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Abstract
The Universal Thermal Climate Index (UTCI) is a thermal comfort index that describes how the human body experiences
ambient conditions. It has units of temperature and considers physiological aspects of the human body. It takes into account
the effect of air temperature, humidity, wind, radiation, and clothes. It is increasingly used in many countries as a measure of
thermal comfort for outdoor conditions, and its value is calculated as part of the operational meteorological forecast. At the
same time, forecasts of outdoor UTCI tend to have a relatively large error caused by the error of meteorological forecasts.
In Slovenia, there is a relatively dense network of meteorological stations. Crucially, at these stations, global solar radiation
measurements are performed continuously, which makes estimating the actual value of the UTCI more accurate compared
to the situation where no radiation measurements are available. We used seven years of measurements in hourly resolution
from 42 stations to first verify the operational UTCI forecast for the first forecast day and, secondly, to try to improve the
forecast via post-processing. We used two machine-learning methods, linear regression, and neural networks. Both methods
have successfully reduced the error in the operational UTCI forecasts. Both methods reduced the daily mean error from about
2.6◦C to almost zero, while the daily mean absolute error decreased from 5◦C to 3◦C for the neural network and 3.5◦C for
linear regression. Both methods, especially the neural network, also substantially reduced the dependence of the error on the
time of the day.

Keywords UTCI forecasting · Thermal comfort · Verification · Post-processing

Introduction

The Universal Thermal Climate Index (UTCI) is a thermal
comfort index that quantitatively describes how the human
body experiences ambient conditions. It is based on an
advanced thermo-physiological model (Pappenberger et al.
2015). It has units of temperature, and it takes into account
the effect of air temperature, humidity, wind, radiation, and
clothes (Bröde et al. 2012). One of its favorable properties
is that it can be used to express thermal comfort throughout
the entire range of thermal conditions (i.e., for hot and cold
conditions, Zare et al. 2018).
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Following the concept of an equivalent temperature,
UTCI for a given combination of wind speed, radiation,
humidity, and air temperature was defined as the air tem-
perature of the reference environment, which, according
to the thermo-physiological model, produces an equivalent
dynamic physiological response (Bröde et al. 2012). The ref-
erence conditions are 10mwind of 0.5m/s, relative humidity
of 50%, mean radiant temperature equal to the air tempera-
ture, and a person walking at a speed of 4 km/h (Bröde et al.
2012). It is based on a relatively complex Fiala multi-node
model of human heat transfer and temperature regulation that
can reproduce the human thermal response to a wide range
of external climatic conditions (Fiala et al. 2012).

Due to its strengths as a bioclimatic index, the UTCI
has been widely used in many studies in bioclimatology
and in many related scientific disciplines (Błażejczyk and
Kuchcik 2021). For example, assessment of regional and
local bioclimate characteristics (Wu et al. 2010; Błażejczyk
and Matzarakis 2007; Kingma et al. 2021; Folkerts et al.
2021; Eggeling et al. 2022), urban bioclimate (Czarnecka
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et al. 2011; Bröde et al. 2013; Nowosad and Wereski 2013;
Błażejczyk et al. 2014; Lukić and Milovanović 2020), recre-
ation, tourism and sports (Liu et al. 2022; Krüger 2017;
Lindner-Cendrowska and Błażejczyk 2018), epidemiology
and health research (Nastos and Matzarakis 2011; Morabito
et al. 2014; Urban and Kyselý 2014; Krzyżewska et al. 2017;
Romaszko et al. 2017; Błażejczyk et al. 2018; Di Napoli
et al. 2018; Skutecki et al. 2019; Urban et al 2021), UTCI
mapping (Vinogradova 2019; Kuchcik et al. 2021; Milewski
2013; Di Napoli et al. 2018), assessment/forecast of biocli-
matic changes (Rozbicki and Rozbicka 2018; Kuchcik et al.
2021; Głogowski et al. 2020; Brecht et al. 2020; Błażejczyk
et al 2013; Emerton et al. 2022).

The UTCI is also increasingly used in many countries as a
measure of thermal comfort for outdoor conditions and is cal-
culated as part of the operational meteorological forecast (Di
Napoli et al. 2021a). Some examples of such use of the UTCI
in Europe are: the Czech Republic (since 2019, Novak 2013;
Novák 2021), Italy (since 2007, Maracchi 2017), Poland
(since 2010, Bröde et al. 2012; IMGW-PIB 2015), Portugal
(since 2010, IPMA 2022), and Slovenia (since 2019, ARSO
2021).

At the same time, forecasts of outdoor UTCI tend to
have a relatively large error primarily caused by the error
of forecasts of relevant meteorological parameters that are
used as input for the UTCI (e.g., Novák 2021; Pappenberger
et al. 2015). Our goal was to analyze the errors of the oper-
ational outdoor UTCI forecasts for the first day and then
try to reduce these errors via post-processing by using two
machine-learning approaches. We used a relatively simple
method (linear regression) and a more complex non-linear
method (neural network). We tried to improve the forecasts
for Slovenia, which has a relatively dense network of mete-
orological stations where the forecasted and observed UTCI
values could be compared. We used hourly data for seven
years (2013–2018 and 2020) at 42 stations.

Data andmethods

Universal thermal climate index

As already mentioned, the UTCI is defined as an equivalent
air temperature that would produce the same physiological
response under a set of reference conditions (Bröde et al.
2012). The UTCI is a function of several environmental
parameters and can be defined as follows:

UTC I (Ta, Tmrt, e, v10m) = Ta + Offset(Ta, Tmrt, e, v10m),

(1)

where Ta is air temperature, e is water vapour pressure, and
v10m is wind speed at 10 m height (Bröde et al. 2012). The
functionOffset represents the deviation of the UTCI from the
actual air temperature. Lastly, the mean radiant temperature
(Tmrt) is a measure of the total radiation from the atmosphere
and the ground incident on an object from all directions,
but instead of expressing this measure as a flux density, it
is converted into a temperature via the Stefan-Boltzmann
equation (Di Napoli et al. 2020).

The UTCI is based on the Fiala multi-node model of
human thermoregulation (Fiala et al. 2012). However, cal-
culating the UTCI by running the complete Fiala model is
computationally expensive, and simpler calculation proce-
dures, such as look-up tables (such as the table presented
by Bröde et al. 2012) or polynomial regression methods,
are usually used. For example, an approximation of the Off-
set function by a 6th-degree polynomial that depends on Ta,
v10m, e, and Tmrt − Ta, can be used (such an example, with
210 polynomial coefficients, was presented by Bröde et al.
2012). Such approximation is used by the BioKlima model
and the ALADIN numerical weather prediction model.

