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Abstract
Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought 
event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of 
dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains 
limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographi-
cally complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time 
series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI 
to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results 
show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy 
greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent 
years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were 
influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite 
responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ 
sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree 
growth as a major sink of atmospheric carbon.
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Introduction

An increasing number of extreme climatic events, mainly 
droughts and heat waves, significantly impact terrestrial eco-
systems and their biomass production (Allen et al. 2010). 
Understanding trees’ responses to single or compound dry 
spells is crucial for estimating terrestrial carbon seques-
tration and carbon pools (Bonan 2008; Kannenberg et al. 
2020). Carbon sequestration into forest biomass remains 
one of the most uncertain aspects of climate change projec-
tions simulated by Earth System Models (Friend et al. 2019), 
partly due to the absence of the explicit representation 

of growth processes within the land surface component 
(Zuidema et al. 2018). While plant growth in global mod-
els is computed as the difference between photosynthesis 
and plant respiration, direct environmental constraints on 
stem growth may be stronger than those on photosynthesis 
(Dorado-Liñán et al. 2022; Fatichi et al. 2014). As a result, 
the above-ground tree biomass compartments might respond 
to drought differently in terms of the magnitude and duration 
of the response. Especially at a landscape scale, where also 
topography matters, the coherence in responses of stems and 
leaves to drought spells is poorly understood.

A significant proportion of carbon is stored in above-
ground compartments of trees, including the stem (35–60% 
of annually formed biomass) and leaves (7–16%) (Bernoulli 
and Körner 1999; DeLucia et al. 2000). Annual increments 
of stem biomass can be represented by tree-ring widths 
(Babst et al. 2017; Girardin et al. 2016). The greenness of 
leaf biomass (amount and photosynthetic activity) can be 
captured by vegetation indices derived from remote sensing 
data, such as the Normalized Difference Vegetation Index 
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(NDVI; Vicente-Serrano et al. 2020, Song 2012) which cor-
relates with the leaf area index (Eklundh et al. 2001) and 
photosynthetic activity (Zarco-Tejada et al. 2019). While 
time series of tree-ring width and NDVI tend to be cor-
related at large spatial scales (Babst et al. 2017; Vicente-
Serrano et al. 2016), they differ in their climatic drivers 
(Seftigen et al. 2018) and may, therefore, exhibit different 
responses to extreme events such as dry spells (Wu et al. 
2017).

The impacts of drought on tree growth are recorded not 
only in the year of the event (Dorado-Liñán et al. 2019; 
Gazol et al. 2018) but also in the following four years 
(legacy effects; Anderegg et al. 2015; Szejner et al. 2020). 
However, different tree compartments may respond dif-
ferently to dry spells due to changes in biomass alloca-
tion (Zhang et al. 2015; Sevanto and Dickman 2015). 
The xylem, for example, depletes reserves to recover 
from hydraulic damage, which can suppress stem growth 
for several years (Trugman et al. 2018; Wu et al. 2017). 
In contrast, carbon investment in leaves and root forma-
tion may remain relatively unchanged during and after 
drought (Anderegg et al. 2015). Furthermore, different 
temperature thresholds are required for photosynthesis 
(active above 0 °C) and wood formation (active above 
4–5 °C) resulting in different seasonal windows of cli-
mate sensitivity for leaf and stem biomass within a year 
(Fatichi et al. 2014).

In addition to the variability of responses to dry spells 
among biomass compartments, there might be spatial 
variability in the impact of drought due to microclimatic 
conditions connected with topographic variability (Wong 
et al. 2021). The curvature of the terrain, slope inclina-
tion, and orientation can affect water retention and solar 
irradiance which may modulate the response of trees to 
dry spells (Rabbel et al. 2018; Mašek et al. 2023). How-
ever, whether site topographic conditions can influence 
the responses of the main above-ground tree vegeta-
tive organs to dry spells at the landscape level remains 
unanswered.

