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Abstract
To adapt to Earth’s rapidly changing climate, detailed modelling of thermal stress is needed. Dangerous stress levels are
becoming more frequent, longer, and more severe. While traditional measurements of thermal stress have focused on air tem-
perature and humidity, modern measures including radiation and wind speed are becoming widespread. However, projecting
such indices has presented a challenging problem, due to the need for appropriate bias correction of multiple variables that
vary on hourly timescales. In this paper, we aim to provide a detailed understanding of changing thermal stress patterns incor-
porating modern measurements, bias correction techniques, and hourly projections to assess the impact of climate change on
thermal stress at human scales. To achieve these aims, we conduct a case study of projected thermal stress in central Hobart,
Australia for 2040–2059, compared to the historical period 1990–2005. We present the first hourly metre-scale projections
of thermal stress driven by multivariate bias-corrected data. We bias correct four variables from six dynamically downscaled
General CirculationModels. These outputs drive the Solar and LongWave Environmental Irradiance Geometrymodel at metre
scale, calculating mean radiant temperature and the Universal Thermal Climate Index. We demonstrate that multivariate bias
correction can correct means on multiple time scales while accurately preserving mean seasonal trends. Changes in mean air
temperature and UTCI by hour of the day and month of the year reveal diurnal and annual patterns in both temporal trends
and model agreement. We present plots of future median stress values in the context of historical percentiles, revealing trends
and patterns not evident in mean data. Our modelling illustrates a future Hobart that experiences higher and more consistent
numbers of hours of heat stress arriving earlier in the year and extending further throughout the day.

Keywords Bioclimatology · Thermal stress · Multivariate bias correction

Introduction

Thermal stress is a global challenge. Rising temperatures and
shifting climatologies driven by climate change are increas-
ing heat stress and decreasing cold stress conditions, and
could render some regions too hot for human habitation by
2100 (Di Napoli et al. 2023; Antonescu et al. 2021; Coffel
et al. 2018; Lorenz et al. 2019). While research asserts that
reductions in cold stress are unlikely to meaningfully impact
mortality, dramatic increases in the number of mortalities
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from heat stress are expected (Ebi and Mills 2013; Gaspar-
rini et al. 2017; Staddon et al. 2014; Kinney et al. 2015;
Matthews et al. 2017). Across Australia heat wave days are
expected to at least double by 2100, and increase by at least
sixfold along the populous east coast (Nishant et al. 2022).
To best prepare for and adapt to these challenges, projections
of thermal stress that account for regional climate change and
the impacts of local geography are needed.

Human thermal stress is driven by four meteorologi-
cal factors: air temperature, relative humidity, wind speed,
and mean radiant temperature (Tmrt) (Höppe 1999). Histori-
cally, measurements of thermal stress have generally avoided
accounting for Tmrt due to challenges of measurement and
modelling Kántor and Unger (2011). Tmrt measures the sum
of short (λ=0.3–3 μm) and long wave (λ=3–100 μm) radi-
ation load on a person at a specific location and time, and
assigns a temperature in Kelvin or Celsius to this load. This
is the temperature of a black body sphere enclosing a per-
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son that would provide the same radiation load as measured
in the environment (Kántor and Unger 2011). Tmrt may
range from above 80◦C to below −20◦C. Shading effects
in strong sunshine can reduce Tmrt values by 30◦C or more
(Crank et al. 2020; Acero et al. 2021; Middel and Krayen-
hoff 2019; Thorsson et al. 2014).Advances inmodelling have
seen the emergence and adoption of thermal stress metrics
encompassing all four meteorological variables, such as the
Universal Thermal Climate Index (UTCI) and Physiologi-
cally Equivalent Temperature (PET), which have shown a
potential to improve the identification of dangerous thermal
conditions compared to simpler metrics (Błażejczyk et al.
2013; Höppe 1999; Di Napoli et al. 2019). In this paper, we
use the UTCI, which considers a set of meteorological con-
ditions, models how an idealised human walking at 4km h−1

would respond, and determines an equivalent air temperature
under still, cloudy conditions (Błażejczyk et al. 2013).