Data description

Measurements at meteorological stations

Slovenia is situated at the intersection of fourmajor European
geographic regions (the Alps, the Dinarides, the Pannonian
Plain, and the Mediterranean). It has very complex terrain
with altitudes ranging from 0 to about 3000 m as well as
multiple climate types (Kozjek et al. 2017). The meteorolog-
ical data used in this study was collected on 42 automatic
stations, which provide data on an hourly resolution. These
stations are part of the SlovenianEnvironmentAgency (SEA)
measurement network, and their spatial distribution can be
seen in Fig. 1. A list of all stations with some information
is shown in Table S6 in the Supplementary Materials. Seven
years of data (2013–2018 and 2020 - this period was deter-
mined by the availability of the ALADIN model data) from
these stations were used in the study.

The SEA employs an automated quality control algo-
rithm that checks for probable errors or inconsistencies in
the measurements. For example, it flags values where unusu-
ally large changes occurred in a short time or values that are
substantially different from values at nearby stations. The
values flagged by the automated algorithm are then manu-
ally checked by a quality control expert who decides if a
particular measurement should be kept in the archive or dis-
carded. The missing values were not used in the analysis (no
gap filling or interpolation was performed if a measurement
was missing).
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Fig. 1 The geographical distribution of meteorological stations used in
the study. The circular markers are color-coded to reflect the altitude
of each station, with altitudes indicated by the color bar below the fig-
ure. The nine stations that were individually analyzed are marked with
bold circles and id numbers: 1. Bilje, 2. Celje-Medlog, 3. Kredarica, 4.
Letalisce Jožeta Pučnika Ljubljana, 5. Ljubljana-Bežigrad, 6. Murska
Sobota-Rakičan, 7. Novo Mesto, 8. Portorož-Letalisce, 9. Rateče. The
gray shading represents the topography elevation from the ETOPO
Global ReliefModel (NOAANational Centers for Environmental Infor-
mation 2022)

Since the stations span a large range of altitudes andmulti-
ple climate types, they represent a good dataset for evaluating
the performance of the UTCI forecast as well as their post-
processing.Crucially,measurements of global solar radiation
are also performed at these stations. Having radiation mea-
surements makes estimating the actual value of UTCI more
reliable since Tmrt can be determined with more accuracy
compared to the situation when no radiation measurements
are available (in this case, other less accurate proxy parame-
ters, need to be used).

For example,Novák (2021) compared theALADIN-based
UTCI forecasts in the Czech Republic to data from a sin-
gle automatic weather station for a period of eleven months.
Since no radiation measurements were available at the sta-
tion, they used two proxies for Tmrt – they assumed that Tmrt

is equal either to the air temperatures measured at 2 m or to
the temperature measured at 5 cm above the ground. Another
example is the study by Di Napoli et al. (2021b) where the
authors tried to verify the Tmrt and UTCI values derived from
ECMWF ERA5-HEAT reanalysis by comparing them to the
values they obtained from 177 meteorological stations dis-
tributed around the world. Since measurements of radiation
were not available at these stations, they had to rely on other
parameters, such as air temperature and total cloud cover, to
estimate the values of Tmrt and UTCI.

In addition to analyzing the combined data from all 42
stations, we also selected nine stations (markedwith numbers

in Fig. 1), representing distinct geographical and climatic
characteristics in Slovenia, to analyze how the UTCI forecast
post-processing performs if done separately for each station
(as opposed to all the stations together).

From the centrally locatedLjubljanaBasin,which exhibits
a Subcontinental climate (Kozjek et al. 2017), we selected the
Ljubljana-Bežigrad station in the capital city and the Jože
Pučnik Airport Ljubljana station to represent both urban and
countryside locations. From the NW part of Slovenia, we
selected the Kredarica station, which has the highest alti-
tude and an Alpine climate, and the Rateče station, located
at the bottom of an alpine valley at a much lower altitude and
exhibiting a Subalpine climate (Kozjek et al. 2017). From the
SW part, which exhibits a Submediterranean climate (Koz-
jek et al. 2017), we selected the Portorož-Letališče station
at the coast and the Bilje station located more inland. From
the Celje Basin, we selected the Celje-Medlog station, while
from the SE part of Slovenia, we selected the Novo Mesto
station, with both stations exhibiting a Subcontinental cli-
mate (Kozjek et al. 2017). From the NE part of Slovenia,
which also exhibits a Subcontinental climate (Kozjek et al.
2017), we selected the Murska Sobota-Rakičan station.

The softwareBioKlima 2.6 (Błażejczyk 2017)was used to
calculate the UTCI values from the meteorological measure-
ments. BioKlima is a user-friendly software for theWindows
operating system that offers various methods for bioclimatic
studies and can calculate around 60 different biometeoro-
logical and thermophysiological indices. It has been used
successfully in previous studies for UTCI calculations (Liu
et al. 2022; Rozbicki and Rozbicka 2018; Zare et al. 2018).

As Tmrt is not directly measured in Slovenia, BioKlima
calculated it based on other parameters such as sun altitude
and measurements of global solar radiation and temperature
(Wuet al. 2010;Błażejczyk andMatzarakis 2007;Błażejczyk
2005). The Sun’s altitude can be directly inputted or calcu-
lated byBioKlima from parameters such asmonth, day, hour,
minutes, and latitude.

The input data for UTCI calculations in the BioKlima
model consisted of month, day, hour, minutes, latitude, and
measurements of air temperature, relative humidity, wind
speed at 10 m height, and global solar radiation.

ALADINmodel forecasts

The ALADIN model (Aire Limitée Adaptation Dynamique
Développement International, Termonia et al. 2018) is a
numerical weather prediction model that has been used
operationally in Slovenia since 1997 by SEA. The model
configuration includes a horizontal resolution of 4.4 km,
87 terrain-following sigma vertical levels, a domain with
421 × 421 grid points, and a time step of 180 s (Wang et al.
2018). The extent of the model domain is shown in Fig. S4
in the Supplementary Materials.
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The UTCI calculation has recently been incorporated into
the ALADIN using the 6th-degree polynomial approxima-
tion mentioned in “Universal thermal climate index”. The
forecasted value of UTCI is calculated in the ALADIN in a
post-processing manner with the forecasted values of some
of the model’s basic variables used as input. The mean radi-
ant temperature (Tmrt) is a key component in the calculation
of UTCI, and in the ALADIN model, it is obtained by tak-
ing into account various shortwave and longwave fluxes (for
details on how the Tmrt is calculated in ALADIN please refer
to Weihs et al. 2011).

