Gk−1. While otherwise we have T \ R = S. Hence, by
the definition of G, we have L = λ(S), so that either T = L or T ∈ G ⊆ Gk−1.
Therefore, adding L to Gk−1 creates a new copy of Kq

n [R ∪ S] containing L and a
fortiori also a new copy of Kq

r containing L , as desired. 


3 Algebraic Background

In this section we introduce the linear algebra tools needed for the proof of the lower
bound in Theorem 1.1. In Sects. 3.1 and 3.2 we largely follow [12, Sec. 2] though we
sometimes provide more detail. (For comparison [14] works with a dual generic basis.
We believe that the difference is not essential.) In Sect. 3.3 we loosely follow [3].

Beforewe start explaining the algebraic background, wewill try to sketchwhy alge-
braic tools can be useful in this context. This sketch should be understood loosely—we
do not provide any guarantees for the claims in this sketch. In particular, many impor-
tant technical details are skipped in the sketch.Understanding this sketch is not required
in the following text, thus it can be skipped.

Consider first the somewhat trivial case of providing the lower bound on
wsat(n, K3), the weak saturation number of the complete graph K3 in Kn . Consider
a subgraph G of Kn and a saturating sequence e1, . . . ek of edges in E(Kn)\E(G).
Let Gi := G ∪ {e1, . . . , ei }. Because the sequence is saturating, we know that Gi

contains a copy of K3 containing ei . This means that the dimension of the cycle space
of Gi is strictly larger than the dimension of the cycle space of Gi−1. Because the
final dimension of the cycle space of Kn equals

(n−1
2

)
, we may perform at most

(n−1
2

)

such steps. In other words k ≤ (n−1
2

)
and thus |E(G)| ≥ (n

2

) − (n−1
2

)
as required.

In the language of algebraic topology (which we however do not use in the proofs,
no topological background is required), the property that the dimension of the cycle
space increases can be phrased so that a new copy of K3 in each step belongs to
the kernel of the standard boundary operator. For more complicated (hyper)graphs
than K3 it is actually useful to use several independent boundary operators in order
to generalize the aforementioned approach. Using such independent operators can be
actually efficiently phrased in terms of exterior algebra (without mentioning algebraic
topology). They correspond to the left interior product, which we will discuss later
on, subject to some suitable independence (genericity) condition.1

3.1 Exterior Algebra

Let N be a set of size n, ordered with a total order <. Later on the elements of N will
represent vertices of a q-graph and we will typically denote them by letters such as v

or w. Let V be an n-dimensional real vector space with a basis (ev)v∈N . The exterior
1 Perhaps the closest relation between the boundary operators and the left interior product can be seen in
Lemma 3.3 interpreting eR as a simplex with set of vertices R, and fT � as an operator removing t times
the top-dimensional simplices, yielding a linear combination of simplices fS with r − t vertices. (However,
for this relation, it would be even better to express the right hand side using eS so that all possible eS would
appear.) Adding a colorful aspect (in our case) then makes it easier to work with multipartite (hyper)graphs
rather than complete ones.
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algebra of V , denoted by
∧

V , is a 2n-dimensional vector space with basis (eS)S⊆N

and an associative bilinear product operation, denoted by ∧, that satisfies
(i) e∅ is the neutral element, i.e. e∅ ∧ eS = eS = eS ∧ e∅;
(ii) eS = es1 ∧ · · · ∧ esk for S = {s1 < · · · < sk} ⊆ N ;
(iii) ev ∧ ew = −ew ∧ ev for all v,w ∈ N .

For 0 ≤ k ≤ n we denote by
∧k V the subspace of

∧
V with basis (eS)S∈(Nk ). Denote

by 〈·, ·〉 the standard inner product (dot product) on V as well as on
∧

V with respect
to the basis (ev)v∈N and (eS)S⊆N respectively; that is, for every pair of sets S, T ⊆ N ,
the inner product 〈eS, eT 〉 is 1 if S = T and 0 otherwise.

If ( fv)v∈N is another basis of V , then ( fS)S⊆N is a new basis of
∧

V , where fS
stands for fs1 ∧ · · · ∧ fsk for S = {s1 < · · · < sk} ⊆ N . Similarly, ( fS)S∈(Nk ) is

a basis of
∧k V for k ∈ {0, . . . , n}. The formulas (i), (ii) and (iii) remain valid for

the basis ( fv)v∈N due to definition of fS and bilinearity of ∧. In particular,
∧

V and∧k V do not depend on the initial choice of the basis. Using (ii) and (iii) iteratively,
for S, T ⊆ N we get

fS ∧ fT =
{
sgn(S, T ) fS∪T if S ∩ T = ∅
0 if S ∩ T �= ∅,

(3)

where sgn(S, T ) is the sign of the permutation of S ∪ T obtained by first placing
the elements of S (in our total order <) and then the elements of T . Equivalently,
sgn(S, T ) = (−1)α(S,T ) where α(S, T ) = |{(s, t) ∈ S × T : t < s}| is the number of
transpositions.