The aim of this study is to compare the responses of 
wood biomass (represented by tree-ring widths) and can-
opy greenness (represented by the NDVI) to dry spells 
while accounting for the effect of topographic variability. 
We selected 20 plots for each of the two main coniferous 
tree species in Central Europe: Picea abies and Pinus 
sylvestris in both mountain and lowland sites with com-
plex topography. We hypothesize that (1) the response 
of tree-ring widths and NDVI to dry spells will differ in 
terms of magnitude and duration and (2) the recovery of 
stem growth and canopy greenness will depend on the 
severity of the drought and the climatic conditions that 
follow, modulated by site topography.

Methods

Study sites and selected tree species

Coniferous forests in Central Europe primarily consist 
of Picea abies and Pinus sylvestris (PCAB and PISY, 
respectively) comprising approximately 60% of total for-
est coverage (Spiecker 2000). PCAB is a semi-shade tol-
erant, shallow-rooted tree species that typically grows in 
mountainous areas, forming dense closed canopies. On the 
other hand, PISY is a light-demanding deep-rooted species 
that occupies less productive sites such as sandstone and 
rocky slopes, where it grows in open canopies (Durrant 
et al. 2016).

We selected two study sites in the Czech Republic: 
Šumava Mts. and Kokořínsko hills which are dominated 
almost exclusively by PCAB and PISY, respectively 
(Fig. 1A). The Šumava Mts. is an old metamorphic moun-
tain range with gentle slopes and an average elevation of 
1000 m a. s. l. (Fig. S1, Table S2). The Kokořínsko hills 
are a sandstone platform with an elevation of approxi-
mately 400  m a. s. l. divided by deep narrow valleys 
where the highest peaks are formed by volcanic intrusions 
(Fig. 1B). The Šumava Mts. site is classified as having a 
wet temperate climate, with annual precipitation totals of 
about 1040 mm and a mean annual temperature of 5 °C. 
Kokořínsko hills are located in a mild temperate climate, 
with annual total precipitation of about 650 mm and an 
average annual temperature of 8 °C (period 1985–2017, 
Fig. 1C). In both sites, soils are generally nutrient-poor 
spodosols, leptosols, and cambisols (Ložek et al. 2005; 
Albrecht 2003).

Sample collection and processing

We collected samples from 20 plots across each sampling 
site, taking into account the topographic variability and 
associated plot characteristics such as slope aspect, runoff, 
and water retention. This involved selecting five plots for 
each of the following plot categories: south-facing slope 
(plots under high solar irradiance), north-facing slope 
(plots under low solar irradiance), plateau (plots with low 
water availability), and valley bottom (plots with higher 
water availability; Table S1, Fig. S1) which were pre-
selected based on the digital elevation model and later in 
the field, we narrowed down our pre-selection of particu-
lar plots also based on tree size and age. Each plot was 
circular, with a radius of 16 m, which is approximately 
equivalent to the resolution of Landsat scenes (30 m per 
pixel). At each plot, we sampled at least 26 mature can-
opy-level trees without visible damage, using a Pressler’s 
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increment borer, a tool to extract a 5 mm cylinder of wood 
with minimum injury to the tree. Sampling was done in 
the years 2020–2021 and our dataset contains 1147 trees 
in total, 508 for PCAB and 639 for PISY (Table S2). The 
mean age of sampled trees was 113 years for both species 
and the mean height was 23 and 28 m for PISY and PCAB, 
respectively (Table S2).

We used standard dendrochronological methods to 
process the tree cores (Stokes and Smiley 1968). Sam-
ples were scanned with a resolution of 1200 dpi and tree-
ring widths were measured using WinDENDRO (Regent 
Instruments 2011). Cross-dating of the tree-ring series was 
done in PAST 4 (Knibbe 2004) by visual verification and 
statistical t-test. To focus on high-frequency variability, we 
detrended the individual series using a 30-years-long cubic 
smoothing spline with a 50% frequency cut-off to remove 
low-to-medium frequency trends including the age trend. 
Tree-ring indices (TRI) were calculated as ratios between 
observed and fitted growth (Cook and Peters 1981). We 
calculated plot TRI chronologies for both species by 
averaging plot individual tree-ring series using Tukey's 
biweight robust mean (R package dplR 1.7.2; Bunn 2008).