Thermal stress has been projected using a variety of data
sources, at multiple spatial and temporal scales (Petersson
et al. 2019). Many projections have been performed using
daily statistics or restricted variables, without accounting
for the impacts of radiation. For example, Casanueva et al.
(2019), Coffel et al. (2018); Schwingshackl et al. (2021) all
projectedWet Bulb Globe Temperature (WBGT) using daily
temperature maxima, and daily mean humidity. These are
robust methods at daily frequencies, but heat stress can have
serious health impacts in less than an hour, and the four
meteorological variables that contribute to heat stress can
vary significantly on hourly timescales (Bernard and Ash-
ley 2009). Such impacts are observed during sport, where
exertion and clothing can play a role Smith et al. (2018);
Costa et al. (2020); Armstrong et al. (2010). Hourly calcu-
lations of thermal stress can therefore provide assessments
of heat impacts more relevant to human physiology. Var-
gas Zeppetello et al. (2022) highlighted this, projecting Heat
Index (HI) values using daily maximum temperature and
monthly mean specific humidity, commenting that future
work should consider more detailed variations in humidity,
given its impact on heat stress. Hourly calculations also allow
formore nuanced decision-making around activity safety and
precautions at different times of day.

Thermal stress projections informed by radiation at hourly
time scales have been performed, but often at very coarse
spatial scale (e.g., kilometre grid cell size) (Paranunzio et al.
2021; Brecht et al. 2020; Katavoutas et al. 2022; Bal and
Kirchner 2023).While thesemethods are robust at their scale,
they cannot account for variations in thermal stress driven by
fine-scale objects, while conditions can change from safe to
dangerous at metre scale (Weeding et al. 2023). The first pro-
jections to address the limitations imposed by the relatively
coarse temporal and spatial scale in previous models were
published by Thorsson et al. (2011). The projections were

calculated at hour andmetre scale, using a historical analogue
technique due to the requirement for “realistic,multi-variable
climate inputs at sub-daily time resolution” (Thorsson et al.
2011, pg. 327) at a time when the first multivariate bias cor-
rection techniques were still under development. However,
the use of an analogue technique rather than bias correction
meant their projections could not contain conditions more
extreme than historically recorded. Citing this issue, Rayner
et al. (2015) developed a change factor technique using com-
parisons of ranked daily statistics to derive hourly change
factors. This technique is in current use, but as Rayner et al.
(2015) notes, it assumes that proportional changes to solar
radiation under climate change will be consistent through-
out the day and that change factors can be independently
applied to temperature and radiation without consideration
of relationships between the variables (Thorsson et al. 2017;
Wallenberg et al. 2023). Such relationships can have a signif-
icant influence when calculating an index such as the UTCI,
based on four variables, each with cyclical and stochastic
influences. Bias correcting the individual variables of a com-
pound metric without accounting for relationships between
the variables can increase biases and should be avoided
Zscheischler et al. (2019).

This study aims to provide a detailed understanding of
changing thermal stress patterns incorporating modern mea-
surements, bias correction techniques, and hourly projections
to assess the impact of climate change on thermal stress at
human scales. To achieve these aims, we present a case study
of central Hobart, Australia, modelled at metre scale on an
hourly basis for the years 2040–2059 under Representative
Concentration Pathway (RCP) 8.5. Projections of meteorol-
ogy were taken from six dynamically downscaled models at
5 km scale. Data at 1.5 km scale from the Bureau of Meteo-
rology Atmospheric high-resolution Regional Reanalysis for
Australia-Tasmania (BARRA-TA) from 1990 to 2005 was
used to apply a multivariate bias correction to the projections
(Su et al. 2021). To calculate UTCI values, Tmrt values were
first generated from the described projections at metre scale
using the SOlar and LongWave Environmental Irradiance
Geometry model (SOLWEIG) (Lindberg et al. 2008). UTCI
values were then calculated using the thermofeel Python
package (Brimicombe et al. 2022). The impacts of bias cor-
rection were analysed by hour of day and week of year and
for conservation of seasonal temperature trends. Projected
changes to air temperature and UTCI were analysed by hour
of day and month of year simultaneously, before changes to
the 5th, 50th, and 95th percentiles of maximum andminimum
UTCI by hour were explored. Mean hours of any heat or cold
stress were inspected by month of the year and hour of the
day, followed by an analysis of cumulative strong and very
strong heat stress hours for annual periods beginning with
winter.
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Data andmethods