As a consequence we obtain the following useful formula. Let M1, . . . , M� be
pairwise disjoint subsets of N and s1, . . . , s� be integers with 0 ≤ si ≤ |Mi |. Suppose
that for each i ∈ [�] we are given

hi =
∑

Si∈(Mi
si
)

λSi fSi

for λSi ∈ R (so that hi ∈ ∧si V ). Then by bilinearity of ∧ and (3) we get

h1 ∧ · · · ∧ h� =
∑

(S1,...,S�)∈
(M1
s1

)×···×(M�
s�

)

⎛

⎝
∏

i∈[�]
λSi

⎞

⎠ fS1 ∧ · · · ∧ fS�

=
∑

(S1,...,S�)∈
(M1
s1

)×···×(M�
s�

)

±
⎛

⎝
∏

i∈[�]
λSi

⎞

⎠ fS1∪···∪S�
. (4)
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Let A = (avw)v,w∈N be the transition matrix from (ev)v∈N to ( fv)v∈N , meaning
that fv = ∑

w∈N avwew. Then, for S ⊆ N of size k, fS can be expressed as

fS =
∑

T∈(Nk )
det(AS|T )eT , (5)

where AS|T is the submatrix of A formed by rows in S and columns in T , i.e. AS|T =
(avw)v∈S,w∈T .

As noted in [12], it follows from the Cauchy–Binet formula that if the basis ( fv)v∈N
is orthonormal then ( fS)S⊆N is orthonormal as well. For completeness, we provide
a short explanation. Let S, L ⊆ N be a pair of subsets. If |S| �= |L|, then fS and
fL belong to two orthogonal subspaces of

∧
V , namely

∧|S| V and
∧|L| V , and so

〈 fS, fL 〉 = 0. On the other hand, if |S| = |L| =: k, then by writing fS and fL in the
standard basis (eT )T⊆N we have that

〈 fS, fL 〉 =
∑

T∈(Nk )
det(AS|T ) det(At

L|T ) = det(AS|N At
L|N ),

where Bt stands for the transpose matrix of B (and expressions like At
L|T stand for

(AL|T )t ), and the last equality holds by the Cauchy–Binet formula (see e.g. Section
1.2.4 of [11]). Notice that for any u ∈ S and w ∈ L we have (AS|N At

L|N )u,w =
〈 fu, fw〉, and since ( fv)v∈N is orthonormal this is 1 if u = w and 0 otherwise.
Therefore, if S = L , the product AS|N At

L|N is the identity matrix and consequently
the determinant will be 1. On the other hand, if S �= L , the product AS|N At

L|N will
have a zero column, and so the determinant will be 0. The above claim follows.

We say that the change of basis from (ev)v∈N to ( fv)v∈N is generic if det(AS|T ) �= 0
for every S, T ⊆ N of the same size; that is, every square submatrix of A has full
rank. It is known (see e.g. [12]) that ( fv)v∈N can be chosen to be both generic and
orthonormal. For a basis ( fv)v∈N generic with respect to (ev)v∈N and a pair of sets
S, T ∈ (N

k

)
we have

〈 fS, eT 〉 (5)= 〈
∑

T ′∈(Nk )
det(AS|T ′)eT ′ , eT 〉 =

∑

T ′∈(Nk )
det(AS|T ′)〈eT ′ , eT 〉 = det AS|T �= 0.

(6)

3.2 Left Interior Product

The following lemma defines g� f , the left interior product of g and f . We refer to
Section 2.2.6 of [21] for a more extensive coverage of the topic.

Lemma 3.1 For any f , g ∈ ∧
V there exists a unique element g� f ∈ ∧

V that
satisfies

〈h, g� f 〉 = 〈h ∧ g, f 〉 for all h ∈
∧

V . (7)
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Furthermore, assuming f ∈ ∧s V and g ∈ ∧t V , if t > s then g� f = 0, while if
t ≤ s then g� f ∈ ∧s−t V .

Proof For f , g ∈ ∧
V we set

g� f :=
∑

S⊆N

〈eS ∧ g, f 〉eS .

To verify that this satisfies (7) let h ∈ ∧
V be arbitrary. By bilinearity of 〈·, ·〉 and ∧,

and orthonormality of (eS)S⊆N we have

〈h, g� f 〉 =
〈

h,
∑

S⊆N

〈eS ∧ g, f 〉eS
〉

=
∑

S⊆N

〈eS ∧ g, f 〉〈h, eS〉

=
〈

∑

S⊆N

〈h, eS〉(eS ∧ g), f

〉

=
〈⎛

⎝
∑

S⊆N

〈h, eS〉eS
⎞

⎠ ∧ g, f

〉

= 〈h ∧ g, f 〉.

To show uniqueness, suppose that z is an element in
∧

V that satisfies (7). Then for
each T ⊆ N we have

〈eT , z〉 (7)= 〈eT ∧ g, f 〉 (7)= 〈eT , g� f 〉.

Therefore z and g� f are identical, as their inner products with all basis elements
coincide.

Now assume that f ∈ ∧s V and g ∈ ∧t V , and let S ⊆ N be arbitrary. By (7) we
have

〈eS, g� f 〉 = 〈eS ∧ g, f 〉.