NDVI data

The time series of the NDVI were calculated using Land-
sat scenes since it provides the longest available dataset of 
multispectral satellite images with high resolution (30 m 
per pixel). We used a high-quality T1_SR collection (GEE 
2023) that contains surface reflectance data and meets geo-
metric and radiometric quality requirements from Landsat 
missions 5, 7, and 8. Each Landsat mission covers a different 
time window and uses a different sensor: Thematic Mapper, 
Enhanced Thematic Mapper Plus, and Operational Land 
Imager for Landsat 5, 7, and 8, respectively. Google Earth 
Engine (Gorelick et al. 2017) was used to recalculate data-
sets of Landsat 5 and 7 by regression to be comparable with 
Landsat 8 (Roy et al. 2016). The parts of the images identi-
fied as clouds and their shadows were erased to avoid distor-
tion of spectral data in further analysis (Zhu et al. 2015).

Next, we subset all available images for the growing 
season period. The beginning of the growing season was 
defined as the first day when the mean temperature of the 
preceding five days exceeded 12 °C and 9 °C for PISY and 
PCAB plots, respectively. These temperatures are reported 

Fig. 1   Location of two study sites dominated by Picea abies and 
Pinus sylvestris (PCAB and PISY respectively, panel A). Location 
and classification in plot categories (panel B); plot numbers cor-
respond to those in Table  S2. Composite climate diagrams for the 

selected drought years: 1994, 2003, 2006, and 2015 with respect to 
average climate conditions (1985–2017) derived from ERA5 (Hers-
bach et al. 2020, 2023) climatic reanalysis data (panel C) 
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to trigger bud bursts for the species under study in similar 
elevations (Hájková 2012). Although the increment of leaf 
biomass is usually completed in July (Kraus et al. 2016; 
Fajstavr et al. 2019) the end of the growing season was set 
to 30th September (DOY 274) when trees in lowlands and 
highlands of Central Europe usually stop cell division and 
the tree ring is complete (Etzold et al. 2022; Tumajer et al. 
2022). This approach was selected from three variants of 
NDVI calculations with different seasonal windows because 
it captures both leaf and wood phenology. Moreover, the 
NDVI time series did not differ considerably between dif-
ferent variants of calculation (Fig. S2). NDVI was calculated 
as follows:

Where 'Red' stands for reflectance in the red spectrum 
(0.64—0.67 µm) and 'NIR' indicates the reflectance in the 
near-infrared spectrum (0.85—0.88 µm; NASA 2022). The 
median of all scenes within individual years was computed 
and the time series of NDVI for our plots were extracted. 
The resulting values of the time series were calculated as the 
mean of pixels weighted by the proportion of the sampling 
plot area located inside a specific grid cell.

Time series of vegetation indices tend to be affected by 
numerous factors such as forest densification as trees are 
getting older and larger (Vicente-Serrano et al. 2004), and 
increasing tree and leaf size due to CO2 fertilization reflected 
also in a gradual increase in NDVI values (Donohue et al. 
2013). To remove those long-term trends, we fitted a linear 
regression to individual NDVI series over time, and residu-
als from this trend line were used for calculating a mean 
NDVI series per plot.

NDVI tends to saturate during the growing season, 
particularly in evergreen conifer forests. However, in our 
case, the values of NDVI are slowly increasing each year 
and never reach full saturation (Fig. S3). We are aware, that 
although we tried to carefully select monospecific undis-
turbed plots, our NDVI data might be affected by distor-
tion of spectral data due to admixed vegetation, and in the 
case of open PISY canopies, there might be also a signal of 
understory and soil. However, the adjacent pixels of Landsat 
scenes returned almost identical time series, so the signal of 
understory vegetation is probably of limited significance.