Site details and climate

This study took place in Hobart, Australia (Fig. 1a). Hobart
has a temperate oceanic climate (Cfb), with a mean rainfall
of 565.3 mm, a mean maximum temperature of 17.6◦C and
a mean minimum of 9.0◦C. The warmest weather occurs in
January with a mean maximum of 22.7◦C, while the coldest
occurs in July with a mean minimum of 5.2◦C (Beck et al.
2018; Bureau of Meteorology 2023). These comparatively
dry and mild conditions for Tasmania are due to the city’s
eastern estuarine location and the westerly shelter provided
by kunanyi/Mt Wellington (1271 m)(Fig. 1b). Northwest-
erly winds are predominant year-round, interrupted by cool
southeasterly afternoon sea breezes inwarmermonths.Warm
summer conditions are subject to rapid changes, due to pass-
ing cold fronts between high-pressure systems. Hobart has
experienced relatively slow climate change for Australia—
from 1940 to 2007, Hobart’s annual mean temperature
increased by 0.1◦C per decade, and the annual maximum
and minimum temperatures increased by 0.08◦C and 0.11◦C
per decade respectively (Corney et al. 2010; Campbell et al.
2019; Bureau of Meteorology 2023; Weeding et al. 2023).

In this study, we used the same central Hobart site as
in Weeding et al. (2023). The site comprises a 150 m ×
150 m square centred on the Elizabeth and Macquarie street

intersection (Fig. 1). Hobart has global, national, and local
relevance, as Tasmania has been identified as a favourable
migration centre under catastrophic climate change, and
is already seeing climate-driven migration from mainland
Australia (King and Jones 2021; Osbaldiston et al. 2020;
Osbaldiston 2022). The site contains hard-surfaced open
areas, a vegetated park, and an urban canyon-oriented NW-
SE. We generated a height raster of the site from publicly
available lidar data in point cloud form (LandTasmania 2015,
2018). Using the method described in the Urban Multi-scale
Environmental Predictor (UMEP) manual (Lindberg et al.
2020, 2018), the following raster layers were produced at
1 m scale: (i) a digital elevation model (DEM) containing
ground elevations, (ii) a digital surface model (DSM) con-
taining building and ground elevations, and (iii) a canopy
height model (CHM) containing vegetation elevations.

Data sources

Historical simulations and projections ofmeteorological data
were taken from six General Circulation Models (GCMs),
modelled under Representative Concentration Pathway (RCP)
8.5 and dynamically downscaled to 5 km by the University of
Tasmania and the Victorian Climate Projections 2019 project
(Harris et al. 2020; Clarke et al. 2019) (Table S1). Six models
were chosen to represent the range of warming seen for Aus-
tralia in the CoupledModel Intercomparison Project (CMIP)

Fig. 1 a Hobart’s location in
regional context, b the study site
in local context, c 150 m ×
150 m study site outlined in red,
with open and shaded sub-sites
highlighted - Hobart, Tasmania
(42.883◦S 147.330◦E), d the
site shown with a transparent
overlay of the digital surface and
canopy models (Google 2023;
OpenStreetMap Contributors
2023; Microsoft 2023)
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5.Dynamical downscalingwas performed using theCSIRO’s
Conformal Cubic Atmospheric Model (CCAM) (McGregor
andDix2008). It shouldbenoted thatCCAMwas runwithout
ocean feedbackmechanisms being accounted for, but that the
Urban Climate and Energy Model (UCLEM) was included,
which ensures macro-urban climate phenomena are captured
in the modelling (Lipson et al. 2018). We selected historical
outputs from1990 through2005 to overlapwithBARRA-TA,
andprojectedoutputs for 2040 through2059. Importantly, the
BARRA-TA reanalysis contains nearby urban station data.
The four meteorological variables required to calculate the
UTCI were extracted from the models from the grid cell con-
taining our study site (Table S2).