The SEA provided the data for the ALADIN-based
forecasts. Seven years (2013–2018, and 2020) of archived
operational model outputs were used for the analysis (the
forecast data for 2019 was not readily available in the SEA
archive, and providing it would demand a significant invest-
ment of both time and resources). The data was provided on
a spatial resolution of 4.4 km and a temporal resolution of
one hour. The data were provided for the first 24 hours of
the forecasts, initialized at 00 UTC. The ALADIN forecast
is integrated for 72 hours, but only the outputs for the first
24 hours are archived by SEA and could thus be used in the
analysis. The model data from the grid point that was nearest
to the location of the station was used for the analysis.

Methods

Verification metrics

The mean error (ME) and mean absolute error (MAE) were
used as criteria to evaluate the model performance. ME is the
difference between the average forecast and average obser-
vation and expresses the bias of the forecasts (Wilks 2006).
It is defined as

ME = 1

N

n∑

i=0

( fi − oi ) , (2)

where fi and oi and the forecasted and observed values,
respectively, and N the number of data. ME closer to zero
indicates a better forecast (von Storch and Zwiers 1999).

The MAE is the arithmetic average of the absolute val-
ues of the differences between the pairs of forecasted and
observed values and can be interpreted as a typical magni-
tude for the forecast error in a given verification data set
(Wilks 2006). It is defined as

MAE = 1

N

n∑

i=1

| fi − oi | , (3)

A lower MAE indicates a better forecast (von Storch and
Zwiers 1999).

Neural network

Modernmachine learning techniques, especially Neural Net-
works (NNs), are increasingly used to improve specific
aspects of weather prediction (e.g. Reichstein et al. 2019;
Palmer 2020; Schultz et al. 2021). Due to their strengths and
successful use by researchers in many previous studies, we
decided to use the NN to try to improve the accuracy of the
ALADIN-based UTCI forecasts.

We used various parameters outputted by ALADIN (e.g.,
forecasted UTCI, air temperature, humidity, wind speed,
cloudiness), as well as some other parameters (e.g., station
altitude) as input variables for the NN. The output from the
NNwas a corrected value of UTCI forecast. To train the NN,
we also used theUTCI values derived from themeasurements
at the stations.

To prepare the data for training the NN and using it for
Linear Regression (LR, Goodfellow et al. 2016), we normal-
ized the input and output variables to a range between 0 and 1
using theMinMaxScalermodule from thePython scikit-learn
library (Pedregosa et al. 2011). This normalization process
ensures that all variables have a similar scale, which helps
with the training of NN. Next, we randomly shuffled the data
to remove any temporal sequences and divided it into train-
ing (90%) and test (10%) sets. The training set was used to
train the NN (and LR), while the test set was used to evaluate
its performance once the training had finished.

We used fully-connected feedforward NNs (Goodfellow
et al. 2016) that consisted of several layers of neurons that
are fully connected – namely, all the neurons in one layer
are connected with all the neurons in the previous layer. The
values of neurons in each layer were thus determined from all
the values in the previous layer, while the input parameters
determined the values of the neurons in the input layer. We
implemented the NNs in Python with the TensorFlow library
(Abadi et al. 2016)

The architecture of the NN consisted of an input layer,
three hidden layers, and an output layer. The number of neu-
rons in the input layer varied based on the number of input
parameters, while the hidden layers had 5, 3, and 1 neurons,
respectively. The output layer had only one neuron, whose
value determined the forecasted UTCI value. We also exper-
imented with more complex NN architectures consisting of
many more neurons arranged in more layers but found that
more complex NNs did not perform substantially better. We
used the LeakyReLU activation function (Maas 2013) for the
hidden layers and a linear activation function for the output
layer. The Adam optimizer (Kingma and Ba 2014) and the
MAE loss function were employed during training. The NN
was trained for 100 epochs (testing showed that using more
epochs did not improve the results).

We evaluated the performance of the NN and LR by cal-
culating the ME and MAE for the test set. We trained the
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NN and LR using data from all the stations together (in this
case, we used a batch size of 1000 to speed up the training
process). Additionally, we trained the NN and LR separately
for the nine selected stations to assess their performance on
a per-station basis with a batch size of 100.

To evaluate the performance of various approaches, we
compared the forecasted UTCI values with the observed
UTCI values. This comparison was made for the indepen-
dent test set (which was not used for training the NN or LR)
andwasmade separately for the NN-based forecasts, the LR-
based forecasts, and the non-post-processed ALADIN-based
forecasts of UTCI.

Linear regression

NNs represent a relatively advanced and complex machine-
learning approach.Wealsowanted to assesswhether employ-
ing such a complex approach yields substantial advantages
over a simpler approach. This is why we also used Linear
Regression (LR), which is one of the simplest methods that
can be used to explain a relationship between a chosen depen-
dent variable and one or more explanatory variables. In LR,
the dependent variable can be expressed as a linear combi-
nation of explanatory variables as

Y = b0 + b1X1 + b2X2 + ... + bk Xk, (4)

where Y is the dependent variable while X1, ..., Xk are
the explanatory variables (Darlington and Hayes 2017). In
our case, the explanatory variables are the same normalized
input variables that were also used with the NNs. b0 is the
regression constant, and b1, ..., bk are regression coefficients

(Darlington and Hayes 2017) that are determined using the
least squares method that minimizes the sum of the squared
differences between the expected and predicted outputs (Dar-
lington and Hayes 2017).

The sign and size of a regression coefficient determine
how a particular explanatory variable influences the depen-
dent variable. For example, if the sign of the coefficient is
positive, the dependent variable value will increase when the
explanatory variable value increases, and vice versa. More-
over, if the coefficient’s absolute value is larger, the influence
on the dependent variable will also be larger, which can be
used to determine which explanatory variables will tend to
have a larger influence on the dependent variable.

We used the Python scikit-learn library (Pedregosa et al.
2011) to implement the LR, and we used the same input/output
variables as with the NN.