Climate data

We used ERA5 atmospheric reanalysis data (Hersbach et al. 
2020, 2023) with a spatial resolution of 0.25° per pixel. 
ERA5 data describes general macroclimatic settings for both 
sites and the deviations due to orographic differences are 
represented by categorical variables characterising distinct 

(1)NDVI =
NIR − Red

NIR + Red

topoclimatic variations (valleys, slopes, summits; Geiger 
et al. 2009). Monthly data on air temperature (T in °C), pre-
cipitation (P in mm), downward surface solar radiation (SR 
in J/m2), and soil moisture in 10 cm (SM in kg/ m2) were 
obtained from Climate Earth Explorer. Based on T and P we 
also calculated the Standardised Precipitation-Evapotranspi-
ration Index (SPEI, Vicente-Serrano et al. 2010) using the 
Thornthwaite method (Thornthwaite 1948). We considered 
different durations of the preceding period spanning from 1 
to 12 months for the calculation of SPEI (R package SPEI 
1.7, Beguería and Vicente-Serrano 2017). Since there were 
negligible differences in correlations between TRI or NDVI 
with different SPEI versions, we selected SPEI with four 
preceding months since it represents a balance for differ-
ent rooting strategies between species and depth of water 
uptake. While deeply rooting species (PISY) can use water 
retained in the soil most of the year, shallow rooting species 
(PCAB) reach subsurface layers of soil with a fast turnover 
of infiltrating precipitation (Sprenger et al. 2019).

We computed the mean climatic series for summer (June, 
July, August; JJA) and the growing season (May through 
September; GS). Since the results for JJA and GS showed 
little differences, only JJA results are shown in the main 
body of the text.

Statistical analysis

We selected the time window of 1985–2017 as the com-
mon period for analyses, which was covered by both TRI 
and NDVI time series. All analyses were performed using 
R software (R 4.2.0; R Core Team 2022).

To identify the main climate drivers, we calculated Pear-
son’s correlations between TRI, NDVI chronologies, and 
climate variables in the current and previous year. Since SR 
and SM showed the highest correlations with TRI and NDVI, 
the most severe non-consecutive drought years were selected 
based on the lowest (SM) and the highest (SR) values. Three 
of the four resulting drought years overlapped for both SM 
and SR. For simplicity, we decided to use those derived from 
SR because they were identical for both tree species. Non-
consecutive drought years were selected to avoid the potential 
cumulative effect of successive drought years on tree growth 
(Anderegg et al. 2020; Gessler et al. 2020).

To explore the response of stem (TRI) and canopy green-
ness (NDVI) to dry spells, we employed superposed epoch 
analysis (SEA; Chree 1913) which calculates the signifi-
cance of the deviation from the mean of a given year and 
several lagged years. We used the 'sea' function in R pack-
age dplR (1.7.2; Bunn 2008) and considered a four-year lag 
before and after the dry spell (Anderegg et al. 2015; Wu 
et al. 2017).



International Journal of Biometeorology	

Additionally, we developed linear mixed-effect models (R 
package lme4 1.1–30; Bates et al. 2015) with TRI and scaled 
NDVI in a given drought year and the four following years 
as the dependent variables. Explanatory variables were the 
severity of solar radiation in the drought year (anomaly from 
average SR; SEV0), the solar radiation severity in each of 
the four years following the dry spell (anomaly from average 
SR; SEV), while the plot category was treated as a random 
effect. For each variable in all models, we calculated the 
variance inflation factor (VIF; R package ‘car’; 3.1–1; Fox 
and Weisberg 2019). We created three variants of models: a 
full model with all predictors and two models always with 
a single predictor omitted (successively: SEV0, SEV). We 
assessed the performance of each model using the Akaike 
information criterion (AIC), marginal and conditional R2 (R 
package MuMIn 1.47.1; Barton 2022), pseudo-R2, t values, 
and p-values of all predictors. The significance of the ran-
dom effect (plot category) was calculated by the function 
'ranova' from R package lmerTest (3.1–3; Kuznetsova et al. 
2017). Finally, we checked the normal distribution of residu-
als using qqplots.