Bias correcting

Climate models display biases when compared to obser-
vations, and therefore undergo bias correction to improve
projections.Model values are altered to align statistical prop-
erties of model outputs with corresponding observations
(François et al. 2020). Bias corrections have generally been
performed on individual variables in isolation, but attempts to
projectmultivariate indices such as theUTCI have shown that
combining multiple variables that have been bias-corrected
in isolation can lead to physically inconsistent results. This
has led to the development of multivariate bias correction
techniques, which adjust model values to align statistical
properties of individual variables with observations while
accounting for the relationships present between observed
variables.

In this study, we applied a diurnal version of Cannon’s
N-dimensional multivariate bias correction (MBCn) process
2018, guided by the work of Faghih et al. (2022). The aim
of MBCn is to correct the variables while replicating the
relationships between them. This first entailed the individ-
ual bias correction of each of the four variables (Table S2)
using Quantile Delta Mapping (QDM) (Cannon et al. 2015).
Variables were grouped by both hour of the day and week
of the year. Weeks 52 and 53 were combined to increase the
number of data points in the associated groups. Adjustments
were multiplicative for all variables. Strong annual cycles
present in downward shortwave radiation data in combina-
tion with varied amounts of cloud between the reanalysis
and model outputs occasionally resulted in the calculation of
invalid adjustment factors, driven by the presence of zeros
in a set of model outputs and not in the reanalysis, or vice
versa. Therefore, any infinite adjustment factors for down-
ward shortwave radiation were set to zero. This occurred for
0.065% of adjustment factors. After individual correction,
the MBCn algorithm was applied on data grouped by hour of
the day and day of the year. This grouping was used to retain
the diurnal and annual cycles as strongly as possible. The

MBCn algorithm aims to replicate the multidimensional dis-
tribution from the observed data by reordering values from
each of the four individually corrected variables within their
time groups. This reordering process is determined using an
iterative process using matrix algebra and QDM. Technical
details can be found in Cannon (2018), and our implementa-
tion in Weeding and Love (2023).

Modelling Tmrt and UTCI

Tmrt and UTCI were modelled at 1.5 m above ground at the
central points of a 1 m scale grid, spanning the 150 m ×
150 m site. To balance the speed of computation with model
accuracy, the site was divided into nine 50 m × 50 m tiles.
A 50 m buffer for each tile was included when modelling,
ensuring that the influence of features around the edge of the
site was not ignored. This allowedmodelling to be performed
on the buffered tiles in parallel before results from each of
the nine tiles were concatenated to cover the 150 m × 150m
site. Land cover types for each grid point were determined by
identifying building footprints and automatically classifying
remaining surfaces (paved, bare soil, grass, and buildings)
using intensity data from lidar.

For each hour, mean Tmrt was modelled using SOLWEIG
v2019a as part of the Urban Multi-scale Environmental
Predictor (UMEP v1.3) package (Lindberg et al. 2018). A
detailed exposition of SOLWEIG’s processes can be found
in Lindberg et al. (2016). SOLWEIG calculates Tmrt at each
grid centre by determining the shortwave and longwave radi-
ation incident on a cylindrical model of a person at centre of
the tile. These radiation fluxes are determined by the interac-
tion of direct and diffuse solar radiation with built surfaces
and vegetation, as well as emissions from the sky and sur-
faces due to their temperature. The sum of these fluxes is the
mean radiant flux density (Sstr), and can be used to calculate
Tmrt as follows:

Tmrt = 4

√
Sstr
εpσ

− 273.15 (1)

where εp is the human body’s emissivity of 0.97 and σ is
Stefan-Boltzmann constant. Once Tmrt values have been cal-
culated for each individual tile, hourly UTCI values can then
be calculated. For each timestamp and grid, individual Tmrt

values and the site-wide meteorology data are used to calcu-
late the thermal stress that would be experienced under those
conditions by a personwalking at 4 km h−1 producing 135W
of metabolic heat. To give a UTCI value, this stress level is
then equated to an air temperature under reference meteo-
rological conditions: Tmrt equal to Tair , relative humidity
of 50%, and a wind speed of 0.5 m/sec at a height of 10 m
(Błażejczyk et al. 2013). UTCI values and stress categories
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are given in Table S3. In this work, we calculated UTCI with
the widely used operational procedure via the thermofeel
Python package, which introduces a root mean square error
(RMSE) of 1.1◦C compared to the computationally intensive
but definitive calculation using the UTCI-Fiala multi-node
model (Bröde et al. 2012; Brimicombe et al. 2022). This
is less than the expected error from calculating UTCI from
modelled radiation and is not considered large enough to be
of concern when modelling outdoor thermal stress (Gál and
Kántor 2020; Weihs et al. 2012).

Results

The ensemble ofmodels andBARRA-TAcontained different
hourly means and diurnal cycles over the historical period
(1990–2005) (Fig. 2). Diurnal cycles of air temperature and
wind speed peaked at later hours in BARRA-TA compared to
the ensemble. Wind speeds in BARRA-TA were lower than
in the ensemble. The diurnal cycles of solar radiation were
synchronous between BARRA-TA and the ensemble and of
similarmagnitudes.Historicalmeans and diurnal cycleswere

Fig. 2 Means by hour of the day
of air temperature, relative
humidity, 10 m wind speed, and
downwelling solar radiation for
BARRA-TA, raw model outputs,
and bias-corrected model
outputs. The range of means
across the six model ensemble is
shown by the pale colouring,
while the mean of the ensemble
is shown by the solid lines
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accurately altered by bias correction. For the future period
(2040–2059), bias correction resulted in diurnal and annual
cycles similar in shape to those seen in the BARRA-TA and
the historical bias-corrected data (Figure S2). Seasonal mean
air temperature change signals were preserved by the bias
correction process (Figure S1). For each season, trends across
the models agreed to within ±0.5◦C but for HadGEM2-CC,
which showed greater warming than other models except
in winter. Seasonal temperature trends were slower than in
the same modelling for Victoria, where ensemble median
warming between the historic and future periods was more
than 2◦C for all seasons except winter (Clarke et al. 2019).

Changes in mean values between the historic and future
periods were largest for air temperature and UTCI, while no
change in mean wind speed was observed. These changes
manifested in reductions in cold stress conditions, and
increases in no stress and heat stress conditions (Table 1).
Increases in air temperature and UTCI occurred throughout
the seasons (Figure S3). Changes in mean air temperatures
by month and hour displayed annual and diurnal patterns
(Fig. 3A). Warming was generally greater during the day and
duringwarmermonths. Early afternoon inNovember showed
the greatest warming. Agreement between the models varied
month on month, and lower levels of agreement coincided
with both high and low levels of warming (Fig. 3B). Future
median air temperatures expressed as historic percentiles
generally showed stronger warming for the daytime than
the night-time during the cooler months (Fig. 3C). Diurnal
patterns were less evident in the warmer months. Changes
in mean UTCI by month and hour, and model agreement

on these changes showed similar patterns to air temperature
(Fig. 4A and B). Large increases for November and Decem-
ber daytime hours were more prominent in UTCI than in
air temperature, due to coincident increases in downwelling
solar radiation. Future median UTCI values expressed as
historic percentiles were generally lower than for air tem-
perature and displayed different temporal patterns (Fig. 4C).
Increases were generally larger during night-time, with the
largest changes occurring during December and January.

Future 5th, 50th, and 95th percentile site-wide maximum
andminimumUTCIs were higher than their historical equiv-
alents for all hours of the day (Fig. 4). While historic 95th

percentile site-wide maximums were never classified as
greater than moderate heat stress, future 95th percentile site-
wide maximums from 1100 to 1600h were of strong heat
stress conditions. Increases to 50th percentile site-wide max-
imums displayed a diurnal cycle. All historic 5th percentile
side-wide minimum UTCIs were of moderate cold stress
conditions, while future 5th percentile site-wide minimum
UTCI values for 1300 to 1400h were of no stress conditions.
Increases to 50th percentile site-wide minimums also dis-
played a diurnal cycle. The proportions of extreme heat stress
hours increased by 450% and 268% for maximum and min-
imum UTCIs respectively, between historic and projected
outputs.