Results

Verification of ALADIN-based UTCI forecasts

The first goal of this study was to verify operational
ALADIN-based UTCI forecasts for Slovenia. Figure 2a
shows the ME and MAE with respect to the time of the day.
The solid line represents ME, while the dashed line repre-
sents MAE. The daily average ME of the UTCI forecasts is
2.56 ◦C, but its value changes a lot with respect to the time of
the day. For example, at 7 am, the ME is almost 8 ◦C while it
is close to zero in the evening. The average MAE is 5.02 ◦C.
MAEalso has a peak at 7 am, exceeding 8 ◦C,while it is about

Fig. 2 Verification of ALADIN-based UTCI forecasts for all stations
in the seven years that were analyzed (2013–2018 and 2020). (a) ME
and MAE for each hour of the day. (b) The distribution of differences
between the forecasted and observed UTCI values. The median is rep-

resented by the green line within the box, which represents the values
between the 25th and 75th percentiles. The whiskers show the range
from the 10th to 25th percentile and from the 75th to 90th percentile.
The red and blue dots represent the 1st and 99th percentile, respectively
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4 ◦C in the evening. Figure 2b shows the distribution of dif-
ferences between the forecasted and observed UTCI values.
We can note that the median follows the ME course, with
maximal value 6.9 ◦C reached at 07:00 and minimal value -
1.5 ◦C obtained at 17:00. In addition, we can observe that the
interquartile range is larger during the daytime, with a maxi-
mum value of 8.4 ◦C reached at 5:00 and aminimum value of
4 ◦C obtained at midnight. The rather large distance between
the 1st and 99th percentile (red and blue dots) of about 35 ◦C
indicates issues with ALADIN forecasts. For example, in
about 2% of cases, ALADIN overestimates the UTCI value
for more than 20 ◦C, while in about 1% of cases, ALADIN
underestimates the UTCI value for more than 10 ◦C.

The results in Fig. 2 can be compared to those fromNovák
(2021) who tried verifying the ALADIN-based UTCI fore-
casts in the Czech Republic. It is interesting to note that they
got quite different results. For example, they found that the
ALADIN model tended to underestimate the UTCI values

and that the largest error was during the night, while the error
was smaller during the day and the smallest in the mornings
and afternoons. It should also be stressed that the ALADIN
model used in Slovenia (by SEA) is not identical to the
ALADIN model used in the Czech Republic (by the Czech
Hydrometeorological Institute) as the different branches of
the original ALADINmodel have been developed separately
for quite a long time. Nevertheless, it is important to high-
light the differences between the two studies. Novák (2021)
used eleven months of data from a single station, while we
used seven years of data from 42 stations. They also did not
have any radiation measurements available at their station
and used temperatures measured at heights of 2 m and 5 cm
as proxies for Tmrt, while on our stations, measurements of
global solar radiation were available.

Figure 3 shows the results for the nine selected stations.
Kredarica stands out with the highest median with amaximal
median of 18.57 ◦C at 7:00 and a wider spread, where the

Fig. 3 Same as Fig. 2b, but for selected nine stations shown in bold font in Fig. 1. The y-axis of each subfigure has the same range for all stations
from -15 ◦C to 20 ◦C, except for the Kredarica station, which has a range from -10 ◦C to 50 ◦C
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maximal interquartile rangewas 15,85 ◦Cat 10:00. In overall,
we can note that its mean errors tend to be about 10 ◦C larger
than at other stations. Kredarica is a high-altitude station
located at an altitude of about 2500 m. The errors are likely
caused by the difference between the station’s altitude in
the model and the actual altitude of the station. Portorož-
Airport also shows a wider interquartile range in the first
hours, with a maximal value of 10.86 ◦C reached at 5:00.
This wide scatter of the errors is possibly influenced by wind
forecasts or measurement errors near the sea.

The impact of station altitude on the error is evident in
the box plots. To verify this, we categorized stations into
two groups based on altitude: those below or equal to 509
m and those above. The results are shown in Fig. S1 in the
SupplementaryMaterials. For both groups, theME andMAE
errors display a similar dependence on the time of the day
(with the largest errors in the early morning), but the errors
for the low altitude group tend to be 3 to 6 ◦C lower than the
errors of the high altitude group.

An investigation of several cases with exceptionally large
errors (two such examples are shown in the Supplementary
Materials in Section S2) identified several possible causes
for these differences:

• Incorrectly forecasted cloud cover, humidity, and surface
radiation balance: These factors can have an impact on
the calculation of Tmrt, particularly during the morning
hours when the maximum error was observed. Based on
the analysis we performed, it was observed that errors in
Tmrt, and consequently in UTCI, tended to be the largest
during periods when there were rapid changes in these
values, such as during the transition from day to night.

• Incorrectly forecasted wind speed or temperature: Inac-
curate forecasts of wind speed or temperature can also
contribute to errors in the UTCI prediction.

• Large difference between the station’s altitude in the
model and the actual altitude of the station (the station
altitudes are shown in Table S6 in the Supplementary
Materials). This disparity in altitude can substantially
impact the accuracy of radiation forecasts, as the actual
altitude of the stations may deviate from the model’s pre-
dictions.

• Specificmicro-meteorological conditions at the locations
of meteorological stations: Factors such as relief vari-
ability at a scale smaller than the spatial resolution can
influence the accuracy of forecasts. For instance, stations
located within urban heat islands may experience differ-
ences between measured meteorological parameters and
the forecasted values, unlike stations in rural areas with
more natural surroundings and no obstacles (although
we did not observe a substantial urban heat islands effect
since the station at Ljubljana-Bežigrad, which is situated
in an urban environment, had one of the smallest errors).

Proximity to hills or the sea can also have a notable effect
on the model’s ability to predict the UTCI.

• Possible errors in measurements: It should be noted that
the station data from 2014 onward has been quality con-
trolled; however, there is still a possibility of errors being
present in the measurements that could impact the veri-
fication of the forecasts.

• Approximations in determining solar elevation in the
BioKlima model: The method used to determine solar
elevation in BioKlima may involve approximations,
which could influence the results.

• Lack of detailed explanations of calculations in BioK-
lima: The lack of comprehensive explanations regarding
the calculations in BioKlima may pose challenges in
understanding the accuracy and reliability of the veri-
fication.

We also investigated the seasonal dependence of errors.
The results are shown in Fig. S2 in the Supplementary Mate-
rials. All four seasons exhibit the same hourly pattern of
errors, with the error being the largest in the early morning
hours. However, the exact timing, as well as the amplitude
of the error maximum, varies across seasons.