Results

Climatic signal

Both species and biomass compartments showed negative 
correlations with seasonal temperatures and surface solar 
radiation while precipitation, soil moisture, and SPEI had 
a positive influence on productivity (Fig S4). PCAB TRI 
primarily reflected the influence of the previous year's cli-
mate, whereas NDVI appeared to be minimally affected by 
climate. There was no difference between plot categories. 

PISY NDVI showed the strongest climate signal, displaying 
significant correlations with all climatic variables, especially 
with SM and SR, with no differences between plot catego-
ries. PISY TRI exhibited the most significant correlations in 
plots located on plateaus, whereas correlations in other plot 
categories were less or non-significant (Fig. S4).

Responses to dry spells

In both sites, the identified driest years were 1994, 2003, 
2006, and 2015 (Fig. 2). The response of PCAB TRI to these 
dry spells exhibited large variability among individual plots 
(Fig. 3). However, a synchronized and significant decrease in 
tree growth lasting the following two years affected almost 
all plots irrespective of the plot category. The recovery 
of tree growth is visible from the third post-drought year 
onwards when trees reached pre-drought levels of growth 
(Fig. 3). PISY TRI significantly dropped in the year of the 
drought event at most of the plots. The growth reduction 
lasted for the next two years, but only significantly for the 
slope plots (i.e., north and south slope plots; Fig. 3). At some 
PISY plots, trees did not recover to the pre-drought radial 
growth level four years after the dry spell.

For both tree species, we observed a significant reduction 
in NDVI during drought events. In PCAB, this reduction was 
followed by a significant increase in NDVI two years after 
the dry spell, achieving even higher levels of greenness than 
before the drought event (Fig. 3). However, three years after 
the dry spell, the NDVI dropped, and this change was signif-
icant for most PCAB plots. Conversely, PISY did not recover 
pre-drought NDVI levels four years after the drought event. 
Overall, there were no differences in the response between 
plot categories, irrespective of species or TRI and NDVI.

Fig.2   Time series of normal-
ized difference vegetation index 
(NDVI; upper panel) and tree-
ring indices (TRI; lower panel) 
for each plot and tree species: 
Picea abies (PCAB; left panel), 
and Pinus sylvestris (PISY; right 
panel). Colors indicate the plot 
categories (SS-South slops, 
NS-North slope, PL-Plateau, 
VA-Valley). The orange line 
corresponds to the surface 
solar radiation time series (SR) 
and vertical lines highlight the 
selected drought years
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Factors influencing the responses of TRI and NDVI

The models for PISY TRI explained approximately 24% 
of the variability in the data, with the climate severity in 
the year of the event (Severity0) and the years following 
the drought event (Severity) emerging as significant pre-
dictors (Table 1). In turn, the models for PCAB TRI cap-
tured approximately 12% of data variability with no sig-
nificant influence of any predictor. Models for PISY NDVI 
accounted for 28% of the variability with both climate 
severities (Severity0 and Severity) demonstrating significant 
effects. In the case of PCAB NDVI, approximately 21% of 
the variability was explained, with both climate severities 
being statistically significant. In all cases, the explained 

variability of the models decreased when Severity0 was 
omitted. Models without the Severity variable also exhibited 
lower explained variance compared to full models (except 
the model for PCAB TRI) but the decrease was substantially 
smaller compared to models without Severity0 (Table 1). 
All predictors in all models displayed VIF below 2 and a 
distribution of residuals close to normal.