Observe that eS ∧ g ∈ ∧|S|+t while f ∈ ∧s V and these spaces are orthogonal unless
|S| + t = s. Hence, g� f = 0 for t > s and g� f ∈ ∧s−t V otherwise. 


It is straightforward to check from the definition that the left interior product is bilinear:

• ( f + g)�h = ( f �h) + (g�h),
• f �(g + h) = ( f �g) + ( f �h),

and satisfies

h�(g� f ) = (h ∧ g)� f . (8)

With sgn(·, ·) as defined in Sect. 3.1 we obtain the following statement.
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Lemma 3.2 Let ( fv)v∈N be an orthonormal basis of V . Then, for any S, T ⊆ N we
have

fT � fS =
{
sgn(S \ T , T ) fS\T if T ⊆ S,

0 otherwise.

Proof Put s := |S| and t := |T |. If t > s then by Lemma 3.1 we have fT � fS = 0
and the conclusion follows. So we may assume that s ≥ t , and by the same lemma it
follows that fT � fS ∈ ∧s−t V . Since the basis ( fv)v∈N is orthonormal, so is the basis
( fL)L∈( N

s−t)
of

∧s−t V , as observed in Sect. 3.1. Expressing fT � fS in this basis and

using (7), we obtain

fT � fS =
∑

L∈( N
s−t)

〈 fL , fT � fS〉 fL =
∑

L∈( N
s−t)

〈 fL ∧ fT , fS〉 fL .

Due to (3) and orthonormality of ( fv)v∈N we have 〈 fL ∧ fT , fS〉 = 0 unless T ⊆ S
and L = S\T . Therefore, using (3) again we get

fT � fS =
{

〈 fS\T ∧ fT , fS〉 fS\T = sgn(S \ T , T ) fS\T if T ⊆ S,

0 if T � S.



Lemma 3.3 Let ( fv)v∈N be a generic orthonormal basis of V with respect to (ev)v∈N .
For a pair of sets T , R ⊆ N of sizes t and r, respectively, such that r ≥ t we have

fT �eR =
∑

S∈(N\T
r−t )

λS fS,

where all the coefficients λS are non-zero.

Proof ByLemma 3.1we have that fT �eR ∈ ∧r−t V . Since ( fS)S∈( N
r−t)

is an orthonor-

mal basis of
∧r−t V , we can write

fT �eR =
∑

S∈( N
r−t)

〈 fS, fT �eR〉 fS .

Applying (7) and (3) gives

〈 fS, fT �eR〉 = 〈 fS ∧ fT , eR〉

=
{

±〈 fS∪T , eR〉 if S ∩ T = ∅, equivalently if S ∈ (N\T
r−t

)
,

0 otherwise.
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Setting λS = 〈 fS ∧ fT , eR〉 for S ∈ (N\T
r−t

)
, we thus obtain

fT �eR =
∑

S∈(N\T
r−t )

λS fS,

as claimed. In addition, since we assumed that ( fv)v∈N is generic with respect to
(ev)v∈N , we have λS = ±〈 fS∪T , eR〉 �= 0 by (6) for all S ∈ (N\T

r−t

)
. 


3.3 Colorful Exterior Algebra

As we are interested in multipartite hypergraphs it is natural to assume in addition that
the set N is partitioned as a disjoint union N = N1 
 N2 
 · · · 
 Nd ; consistently with
the introduction ni := |Ni |. Here each Ni is ordered by a total order <i . We extend
these orders to the whole N as follows, for x ∈ Ni and y ∈ N j , we say that

x < y if i < j or if i = j and x <i y.

Given the standard basis (ev)v∈N of V we say that a basis ( fv)v∈N is colorful with
respect to this partition if ( fv)v∈Ni generates the same subspace of V = R

N as (ev)v∈Ni

for every i ∈ [d]; we denote this subspace Vi . Put differently, the transition matrix A
from (ev)v∈N to ( fv)v∈N is a block-diagonal matrix with blocks Ni × Ni for i ∈ [d].
We also say that ( fv)v∈N is colorful generic (with respect to this partition) if the basis
change from (ev)v∈Ni to ( fv)v∈Ni is generic for every i ∈ [d]. It is possible to choose
a basis which is simultaneously colorful generic with respect to a given partition and
orthonormal by choosing each change of basis from (ev)v∈Ni to ( fv)v∈Ni generic and
orthonormal.

By
∧

Vi we denote the subalgebra of
∧

V generated by eS for S ⊆ Ni and by∧k Vi the subspace of
∧

Vi with basis (eS)S∈(Nik )
; that is,

∧k Vi = ∧k V ∩ ∧
Vi .

We claim that the left interior product behaves nicely with respect to a colorful
partition. To see this, we first need an auxiliary lemma about signs.

Lemma 3.4 Let U and T be disjoint subsets of N and for all i ∈ [d] let Ui := U ∩ Ni ,
Ti := T ∩ Ni , ui := |Ui | and ti := |Ti |. Then

sgn(U , T ) = (−1)c sgn(U1, T1) · · · sgn(Ud , Td),

where c depends only on u1, . . . , ud and t1, . . . , td .