In the summer, the largestMEof8.34 ◦Cwas at 5:00,while
in the autumn, the largest ME of 8.18 ◦Cwas at 7:00. For the
winter, we observed the largest ME of 10.3 ◦C at 8:00, which
was the largest ME of all seasons. During the spring, the ME
peaked with 8.9 ◦C at 6:00. The timing of the error peak is
probably linked to the time of sunrise, which comes later in
the winter than it does in the summer – this is why the error
peak in winter happens a few hours later than in the summer.
A similar conclusion can also be reached for the MAE error.
Generally, both errors tend to be the largest in winter and the
smallest in summer. This result is somewhat surprising as
we had anticipated larger errors during the summer when the
model might encounter challenges in forecasting cloudiness
due to convection. Previous analyses revealed the sensitiv-
ity of the UTCI to wind speed values, suggesting that the
higher errors during winter may be attributed to differences
in forecasted and measured wind speeds. The model might
also have problems successfully forecasting a relatively thin
radiation fog near the surface, which frequently develops in
many regions in Slovenia during the night, especially in win-
ter. Such fog affects how fast the temperature increases in the
morning and also affects the amount of radiation that reaches
the ground. Many regions in Slovenia are also affected by
downslope mountain winds and cold-air pools, which fre-
quently form during the night in complex terrain. Since these
phenomena can be small and relatively shallow, they might
not be forecasted correctly by the model, which could result
in the temperature increasing too fast in the forecast in the
morning.
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Post-processing of UTCI forecasts

Post-processing the combined data from all the stations

The second goal of this study was to try to improve the
ALADIN-based operational UTCI forecasts by using post-
processing with LR and NN.

First, wewanted to try to obtain a singleNN andLRmodel
that could be used for post-processing on all the stations.
Thus, we used the combined data from all 42 stations to train
the NN and obtain the optimal LR coefficients.

We first tried to identify the relationship between different
meteorological parameters and UTCI values by calculating
correlation coefficients (not shown). Based on these findings,
we prepared six different setups with different sets of input
parameters that were used as predictors by the LR and NN
(a detailed description of the setups is provided in Table S1
in the Supplementary Materials). Since the initial values of
the weights in the NN are determined randomly, each train-
ing realization of the NN can produce a somewhat different
NN. This is why we performed the NN training three times
for each setup and selected the training realization with the
smallest MAE error.

The performance of LR and NN for all six setups is shown
in Fig. 4. This visual representation provides insights into the
effectiveness of the post-processing methods for improving
the accuracy of ALADIN-based UTCI forecasts. Numerical
values of daily mean ME and MAE errors for each setup are
given in the Supplementary Materials in Table S2.

From the graphs in Fig. 4, it is evident that both meth-
ods successfully improve the ALADIN forecast of UTCI in
all six setups, resulting in smaller ME and MAE errors. For
example, the ME and MAE errors of the uncorrected fore-
casts for the test set were 2.57 ◦C and 5.02 ◦C, respectively.
On the other hand, the ME for the LR was zero for all six
setups and theMAEwas between 3.47 ◦C and 4.15 ◦C, while
the ME for the NN was between 0.15 ◦C and 1.18 ◦C and the
MAE between 3.03 ◦C and 3.77 ◦C.

Both methods, especially the NN, also substantially
reduce the dependence of the error on the time of the day. For
the NN, the forecasts of UTCI in the morning tend to be as
accurate as those in the afternoon or night. The same could
be said for the MAE error of LR, while its ME does exhibit
some hourly dependence with overestimation in the first half
of the day and underestimation in the second half.

According to the daily average values of ME and MAE
(shown in the Supplementary Materials in Table S2), the NN
method outperforms the LR method in terms of MAE, while
the LR method tends to have a bit better ME. However, even
though the daily average ME for the LR method is almost
zero for all setups, LR exhibits a pronounced dependence of
ME on the time of the day, which is not present in the case
of NN.

The best results for both methods were obtained with
Setup5,whichuses the following input parameters:ALADIN
UTCI forecast, the hour of the day, forecasted air temper-
ature, forecasted relative humidity, forecasted wind speed,
forecasted Tmrt, station altitude, and the altitude of the sta-
tion in themodel. In this case, the daily averageMEandMAE
errors for LR were 0.00 ◦C and 3.47 ◦C, respectively, and for
NN they were 0.15 ◦C and 3.03 ◦C, while the errors for the
uncorrected ALADIN forecasts were 2.57 ◦C and 5.02 ◦C.
This means that both post-processing methods reduced the
ME from about 2.6 ◦C to almost zero, while the mean abso-
lute error decreased from 5 ◦C to 3 ◦C for the NN and 3.5 ◦C
for the LR. Interestingly, including station altitude andmodel
altitude as input parameters yielded better results than using
only the difference between these two quantities (this is the
only difference between setups 1 and 5).

Analysis of the LR coefficients (shown in the Supplemen-
tary Materials in Table S3) revealed that the parameters that
have the largest influence on the resulting UTCI value in the
LR are the uncorrected ALADIN forecast of UTCI and fore-
casted air temperature. The coefficients for forecasted Tmrt

are negative, with values around -0.15. The coefficients for
forecasts of cloudiness, relative humidity, wind speed, and
the hour of the day are all close to zero. The same is true for
the difference between the model and station altitude, while
the coefficients for the station and model altitudes tend to be
around -0.25 and 0.15, respectively, indicating that the LR
uses them.

Figure 5 shows the distribution of differences between
the forecasted and observed UTCI values for Setup 5. In
addition tomoving themedian value of the differences closer
to zero, both LR and NN also manage to reduce the spread
of differences. For example, the mean distance between the
25th and 75th percentile reduces from 6.1 ◦C to 5.0 ◦C (LR)
and 4.2 ◦C (NN), the distance between the 10th and 90th
percentile reduces from 13.4 ◦C to 10.5 ◦C (LR) and 9.2 ◦C
(NN), while the distance between the 1st and 99th percentile
reduces from 33.5 ◦C to 25.3 ◦C (LR) and 23.8 ◦C (NN).

Post-processing the data from individual stations

In “Post-processing the combined data from all the stations”,
we tried to obtain a single NN and LRmodel that wouldwork
well for all 42 stations. Here, we tried a different approach by
training/optimizing theNNandLRmodels on data from each
of the nine selected stations separately, thereby obtaining a
different NN and LR model for each station. The goal was
to see how well the post-processing methods perform when
optimized and used on data from individual stations.