Discussion

We combined the analysis of TRI (a proxy for stem growth 
dynamics) and NDVI (a proxy for canopy greenness) for two 
conifer species (Pinus sylvestris and Picea abies) in Central 

Fig. 3   Responses of normal-
ized difference vegetation index 
(NDVI; upper panel) and tree-
ring indices (TRI; lower panel) 
to drought years for Picea abies 
(PCAB; left panel) and Pinus 
sylvestris (PISY; right panel) as 
indicated by superposed epoch 
analysis. Solid dots denote 
statistically significant change 
(p < 0.05) and color indicates 
the plot category (SS-South 
slope, NS-North slope, PL-
Plateau, VA-Valley)

Table 1    Results of linear mixed-effect models explaining normalized 
difference vegetation index (NDVI) and tree-ring indices (TRI) for 
Pinus sylvestris (PISY) and Picea abies (PCAB). The columns indi-

cate the Akaike information criterion (AIC), R2 marginal, R2 condi-
tional, pseudo-R2, and t-values of predictors (Severity0 and Severity). 
Bold numbers indicate significant p values (p < 0.05) 

SPECIES VAR Model AIC R2 marginal R2 conditional pseudo R2 Severity0 Severity Plot category

PISY TRI Full model -251.647 0.289 0.311 0.315 -7.253 -3.261 0.998
without SEV0 -215.165 0.111 0.114 0.115 NA -5.975 0.993
without SEV -258.734 0.266 0.287 0.291 -7.377 NA 0.973

NDVI Full model 720.300 0.435 0.466 0.469 -9.338 -10.365 0.883
without SEV0 841.901 0.142 0.142 0.143 NA -7.722 1.000
without SEV 827.109 0.218 0.241 0.243 -9.313 NA 0.936

PCAB TRI Full model -469.296 0.159 0.207 0.209 1.535 -0.894 0.910
without SEV0 -447.903 0.000 0.000 0.000 NA -0.004 1.000
without SEV -487.156 0.157 0.199 0.201 1.505 NA 0.699

NDVI Full model 860.422 0.356 0.356 0.358 -9.563 -8.411 1.000
without SEV0 959.970 0.054 0.054 0.054 NA -4.520 1.000
without SEV 908.825 0.229 0.229 0.230 -9.232 NA 1.000
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Europe growing under different microenvironments to com-
prehensively characterize their response to drought. Our 
results suggest that following dry spells, conifers undergo a 
systematic shift in physiological activity between stem and 
leaf. The growth of trees during the drought year and the 
three following years is influenced by climatic conditions 
while the effect of topography is marginal.

Differential response of TRI and NDVI to dry spells

Our sampling sites are landscapes characterized by complex 
topography, associated with high spatial variability in solar 
irradiance and water availability. The PISY site, located 
in Kokořínsko hills, experiences warm and dry conditions 
leading to pronounced drought effects on both stem growth 
and leaf greenness in trees. In contrast, the PCAB site in 
the Šumava Mountains encounters climate conditions that 
closely align with the PCAB climatic optimum, resulting 
in a weaker influence of climate on both analyzed proxies, 
TRI and NDVI,.

Consistent with previous studies, the impact of a dry 
spell in both TRI and NDVI persisted for three years fol-
lowing the event in both tree species (Wu et al. 2017; Sze-
jner et al. 2020; Janecka et al. 2022). The impact of the 
drought event on PISY TRI was more pronounced than on 
PCAB TRI, which can be explained by the higher mois-
ture limitation of the PISY site compared to the PCAB site 
(Fig. S4). The response of PCAB TRI in the years after the 
dry spell was similar to that of PISY, though the reduction 
was more significant and persistent for most of the PCAB 
plots (Marchand et al. 2021; Zlobin 2022). This might be 
due to the different rooting strategies of both species (Dur-
rant et al. 2016). Shallow-rooting species such as PCAB are 
assumed to be more sensitive to dry spells than deep-rooting 
PISY, which buffers against drought effects by accessing 
groundwater in deeper soil layers (Kannenberg et al. 2020; 
Mackay et al. 2020). Differences may also be related to the 
higher isohydricity of PCAB compared to relatively more 
anisohydric PISY (Martínez-Vilalta et al. 2014) leading to 
stronger regulation of stomatal conductance in PCAB and 
thus production of less assimilates and storage sugars com-
pared to PISY. Furthermore, PCAB TRI growth is negatively 
influenced by the temperature of the preceding summer and 
positively impacted during the winter (Fig. S4; Mašek et al. 
2023). Winter conditions may interact with the preceding 
summer and late autumn weather, leading to the observed 
strong negative growth responses over two consecutive years 
(Harvey et al. 2020).