Proof The value sgn(U , T ) is −1 to the number of transpositions in the permutation
π ofU ∪ T where we first place the elements ofU (in our given order on N ) and then
the elements of T (in the same order). Considering that for i < j ,Ui precedesUj and
Ti precedes Tj , the order of the blocks U1, . . . ,Ud , T1, . . . , Td in π is

(U1, . . . ,Ud , T1, . . . , Td).
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After c transpositions where c depends only on u1, . . . , ud , t1, . . . , td , we get a per-
mutation π ′ with the following order of blocks

(U1, T1,U2, T2, . . . ,Ud , Td).

By the above, the sign of π ′ equals (−1)c sgn(U , T ). On the other hand, as Ti pre-
cedes Uj for i < j in our order on N , the sign of π ′ is also equal the product
sgn(U1, T1) · · · sgn(Ud , Td). Equating these two expressions gives the desired iden-
tity. 


In the following proposition, the fi are not necessarily coming from a colorful
generic basis. However, we intend to apply it in this setting. With a slight abuse of
notation, we use

∧
both for the exterior algebra as well as for the wedge product of

multiple elements. (This can be easily distinguished from the context.)

Proposition 3.5 Suppose that s1, . . . , sd and t1, . . . , td are nonnegative integers with
ti ≤ si ≤ ni for every i ∈ [d]. Suppose further that fi ∈ ∧ti Vi and hi ∈ ∧si Vi for
all i ∈ [d]. Then

(
d∧

i=1

fi

)

�
(

d∧

i=1

hi

)

= ±
d∧

i=1

( fi�hi ).

Proof We will show that

(
d∧

i=1

fi

)

�
(

d∧

i=1

hi

)

= (−1)c
d∧

i=1

( fi�hi ) (9)

where c comes from Lemma 3.4; in particular, it depends only on t1, . . . , td and
s1, . . . , sd .

By bilinearity of � and ∧ it is sufficient to prove (9) in the case when the fi and the
hi are basis elements of

∧ti Vi and
∧si Vi respectively. So, assume for each i ∈ [d]

that fi = eTi and hi = eSi where Ti ∈ (Ni
ti

)
and Si ∈ (Ni

si

)
, and let T := T1 ∪ · · · ∪ Td

and S := S1 ∪ · · · ∪ Sd . Then
∧d

i=1 fi = eT and
∧d

i=1 hi = eS by the definition of
the exterior product ∧. If Ti � Si for some i ∈ [d], then T � S and both sides of (9)
vanish by Lemma 3.2. Therefore, it remains to check the case that Ti ⊆ Si for every
i ∈ [d]. Here by Lemma 3.4 (with U = S \ T ) and Lemma 3.2 we get

eT �eS = sgn(S \ T , T )eS\T
= (−1)c sgn(S1 \ T1, T1) · · · sgn(Sd \ Td , Td)eS1\T1 ∧ · · · ∧ eSd\Td
= (−1)c(eT1�eS1) ∧ · · · ∧ (eTd�eSd ),

as required. 
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4 Theorem 1.1: The Lower Bound

In this section we prove the lower bound in Theorem 1.1. Our proof follows a strategy
similar to [2] and [14]. Viewing the edges of Kq

n as elements of the exterior algebra
of R

N , we will define a linear mapping closely related to the weak saturation process
and lower-bound w(Kq

n , Kq
r ) by the rank of the corresponding matrix.

As outlined in Sect. 3, let V be an n-dimensional real vector space with a basis
(ev)v∈N , equipped with a standard inner product 〈·, ·〉 with respect to this basis, that
is, (ev)v∈N is orthonormal. Using the exterior product notation of Sect. 3, define

span Kq
n := span{eT : T ∈ E(Kq

n )} ⊆
∧q

V .

For an element m ∈ ∧k V the support of m is the set

supp(m) =
{
S ∈

(
N

k

)
: 〈eS,m〉 �= 0

}
.

The following lemma, which converts the problem at hand into a constructive question
in linear algebra, is analogous to Lemma 3 in [2].2

Lemma 4.1 Let Y be a real vector space and � : span Kq
n → Y a linear map such

that for every subset R ⊆ N with |R ∩ Ni | = ri for all i ∈ [d] there exists an element
m ∈ ker � with supp(m) = E(Kq

n [R]). Then

w(Kq
n , Kq

r ) ≥ rank �.

Proof Suppose the q-graph G0 is weakly Kq
r -saturated in Kq

n and |E(G0)| =
w(Kq

n , Kq
r ). Denote by {L1, . . . , Lk} a corresponding saturating sequence and by

Hi a new copy of Kq
r that appears in Gi = G0 ∪ {L1, . . . , Li } with Li ∈ E(Hi ).

Let Yi = span{�(eT ) : T ∈ E(Gi )}, and note that Yk = �(span Kq
n ). By assumption,

for each i = 1, . . . , k there exist non-zero coefficients {cT : T ∈ E(Hi )} such that∑
T∈E(Hi )

cT�(eT ) = 0. Therefore,

�(eLi ) = − 1

cLi

∑

T∈E(Hi )\Li

cT�(eT ) ∈ Yi−1.

We conclude that Yi = Yi−1. By repeating this procedure we obtain

w(Kq
n , Kq

r ) = |E(G0)| ≥ dim Y0 = dim Yk = rank �.