We used the same input parameters as in Setup 5 (which
performed the best with combined data from all the stations)
but excluded the station altitude and the station’s altitude in
the model since these are constant for a specific station. As
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Fig. 4 The values of ME and MAE with respect to the hour of the day
for all stations for the test set for the six different setups (see Table S1
in the Supplementary Materials for details). From (a) to (f), setups 1, 2,
3, 4, 5, and 6, respectively. The ME is depicted as a solid line and MAE
as a dashed line. The results for LR are represented in blue, NN in red,

while the results for the uncorrected ALADIN forecasts are shown in
green color. The circles on the right side of each graph show the daily
average ME and MAE values, which are also shown in Table S2 in the
Supplementary Materials

before, we trained the NN for each station three times and
selected the network with the lowest MAE. The results for
all nine stations are depicted in Fig. 6, with the numerical
values of daily average ME and MAE errors provided in the
Supplementary Materials in Table S4.

From the graphs in Fig. 6, it is evident that both methods
yield better results and smaller errors compared to uncor-
rected ALADIN forecasts for all nine selected stations. For

example, for NN the ME reduction was between 0.65 ◦C and
12.68 ◦C,while theMAE reductionwas between 1.57 ◦C and
7.27 ◦C. For LR the ME reduction was between 0.57 ◦C and
12.78 ◦C,while theMAE reductionwas between 1.26 ◦C and
7.11 ◦C.

Similarly to the analysis done for all 42 stations, NN
outperforms the LR in terms of MAE, while LR has a bit
better daily averageME (0.00 ◦C vs. 0.16 ◦C, when averaged
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Fig. 5 The distribution of differences between the forecasted and observed UTCI values for the data from all the stations evaluated for the test set.
Results for Setup 5 are shown. (a) the uncorrected forecasts. (b) the forecasts post-processed by LR. (c) the forecasts post-processed by NN

over the results for all six stations), although both methods
have ME close to zero. Interestingly, in terms of MAE, both
NN and LR substantially improve the forecasts in the morn-
ing hours (when the errors of the uncorrected forecasts are
the largest), while during the afternoon and the night, the
MAE improves only slightly. Consequently, after the post-
processing, the largest MAE error for most stations is in the

afternoon and not in the morning, as is the case for uncor-
rected forecasts.

The station on Kredarica is a special case. As already
mentioned, this is a high-altitude station located at an alti-
tude of approximately 2500 m. The errors of the uncorrected
forecasts are the largest at this station (ME = 12.76 ◦C,
MAE = 14.55 ◦C), and while both NN and LR substan-

Fig. 6 Same as Fig. 4, but for the post-processing done separately on the data from each of the nine selected stations shown with bold font in Fig. 1.
Setup 5 was used for all the stations
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tially improve the forecasts, with ME being close to zero
for both methods, the MAE error nevertheless remains large
compared to the other stations (i.e., 7.28 ◦C and 7.44 ◦C, for
the NN and LR, respectively). Contrary to other stations,
the two methods successfully reduce the MAE errors for all
hours of the day, and the error does not exhibit dependence
on the time of the day.

On the other hand, out of the nine stations, the best results
(lowest MAE) are observed for the Ljubljana-Bežigrad sta-
tion, with MAE reduced from 3.75 ◦C to 1.86 ◦C for NN and
2.10 ◦C for LR.

Similarly to the analysis of the data from all stations,
analysis of the size of LR coefficients (shown in the Supple-
mentary Materials in Table S5) revealed that the parameters
that have the largest influence on the resulting UTCI value in
the LR, are the uncorrected ALADIN forecast of UTCI and
the forecasted air temperature. The values of coefficients for
other parameters tend to be close to zero.

We also analyzed the distribution of differences between
the forecasted and observed UTCI values at three stations:
Kredarica, Ljubljana-Bežigrad, and Portorož Airport. The
results are shown in the Supplementary Materials in Fig. S3.

For the Kredarica station, which is a high-altitude station
with the largest errors, the LR and NN managed to move
the median value of the differences closer to zero but were
unable to reduce the spread of differences. For example, in the
uncorrected forecasts, the mean distances between the 25th-
75th, 10th-90th, and 1st-99th percentileswere approximately
14 ◦C, 25 ◦C, and 44 ◦C, respectively, and LR and NN could
not reduce these for more than 2 ◦C.

On the other hand, for the Ljubljana-Bežigrad and Por-
torož Airport stations, the post-processingmethods managed
to move the median value of the differences closer to
zero and reduce the spread of differences. For example, at
the Ljubljana-Bežigrad station, mean distances between the
25th-75th, 10th-90th, and 1st-99th percentiles were 4.1 ◦C,
8.2 ◦C, and 16.4 ◦C, respectively. The LRmanaged to reduce
these to 3.2 ◦C, 6.2 ◦C, and 12.9 ◦C, and the NN to 2.7 ◦C,
5.8 ◦C, and 12.6 ◦C.

Discussion and conclusions

The goals of the study were to analyze errors in the opera-
tional forecasts of outdoor UTCI in Slovenia and to improve
these forecasts by using post-processing.

The verification of the UTCI forecasts showed that the
average ME and MAE errors were typically a few degrees
Celsius (about 2.6 ◦C and 5 ◦C, respectively) but depended
greatly on the time of the day and were the largest in the
morning. There was also a prominent influence of the alti-

tude – namely, the errors were markedly larger at the stations
at higher altitudes. Moreover, the errors also exhibited a
pronounced seasonal dependency, with the largest errors in
winter and the smallest in summer. There were also some sit-
uations with very large errors (e.g., > 20 ◦C), which can be
caused, for example, by incorrectly forecasted meteorologi-
cal parameters that strongly influence the UTCI, like cloud
cover, temperature, and wind.

Post-processing by NNs or LR substantially improved the
accuracy of the UTCI forecasts. Both methods, especially
the NNs, also substantially reduced the dependence of the
error on the time of the day. Generally, NNs outperformed
the LR method, but the difference between the two was not
very large, which was surprising since we expected NNs to
be substantially better than LR. The NNs we used were rel-
atively simple, and we also tried to use more complex NNs,
but they did not perform substantially better. It seems that
the simple NNs already managed to correct the most obvi-
ous errors that frequently occur in the forecasts, while even
the more complex NNs could not help much with the more
complicated errors that might occur due to specific weather
situations being substantially misdiagnosed in the forecasts.