After dry spells, stem growth (i.e., TRI) was reduced 
and this reduction persisted for two years, whereas NDVI, 
which is a proxy integrating photosynthetic activity and 
leaf biomass, increased for both species during the same 
period (Fig. 3). This suggests a stem-leaf biomass trade-off. 

According to our results, trees changed their allocation strat-
egy in the years following dry spells, probably in order to 
invest more carbon into the leaf biomass to enhance photo-
synthesis (replenish sugar pools) and restore canopy damage 
(Kannenberg et al. 2019a; Anderegg et al. 2013). Such an 
NDVI enhancement was more significant for PCAB which 
might be connected to a stronger reduction of TRI observed 
for this species. Increases in forest ecosystems’ NDVI in 
years following a dry spell were also observed and reported 
by other studies (Rita et al. 2020; Dong et al. 2022; Gazol 
et al. 2022), evidencing that responses of stem growth and 
leaf biomass greenness to dry spells are uncoupled (Gazol 
et al. 2020; Moreno-Fernández et al. 2022).

The larger reduction of stem growth compared to canopy 
greenness during drought events (Fig. S3) has been previ-
ously reported by other studies using canopy vigor proxies 
derived from remotely-sensed vegetation indices or eddy 
covariance data (Kannenberg et al. 2020, 2019a; Moreno-
Fernández et al. 2022). All these findings reveal that stem 
growth during a dry spell is more limited by climate condi-
tions than canopy greenness (Cabon et al. 2022; Dow et al. 
2022). Wood formation stops at higher plant water potential 
than photosynthesis (vegetation greenness) since radial tree 
growth is limited by a low turgor in cambial cells (Cabon 
et al. 2020). Low water potential also reduces the ability to 
transport assimilated carbon (Fatichi et al. 2014), leading to 
the accumulation of non-structural carbohydrates in trees 
that might be invested in other tree organs than stems such 
as roots (Teets et al. 2022; Lapenis et al. 2013), respired or 
stored in carbon pools. In the end, all these factors might 
contribute to an overall more pronounced response of stem 
compared to canopy greenness in the drought year.

In the two years following the dry spell, the canopy 
greenness is restored probably at the expense of stem 
growth (Anderegg et al. 2013). Only in the third year after 
the dry spell, does the stem growth return to a normal level 
(Martínez-Sancho et al. 2022; Anderson-Teixeira and Kan-
nenberg 2022) assuring sufficient conductive capacity for 
leaves (Kröber et al. 2014), with some indications that this 
is accompanied by a simultaneous decrease of NDVI val-
ues. We can speculate that stem growth is enhanced at the 
expense of leaf biomass in the third year after a dry spell, 
however, our data doesn’t provide direct evidence. In the 
fourth year, both biomass compartments recovered back 
to the pre-drought values of TRI and NDVI (Klesse et al. 
2022; Szejner et al. 2020; Leifsson et al. 2023). Detected 
differences between tree rings and NDVI in this study imply 
partial decoupling of stem and leaf biomass responses and 
probably also varying carbon allocation strategies after dry 
spells.

All selected dry spells (1994, 2003, 2006, 2015) are 
well-known to have affected plant growth in Central Europe 
(Spinoni et al. 2015; Moravec et al. 2021), but they differ 
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in their meteorological characteristics. The variability in 
drought severity, duration, and timing leads to significant 
differences in the response of both stem growth and canopy 
greenness to individual dry years (Gao et al. 2018; Huang 
et al. 2018; Kannenberg et al. 2019b; Wu et al. 2022) and 
hence, in trees’ resilience, resistance and recovery (Text S1, 
Table S3, Fig. S5).