2 Put equivalently in the language of [2], we map each edge of Kq

n to vector in a certain vector space W̃ , so
that for each copy of Kq

r in Kq
n the underlying vectors are linearly dependent with all coefficients involved

being non-zero. This implies w(Kq
n , Kq

r ) ≥ dim W̃ .
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Our goal now is to define a linear map � as in Lemma 4.1. For this purpose let us fix
an orthonormal colorful generic basis ( fv)v∈N of V with respect to the partition of N ,
as described in Sect. 3.3. Next, for each i ∈ [d] choose a set Ji ⊆ Ni with |Ji | = ri −1
and a vertex wi ∈ Ni\Ji . Put J := ⋃

i∈[d] Ji and W := {wi : i ∈ [d]}. Finally, set
s := d − q and

g :=
∑

T∈(Ws )
fT . (10)

We can now state the following auxiliary lemma.

Lemma 4.2 Let z be an integer with d ≥ z ≥ s and let Z ∈ (N
z

)
. Then

(i) g� fZ = 0 if |Z ∩ W | < s.

(ii) If z = s, then 〈g, fZ 〉 =
{

±1 if Z ⊆ W ,

0 if Z � W .

Proof By (10), bilinearity of �, and Lemma 3.2 we get

g� fZ =
∑

W ′∈(Ws )
fW ′� fZ =

∑

W ′∈(W∩Z
s )

± fZ\W ′ . (11)

The last expression is 0 if |Z ∩ W | < s; this shows (i).
Now, assume that z = s. Then

〈g, fZ 〉 = 〈 f∅ ∧ g, fZ 〉 = 〈 f∅, g� fZ 〉 (11)=
∑

W ′∈(W∩Z
s )

±〈 f∅, fZ\W ′ 〉. (12)

If Z � W , then |Z ∩ W | < z = s, so g� fZ = 0 from (i), and thus (12) evaluates to
0. On the other hand, if Z ⊆ W , then

(W∩Z
s

) = {Z}. It follows that

〈g, fZ 〉 (12)= ±〈 f∅, f∅〉 = ±1,

yielding (ii). 

We define the subspace

U := span{g� fT : T ∈ E(Kd
n [N \ J ]), |T ∩ W | ≥ s}, (13)

and observe first that U ⊆ span Kq
n . Indeed, for each T in (13) and W ′ ∈ (W

s

)
, we

have by Lemma 3.2 that fW ′� fT = 0 if W ′
� T and fW ′� fT = ± fT \W ′ if W ′ ⊆ T .

In the latter case note that T \W ′ ∈ E(Kq
n ), and the claim follows by bilinearity of �.

Let Y be the orthogonal complement of U in span Kq
n and let � : span Kq

n →
span Kq

n be the orthogonal projection on Y . Our main technical lemma in this paper
states that � satisfies the assumptions of Lemma 4.1.
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Lemma 4.3 Suppose that R ⊆ N satisfies |R∩ Ni | = ri for every i ∈ [d]. Then, there
exists m ∈ ker � such that supp(m) = E(Kq

n [R]).
Deferring the proof of Lemma 4.3, let us first compute rank � and conclude the proof
of Theorem 1.1 assuming Lemma 4.3.

Notice that the sets T ∈ Kd
n [N\J ]with |T ∩W | ≥ s are in bijective correspondence

with the sets T \W ∈ K p
n [N\(J ∪ W )] with p ≤ q. Using this bijection,

dimU
(13)≤ |{T ∈ Kd

n [N \ J ] : |T ∩ W | ≥ s}| =
∑

I⊆[d]
|I |≤q

∏

i∈I
(ni − ri ).

Consequently,

rank � = dim(span Kq
n ) − dimU ≥

∑

I∈([d]
q )

∏

i∈I
ni −

∑

I⊆[d]
|I |≤q

∏

i∈I
(ni − ri ). (14)

Proof of Theorem 1.1 On the one hand, by Lemma 4.3 the map � satisfies the assump-
tions of Lemma 4.1. Therefore,

w(Kq
n , Kq

r ) ≥ rank �
(14)≥

∑

I∈([d]
q )

∏

i∈I
ni −

∑

I⊆[d]
|I |≤q

∏

i∈I
(ni − ri ).

On the other hand, Lemma 2.1 gives the same upper bound.

Proof of Lemma 4.3 We claim that

m = (g ∧ f J )�eR

is the desired element.3 Let Ri := R ∩ Ni for each i ∈ [d].
First, we verify that m ∈ ker � = U . By Proposition 3.5 we have

f J�eR = ±( f J1�eR1) ∧ · · · ∧ ( f Jd�eRd ).