Overall, the study provides important insights into the typ-
ical sizes and properties of errors of operational forecasts of
outdoor UTCI and how these forecasts can be post-processed
to increase accuracy. Although the study was based on data
from a relatively small geographical region, the substantial
number of stations used in the analysis, the relatively long
analysis period of 7 years, the large climate variability and
complex orography of Slovenia make the results more gener-
ally relevant. Moreover, the radiation measurements taken at
the stations enhance the accuracy of estimating Tmrt, thereby
making the estimation of the true UTCI and the forecast error
more reliable. The two presented post-processing approaches
show clear benefits by substantially increasing the accuracy
of the UTCI forecasts and could also be used in other parts
of the world. Their use could improve the accuracy of UTCI
forecasts and thus helpwith earlywarningof extremeweather
events related to thermal stress.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00484-024-02640-
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meteo.arso.gov.si/uploads/probase/www/sproduct/biomet/
bulletin/sl/biovreme/. Accesed 17 Aug 2022

Błażejczyk K (2005) New indices to assess thermal risks out-
doors. Environmental Ergonomics XI, Proc of the 11th Inter-
national Conference. https://lucris.lub.lu.se/ws/portalfiles/portal/
96090083/ProceedingsICEE2005.pdf#page=222

Błażejczyk K (2017) Bioklima - universal tool for bioclimatic and
thermophysiological studies. https://www.igipz.pan.pl/Bioklima-
zgik.html. Accesed 17 Aug 2022

Błażejczyk K, Kuchcik M (2021) UTCI applications in practice
(methodological questions). Geogr Pol 94. https://doi.org/10.
7163/GPol.0198

Błażejczyk A, Błażejczyk K, Baranowski J et al (2018) Heat stress
mortality and desired adaptation responses of healthcare system
in Poland. Int J Biometeorol 62. https://doi.org/10.1007/s00484-
017-1423-0

BłażejczykK, IdzikowskaD, BłażejczykA (2013) Forecast changes for
heat and cold stress in Warsaw in the 21st century, and their possi-
ble influence on mortality risk. Papers on Global Change IGBP
20(1). https://doi.org/10.2478/igbp-2013-0002. http://journals.
pan.pl/dlibra/publication/113805/edition/98863/content

Błażejczyk K, Kuchcik M, Błażejczyk A, et al (2014) Assessment of
urban thermal stress by UTCI - experimental and modelling stud-
ies: an example from Poland. Erde 145. https://doi.org/10.12854/
erde-145-3

Błażejczyk K, Matzarakis A (2007) Assessment of bioclimatic differ-
entiation of poland based on the human heat balance. Geogr Pol
80

Brecht B, Schädler G, Schipper J (2020) Utci climatology and its future
change in germany - an rcm ensemble approach. Meteorol Z 29.
https://doi.org/10.1127/metz/2020/1010

Bröde P, Fiala D, Błażejczyk K et al (2012) Deriving the opera-
tional procedure for the Universal Thermal Climate Index (UTCI).
Int JBiometeorol 56(3):481–494. https://doi.org/10.1007/s00484-
011-0454-1. http://link.springer.com/10.1007/s00484-011-0454-
1

Bröde P, Błażejczyk K, Fiala D et al (2013) The Universal Thermal Cli-
mate Index UTCI compared to ergonomics standards for assessing
the thermal environment. Ind Health 51. https://doi.org/10.2486/
indhealth.2012-0098

CzarneckaM,Ma̧kosza A, Nidzgorska-Lencewicz J, (2011) Variability
of meteorological elements shaping biometeorological conditions
in Szczecin, Poland. Theor Appl Climatol 104(1–2):101–110.

https://doi.org/10.1007/s00704-010-0326-3. http://link.springer.
com/10.1007/s00704-010-0326-3

Darlington RB, Hayes AF (2017) Regression analysis and linear mod-
els: concepts, applications, and implementation. The Guilford
Press, New York, USA

Di Napoli C, Pappenberger F, Cloke HL (2018) Assessing heat-
related health risk in Europe via the Universal Thermal
Climate Index (UTCI). Int J Biometeorol 62(7):1155–1165.
https://doi.org/10.1007/s00484-018-1518-2. http://link.springer.
com/10.1007/s00484-018-1518-2

Di Napoli C, Hogan RJ, Pappenberger F (2020) Mean radiant tem-
perature from global-scale numerical weather prediction mod-
els. Int J Biometeorol 64(7):1233–1245. https://doi.org/10.1007/
s00484-020-01900-5. http://link.springer.com/10.1007/s00484-
020-01900-5

Di Napoli C, Messeri A, Novák M, et al (2021a) The universal ther-
mal climate index as an operational forecasting tool of human
biometeorological conditions in Europe. In: Applications of the
universal thermal climate indexUTCI inBiometeorology. Springer
International Publishing, Cham, p 193–208. https://doi.org/10.
1007/978-3-030-76716-7_10. https://link.springer.com/10.1007/
978-3-030-76716-7_10

DiNapoli C, Barnard C, PrudhommeC et al (2021b) Era5-heat: a global
gridded historical dataset of human thermal comfort indices from
climate reanalysis. Geosci J 8. https://doi.org/10.1002/gdj3.102

Eggeling J, Rydenfält C, Kingma B et al (2022) The usability
of ClimApp: a personalized thermal stress warning tool. Clim
Serv 27(100):310. https://doi.org/10.1016/j.cliser.2022.100310.
https://linkinghub.elsevier.com/retrieve/pii/S2405880722000280

Emerton R, Brimicombe C, Magnusson L et al (2022) Predicting the
unprecedented: forecasting the June 2021 Pacific Northwest heat-
wave. Weather 77(8):272–279. https://doi.org/10.1002/wea.4257.
https://rmets.onlinelibrary.wiley.com/doi/10.1002/wea.4257

Fiala D, Havenith G, Brode P et al (2012) UTCI- Fiala multi-node
model of human heat transfer and temperature regulation. Int J
Biometeorol 56. https://doi.org/10.1007/s00484-011-0424-7

Folkerts M, Boshuizen A, Gosselink G et al (2021) Predicted and user
perceived heat strain using theClimAppmobile tool for individual-
ized alert and advice. Clim Risk Manag 34(100):381. https://doi.
org/10.1016/j.crm.2021.100381. https://linkinghub.elsevier.com/
retrieve/pii/S2212096321001108