Factors shaping the responses to drought

We hypothesized that drought severity and topography mod-
ulate the response of trees to dry spells. Our results suggest 
that drought severity is a very important factor, while the 
topography has a limited effect in our dataset.

The severity of the dry spell and the climatic severity 
during the following years were highly significant predic-
tors of stem growth and canopy greenness for both studied 
species, corroborating the results of other studies for coni-
fers and broadleaf species from the temperate biome (Brun 
et al. 2020; Song et al. 2022; Castellaneta et al. 2022; Meng 
et al. 2015). Differences in the response to dry spells might 
be partly caused by different rooting strategies of species 
under study, since root properties such as root length, fine 
root diameter, and root density may significantly influence 
drought tolerance (Chen et al. 2022). Deep-rooting has been 
observed as a mitigation strategy in response to drought 
(Mohammadi Alagoz et al. 2022; Chitra-Tarak et al. 2021).

Overall, the influence of topography was rather marginal 
(Schmied et al. 2023, Table 1). Likely, drought severity out-
performs the potential effect of topography. Alternatively, 
the impact of dry spells was so severe that even the condi-
tions in valleys (water accumulation) were not favourable 
enough to provide a sufficient amount of soil moisture. This 
means that during mild droughts, the topography may play 
a role as seen in the radial growth of trees growing in topo-
graphically distinct conditions (Strum et al. 2022; Rabbel 
et al. 2018). We further observed highly variable response 
of PISY TRI in SEA (Fig. 3) which might be a result of 
complex topographic conditions in Kokořínsko hills with 
relatively greater between-plot differences (Fig. 1). However, 
if the response to drought was assessed using resilience met-
rics, there was no difference between the plot categories for 
any species or biomass compartment (Fig. S5) confirming 
the marginal effect of topography during extreme droughts.

At each site we used ERA5 climate data from one grid 
cell. Using the same climate data for all plots may mask 
some topography-related differences between them. How-
ever, since our analyses do not depend on absolute values 
of climatic variables, the potential impact of using the 
same data for all plots is low. We assume that the values of 
monthly temperature and surface solar radiation used in our 
analyses reveal a systematic shift between valleys, slopes, 
and summits (Geiger et al. 2009; Daly et al. 2010; Treml and 

Banaš 2008), which is represented by categorical variables 
characterizing the topographic position of each plot.

Conclusions

Forest responses to drought are complex with potential dif-
ferences among tree species and tree biomass compartments, 
and across topographically complex landscapes. We focused 
on the responses of stem growth (represented by tree-ring 
widths) and canopy greenness (represented by NDVI) to 
a drought of two important coniferous tree species (Pinus 
sylvestris and Picea abies) in Central Europe. Our findings 
reveal a decoupled response of stem growth and canopy 
greenness in the period following dry spells suggesting the 
importance of changing carbon allocation strategies during 
and after drought. Moreover, the magnitude of the response 
to drought spells was also species-specific: stem growth 
reduction and NDVI increase of deep-rooting Pinus sylves-
tris were not as conspicuous as those of the shallow-rooting 
Picea abies. Furthermore, drought severity appears to out-
weigh any potential variations in response linked to topog-
raphy, as the influence of landscape features was marginal. 
We demonstrated the decisive role of drought severity in the 
response of above-ground tree compartments, which, in turn, 
exhibit systematic differences in the recovery period. The 
impact of dry spells on above-ground tree biomass compart-
ments in temperate conifer forests is primarily driven by the 
drought severity followed by biomass allocation strategy, 
tree species, and landscape topography. Understanding the 
carbon allocation strategies triggered by dry spells is crucial 
for forecasting changes in forest ecosystems and improving 
our knowledge of forest responses to extreme droughts.
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