By Lemma 3.3 we can write each of these terms as

f Ji �eRi =
∑

v∈Ni\Ji
λv fv with all λv �= 0. (15)

3 Let us briefly sketch the topological idea hidden behind this choice: As it can be easily deduced from the
computations below, m can be also expressed as ±g�

(
( f J1�eR1 ) ∧ · · · ∧ ( f Jd �eRd )

)
. In the terminology

of simplicial complexes interpreting loosely (i) eRi as a full simplex on the vertex set Ri , (ii) ∧ as a join of
simplicial complexes and (iii) � as an operator taking the skeleton of appropriate dimension,we gradually get
the following: f Ji �eRi corresponds to the 0-skeleton of the simplex on Ri , that is, the vertices of Ri . Then
( f J1�eR1 )∧ · · ·∧ ( f Jd �eRd ) corresponds to the join of the sets Ri , that is, the complete d-partite complex
on R1, . . . , Rd . Finally, applying g� to this element takes the skeleton again reducing the dimension so that
the corresponding hypergraph is the required Kq

n [R].
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Combining this with (4) gives

f J�eR =
∑

Z∈E(Kd
n [N\J ])

±
(

∏

v∈Z
λv

)

fZ . (16)

Therefore, we get

m = (g ∧ f J )�eR
(8)= g�( f J�eR)

(16)=
∑

Z∈E(Kd
n [N\J ])

(
∏

v∈Z
λv

)

g� fZ

=
∑

Z∈E(Kd
n [N\J ])

|Z∩W |≥s

(
∏

v∈Z
λv

)

g� fZ ,

where the last equality follows by Lemma 4.2(i) with z = d. Thus m ∈ U as wanted.
Next, we show that supp(m) = E(Kq

n [R]). As we just have shown, m ∈ U ⊆
span Kq

n , i.e. supp(m) ⊆ E(Kq
n ). Now, for T ∈ E(Kq

n ) we have

〈eT ,m〉 (7)= 〈eT ∧ (g ∧ f J ), eR〉 = ±〈(g ∧ f J ) ∧ eT , eR〉 (7)= ±〈g ∧ f J , eT �eR〉.(17)

If T /∈ E(Kq
n [R]), then T � R and by Lemma 3.2 we have eT �eR = 0, and conse-

quently 〈eT ,m〉 = 0. Hence, T /∈ supp(m).
Now assume that T ∈ E(Kq

n [R]), i.e., T ⊆ R. By (17) and Lemma 3.2 we have

〈eT ,m〉= ± 〈g ∧ f J , eR\T 〉 (7)= ±〈g, f J�eR\T 〉. (18)

Let P := {i ∈ [d] : T ∩ Ni �= ∅} and P ′ := [d] \ P . Using this notation we can write

eR\T = ±
(

∧

i∈P

eRi\τi

)

∧
(

∧

i∈P ′
eRi

)

,

where for each i ∈ P the set τi = T ∩ Ni contains a single vertex. Applying Propo-
sition 3.5, we deduce

f J�eR\T = ±
(

∧

i∈P

f Ji �eRi\τi

)

∧
(

∧

i∈P ′
f Ji �eRi

)

. (19)

Since |Ji | = ri − 1 = |Ri \ τi |, by Lemma 3.1 for every i ∈ P we have f Ji �eRi\τi ∈
∧0 V . Thus

f Ji �eRi\τi = 〈e∅, f Ji �eRi\τi 〉e∅ = 〈e∅ ∧ f Ji , eRi\τi 〉e∅ = 〈 f Ji , eRi\τi 〉e∅,
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and notice that 〈 f Ji , eRi\τi 〉 �= 0 because ( fv)v∈Ni is generic with respect to (ev)v∈Ni .
Plugging it into (19) yields

f J�eR\T = ±
(

∧

i∈P

〈 f Ji , eRi\τi 〉e∅

)

∧
(

∧

i∈P ′
f Ji �eRi

)

= ±
(

∏

i∈P

〈 f Ji , eRi\τi 〉
)

∧

i∈P ′
f Ji �eRi . (20)

Turning to P ′, denote N ′ := ⋃
i∈P ′ Ni\Ji . We have

∧

i∈P ′
f Ji �eRi

(15)=
∧

i∈P ′

⎛

⎝
∑

v∈Ni\Ji
λv fv

⎞

⎠ (4)=
∑

Z∈E(Ks
n[N ′])

±
(

∏

v∈Z
λv

)

fZ . (21)

Therefore,

〈

g,
∧

i∈P ′
f Ji �eRi

〉

=
∑

Z∈E(Ks
n[N ′])

±
(

∏

v∈Z
λv

)

〈g, fZ 〉 = ±
∏

v∈W∩N ′
λv, (22)

where the second equality is due to Lemma 4.2(ii), using that there is exactly one
Z ∈ E(Ks

n[N ′]) with Z ⊆ W , namely Z = W ∩ N ′. Putting it all together,

〈eT ,m〉 (18)= ±〈g, f J�eR\T 〉 (20)= ±
(

∏

i∈P

〈 f Ji , eRi\τi 〉
) 〈

g,
∧

i∈P ′
f Ji �eRi

〉

(22)= ±
(

∏

i∈P

〈 f Ji , eRi\τi 〉
)

∏

v∈W∩N ′
λv �= 0,

and consequently T ∈ supp(m).

5 Weak Saturation in the Clique

In this section we prove Theorem 1.3. Let H be a q-graph where q ≥ 2 without
isolated vertices. We recall the notion of a link hypergraph of a vertex v ∈ V (H): it
is the (q − 1)-graph (possibly with isolated vertices) defined via

LH (v) := {e \ {v} : e ∈ E(H), v ∈ e}.