Głogowski A, Brys K, Perona P (2020) Bioclimatic conditions of the
lower silesia region (South-West Poland) from 1966 to 2017. Int J
Biometeorol 65. https://doi.org/10.1007/s00484-020-01970-5

Goodfellow I, BengioY, Courville A (2016) Deep Learning.MIT Press.
http://www.deeplearningbook.org

IMGW-PIB (2015) Prognoza biometeorologiczna dla polski. https://
biometeo.imgw.pl/?page=BIOMET. Accesed 17 Aug 2022

IPMA (2022) UTCI (Universal Thermal Climate Index) às 00UTC.
https://www.ipma.pt/pt/oclima/biometeo/utci/. Accesed 17 Aug
2022

Kingma BRM, Steenhoff H, Toftum J et al (2021) ClimApp-integrating
personal factors with weather forecasts for individualised warning
and guidance on thermal stress. Int J Environ Res Public Health
18(21):11317. https://doi.org/10.3390/ijerph182111317. https://
www.mdpi.com/1660-4601/18/21/11317

Kingma BRM, Steenhoff H, Toftum J et al (2021) ClimApp-integrating
personal factors with weather forecasts for individualised warning
and guidance on thermal stress. Int J Environ Res Public Health
18(21):11317. https://doi.org/10.3390/ijerph182111317. https://
www.mdpi.com/1660-4601/18/21/11317

Kozjek K, DolinarM, Skok G (2017) Climate classification of slovenia.
Int J Climatol. https://doi.org/10.1002/joc.5042

Krüger E (2017) Impact of site-specificmorphology on outdoor thermal
perception: a case-study in a subtropical location. Urban Clim 21.
https://doi.org/10.1016/j.uclim.2017.06.001

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://meteo.arso.gov.si/uploads/probase/www/sproduct/biomet/bulletin/sl/biovreme/
https://meteo.arso.gov.si/uploads/probase/www/sproduct/biomet/bulletin/sl/biovreme/
https://meteo.arso.gov.si/uploads/probase/www/sproduct/biomet/bulletin/sl/biovreme/
https://lucris.lub.lu.se/ws/portalfiles/portal/96090083/ProceedingsICEE2005.pdf#page=222
https://lucris.lub.lu.se/ws/portalfiles/portal/96090083/ProceedingsICEE2005.pdf#page=222
https://www.igipz.pan.pl/Bioklima-zgik.html
https://www.igipz.pan.pl/Bioklima-zgik.html
https://doi.org/10.7163/GPol.0198
https://doi.org/10.7163/GPol.0198
https://doi.org/10.1007/s00484-017-1423-0
https://doi.org/10.1007/s00484-017-1423-0
https://doi.org/10.2478/igbp-2013-0002
http://journals.pan.pl/dlibra/publication/113805/edition/98863/content
http://journals.pan.pl/dlibra/publication/113805/edition/98863/content
https://doi.org/10.12854/erde-145-3
https://doi.org/10.12854/erde-145-3
https://doi.org/10.1127/metz/2020/1010
https://doi.org/10.1007/s00484-011-0454-1
https://doi.org/10.1007/s00484-011-0454-1
http://link.springer.com/10.1007/s00484-011-0454-1
http://link.springer.com/10.1007/s00484-011-0454-1
https://doi.org/10.2486/indhealth.2012-0098
https://doi.org/10.2486/indhealth.2012-0098
https://doi.org/10.1007/s00704-010-0326-3
http://link.springer.com/10.1007/s00704-010-0326-3
http://link.springer.com/10.1007/s00704-010-0326-3
https://doi.org/10.1007/s00484-018-1518-2
http://link.springer.com/10.1007/s00484-018-1518-2
http://link.springer.com/10.1007/s00484-018-1518-2
https://doi.org/10.1007/s00484-020-01900-5
https://doi.org/10.1007/s00484-020-01900-5
http://link.springer.com/10.1007/s00484-020-01900-5
http://link.springer.com/10.1007/s00484-020-01900-5
https://doi.org/10.1007/978-3-030-76716-7_10
https://doi.org/10.1007/978-3-030-76716-7_10
https://link.springer.com/10.1007/978-3-030-76716-7_10
https://link.springer.com/10.1007/978-3-030-76716-7_10
https://doi.org/10.1002/gdj3.102
https://doi.org/10.1016/j.cliser.2022.100310
https://linkinghub.elsevier.com/retrieve/pii/S2405880722000280
https://doi.org/10.1002/wea.4257
https://rmets.onlinelibrary.wiley.com/doi/10.1002/wea.4257
https://doi.org/10.1007/s00484-011-0424-7
https://doi.org/10.1016/j.crm.2021.100381
https://doi.org/10.1016/j.crm.2021.100381
https://linkinghub.elsevier.com/retrieve/pii/S2212096321001108
https://linkinghub.elsevier.com/retrieve/pii/S2212096321001108
https://doi.org/10.1007/s00484-020-01970-5
http://www.deeplearningbook.org
https://biometeo.imgw.pl/?page=BIOMET
https://biometeo.imgw.pl/?page=BIOMET
https://www.ipma.pt/pt/oclima/biometeo/utci/
https://doi.org/10.3390/ijerph182111317
https://www.mdpi.com/1660-4601/18/21/11317
https://www.mdpi.com/1660-4601/18/21/11317
https://doi.org/10.3390/ijerph182111317
https://www.mdpi.com/1660-4601/18/21/11317
https://www.mdpi.com/1660-4601/18/21/11317
https://doi.org/10.1002/joc.5042
https://doi.org/10.1016/j.uclim.2017.06.001


International Journal of Biometeorology (2024) 68:965–977 977
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Romaszko J, Cymes I, Dragańska E et al (2017) Mortality among the
homeless: causes andmeteorological relationships. PLoSONE12.
https://doi.org/10.1371/journal.pone.0189938

Rozbicki T, RozbickaK (2018) Variability of UTCI index in SouthWar-
saw depending on atmospheric circulation. Theor Appl Climatol
133. https://doi.org/10.1007/s00704-017-2201-y

SchultzMG, Betancourt C, Gong B, et al (2021) Can deep learning beat
numerical weather prediction? https://doi.org/10.1098/rsta.2020.
0097. https://doi.org/10.1098/rsta.2020.0097
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