The co-degree of a set W of q − 1 vertices in H is

dH (W ) := |{e ∈ E(H) : W ⊂ e}|.
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Define the minimum positive co-degree of H , in notation δ∗(H), as

δ∗(H) := min
{
dH (W ) : W ∈

(
V (H)

q − 1

)
, dH (W ) > 0

}
.

Notice that δ∗(H) ≤ δ∗(LH (v)) for all v ∈ V (H), and equality holds for some v.

Lemma 5.1 wsat(n, H) ≤ (δ∗(H) − 1)
( n
q−1

) + OH (nq−2).

Proof We apply induction on q. For q = 2 this is a well-known fact ([9], Theorem
4). Suppose now that q ≥ 3 and the statement holds for all smaller values. Let H
be a q-graph and let W = {v1, . . . , vq−1} be a set satisfying dH (W ) = δ∗(H). Let
H1 = LH (v1) be the link hypergraph of v1, and observe that δ∗(H1) = δ∗(H). A
weakly H -saturated q-graph on [n] is obtained as follows. Take a minimum weakly
H1-saturated (q − 1)-graph on [n − 1] and insert n into each edge; take a union of
the resulting q-graph with a minimum weakly H -saturated q-graph on [n − 1]. We
therefore obtain

wsat(n, H) ≤ wsat(n − 1, H) + wsat(n − 1, H1).

Iterating and applying the induction hypothesis,

wsat(n, H) ≤ wsat(|V (H)|, H) +
n−1∑

m=|V (H)|
wsat(m, H1)

≤ (δ∗(H1) − 1)
n−1∑

m=q−2

(
m

q − 2

)
+ OH (nq−2)

= (δ∗(H) − 1)

(
n

q − 1

)
+ OH (nq−2).



The tensor product of two q-graphs G and J , G × J is defined having the vertex set
V (G) × V (J ) and the edge set

E(G × J ) = {{(v1, w1), . . . (vq , wq)} : {v1, . . . , vq} ∈ E(G), {w1, . . . , wq} ∈ E(J )
}
.

(Note that every pair of edges in the original graphs produces q! edges in the product.)

Lemma 5.2 Let H = Kd
r1,...,rd , and let F

d
n be the copy of K d(n; d) between the vertex

sets [n]×{1}, . . . , [n]×{d}. Then there exists a d-graph Ed(n, H) ⊆ Fd
n \(Kd[n]×Kd

[d])
of size OH (nd−2) such that

G(n, H) := (Kd[n] × Kd
[d]) 
 Ed(n, H)

is weakly H-saturated in Fd
n .
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Proof It suffices to prove the above statement when r1 = · · · = rd =: r , i.e. when
H = Kd(r; d), as every edge creating a new copy of Kd(max{r1, . . . , rd}; d) creates
in particular a new copy of Kd

r1,...,rd .
We apply induction on d and n. For d = 2 and any n ≥ |V (H)| the graph K[n]×K[2]

misses only a matching from F2
n , making it already H -saturated in F2

n , as can be easily
checked. Moreover, for every fixed H we can assume the statement to hold for all n
less than some large C(H).

For the induction step, fix (n, d) and suppose that the statement holds for all (n′, d ′)
with d ′ < d and all (n′′, d) with n′′ < n. It suffices to show that OH (nd−3) edges can
be added to G(n − 1, H) to satisfy the assertion; these edges will be as follows.

For each i ∈ [d] let the (d − 1)-graph E ′
i be an isomorphic copy of Ed−1(n −

1, Kd−1(r; d−1)) between the sets [n−1]×{ j} for j ∈ [d]\{i}, such that (Kd−1
[n−1] ×

Kd−1
[d]\{i}) 
 E ′

i is weakly Kd−1(r; d − 1)-saturated in the complete (d − 1)-partite
(d − 1)-graph between the sets [n − 1] × { j} for j ∈ [d]\{i}. Let

Ei := {e 
 {(n, i)} : e ∈ E ′
i }.

By the induction hypothesis |Ei | = |E ′
i | = OH (nd−3).

Similarly, for each {i1, i2} ∈ ([d]
2

)
apply Corollary 1.2 to obtain a (d − 2)-graph

E ′
i1,i2

of size OH (nd−3) which is weakly Kd−2(r; d − 2)-saturated in the copy of

Kd−2(n − 1; d − 2) between the sets [n − 1] × { j} for j ∈ [d] \ {i1, i2} (for d = 3
take any r − 1 vertices in [n − 1] × [d] \ {i1, i2}). As above, insert (n, i1) and (n, i2)
into each edge of E ′

i1,i2
; let the resulting edge set be called Ei1,i2 .

Finally, take all edges of Fd
n containing at least three vertices with n as their first

coordinate, and let E0 be this edge set; clearly |E0| = OH (nd−3) as well. Put

G(n, H) := G(n − 1, H) ∪
⋃

i∈[d]
Ei ∪

⋃

{i1,i2}∈([d]
2 )

Ei1,i2 ∪ E0,

and

Ed(n, H) := G(n, H) \ (Kd[n] × Kd
[d]).

By the induction hypothesis and the bounds on the |Ei |, the |Ei1,i2 | and |E0|, we
have |Ed(n, H)| = OH (nd−2). To see that G(n, H) is weakly H -saturated, first
note that by induction hypothesis G(n − 1, H) is weakly H -saturated in Fd

n−1, hence
the d-graph G(n − 1, H) ∪ (Kd[n] × Kd

[d]) ⊆ G(n, H) is weakly H -saturated in

J0 := Fd
n−1 ∪ (Kd[n] × Kd

[d]). Furthermore, let

K1 := {e ∈ Fd
n : |e ∩ ({n} × [d])| = 1},

and

K2 := {e ∈ Fd
n : |e ∩ ({n} × [d])| = 2}.
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Let J1 := J0 ∪ K1 and J2 := J1 ∪ K2. By construction, J0 ∪ ⋃
i∈[d] Ei is weakly

H -saturated in J1, J1 ∪⋃
{i1,i2}∈([d]

2 ) Ei1,i2 is weakly H -saturated in J2 and J2 ∪ E0 =
Fd
n . Thus, G(n, H) is weakly H -saturated in Fd

n as desired. This proves the induction
step, and the statement of the lemma follows. 

Proof of Theorem 1.3 For the first statement, suppose that G ⊆ Kn,n is weakly
H -saturated in Kn,n . Placing two |V (H)|-cliques on the parts of G is easily seen
to produce a weakly H -saturated graph in K2n . Therefore,

wsat(2n, H) ≤ wsat(Kn,n, H) + |V (H)|2. (23)

Conversely, suppose that G = G0 is weakly H -saturated in K[n] via a saturating
sequence e1 = {i1, j1}, . . . , ek = {ik, jk}. For 1 ≤ � ≤ k let G� = G0 ∪ {e1, . . . e�},
and let H� be a copy of H in G� containing e�.

Let Gbip = G × K[2], i.e., V (Gbip) = [n] × {1, 2} and

E(Gbip) = {{(i, 1), ( j, 2)} : {i, j} ∈ E(G)}.

We claim that Gbip is weakly H -saturated in Kbip
[n] = K[n] ×K[2] via the H -saturating

sequence
f1, f ′

1, . . . , fk, f ′
k , where, for each � ∈ [k], f� = {(i�, 1), ( j�, 2)} and f ′

� =
{(i�, 2), ( j�, 1)}, and that Gbip

�−1 ∪ { f�, f ′
�} = Gbip

� for all � ∈ [k] (where Gbip
� is

defined analogously, i.e., Gbip
� = G� × K[2]). Indeed, let (A, B) be a bipartition of

V (H�)with i� ∈ A and j� ∈ B, and consider the analogous graph Hb
� between A×{1}

and B × {2}, i.e., for every (i, j) ∈ A × B we have {(i, 1), ( j, 2)} ∈ E(Hb
� ) if and

only if {i, j} ∈ E(H�). Note that f� ∈ E(Hb
� ) is the only edge of Hb

� not already

present inGbip
�−1, therefore we can add it to the latter creating a new copy of H , namely

Hb
� . Symmetrically, taking a graph H ′b

� between A × {2} and B × {1} allows to add

f ′
�. Since G� = G�−1 ∪ e�, we have Gbip

�−1 ∪ { f�, f ′
�} = Gbip

� . Finally, note that

Gbip ∪ { f1, . . . , f ′
k} = Gbip

k = Kbip
[n] .

Note that Kbip
[n] is isomorphic to Kn,n minus a perfect matching, and it is a straight-

forward check that this graph is H -saturated in Kn,n (we can assume that |V (H)| ≤ n).
We have thus shown

wsat(Kn,n, H) ≤ 2wsat(n, H). (24)

Combining (23) and (24) gives

wsat(2n, H)

2n
− o(1) ≤ wsat(Kn,n, H)

2n
≤ wsat(n, H)

n
,

and taking the limit, (1) follows readily.
For the second statement, denote H = Kd

r1,...,rd where 1 ≤ r1 ≤ · · · ≤ rd . Observe
that the upper bound in (2) holds by Lemma 5.1, as δ∗(H) = r1. To prove the lower
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bound, suppose G is weakly H -saturated in Kd[n], and that |E(G)| = wsat(n, H). Let

Gmult = G × Kd
[d], that is, V (Gmult ) = [n] × [d] and

E(Gmult ) = {{(i1, 1), . . . , (id , d)} : {i1, . . . , id} ∈ E(G)}.

Essentially the same argument as for Gbip before shows that Gmult is weakly
H -saturated in Kd[n] × Kd[d]. By Lemma 5.2 adding further OH (nd−2) edges creates a

weakly H -saturated d-graph in Kd(n; d). Hence,

wsat(Kd(n; d), H) ≤ |E(Gmult )| + O(nd−2) = d!wsat(n, H) + O(nd−2). (25)

On the other hand, Moshkovitz and Shapira [18] proved that wsat(Kd(n; d), H) =
d(r1 − 1)nd−1 + O(nd−2). Combining this with (25) yields the lower bound in (2).
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