Annual mean hours of any level of heat stress across the
entire site were projected to increase for September through
May, with no periods of site-wide heat stress occurring dur-
ing winter in both the historic and future periods (Fig. 6A).
Annual mean hours of any level of site-wide cold stress were

Table 1 Ensemble variable means and stress conditions over the site between 1990–2005 and 2040–2059 after bias correction

Variable (units) Mean (1990–2005) Mean (2040–2059) Net change

Air temperature (◦C) 12.1 13.5 1.4

Relative humidity (%) 68.1 67.4 −0.7

Wind speed (ms−1) 3.3 3.3 0.0

Downwelling solar radiation (Wm−2) 154.5 159.2 4.7

UTCI (◦C) 7.6 9.4 1.8

Stress conditions % of hours % of hours Change factor

(1990–2005) (2040–2059)

Any heat stress at site 6.09 8.76 1.44

(UTC Imax > 26)

Site-wide heat stress 0.46 1.00 2.18

(UTC Imin > 26)

Any no stress at site 89.58 92.22 1.03

Site-wide no stress 70.93 74.35 1.05

Any cold stress at site 22.98 16.89 0.74

(UTC Imin < 0)

Site-wide cold stress 9.96 6.78 0.68

(UTC Imax < 0)
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Fig. 3 A Bias-corrected
ensemble means of change in
mean air temperature from
1990–2005 to 2040–2059 by
hour of day and day of year. B
Bias-corrected ensemble
standard deviations of change in
mean air temperature from
1990–2005 to 2040–2059 by
hour of day and day of year. C
Bias-corrected ensemble mean
2040–2059 median air
temperatures expressed as
1990–2005 percentiles

projected to decrease for all months in the future period but
never reached zero for any month (Fig. 6B). Annual mean
hours of any level of site-wide heat stress by hour were pro-
jected to increase for all hours except 0200 through 0600
(Fig. 6C). No instances of any level of site-wide heat stress
were reported for either the historic or future periods for the
hours 0200 through 0600, while future projections reported
instances of heat stress for the hours 0000, 0100, and 0700.
Annual mean hours of any level of site-wide cold stress were
projected to decrease for all hours of the day (Fig. 6D). Over
the historic period, all combinations of hour andyear reported
some instances of any level of site-wide cold stress. However,

for future combinations of hour and year, there were eight
instances where no site-wide cold stress was projected, all
during the hours of 1200 through 1400, across five different
years and four models.

Total hours from June through May of any strong heat
stress at the site were projected to increase substantially, with
an increase in the median number of hours of more than 70%
and the lowest projected total number of hours for the future
period of 95h. Only two future annual totals were less than
the median historic total (Fig. 7A–D. The median day of the
year at which any strong heat stress first occurs was projected
to change from the 30th of October to the 10th of October.
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Fig. 4 A Bias-corrected
ensemble means of change in
mean UTCI from 1990–2005 to
2040–2059 by hour of day and
day of year. B Bias-corrected
ensemble standard deviations of
change in mean UTCI from
1990–2005 to 2040–2059 by
hour of day and day of year. C
Bias-corrected ensemble mean
2040–2059 median UTCIs
expressed as 1990–2005
percentiles

Cumulative hours from June throughMay of any very strong
heat stress at the site were projected to increase in greater
proportion than strong heat stress, with the median number
of hours increasing 125% and all future years containing
some very strong heat stress. The median day of the year at
which any very strong heat stress first occurs was projected
to change from the 3th of December to the 21th of November,
ignoring the two historic model run years that contained no
very strong heat stress.

Discussion

Consequences of bias correction

Errors in model outputs compared to observations have
made bias corrections almost obligatory for climate change
impact studies (Faghih et al. 2022; Zscheischler et al. 2019).
However, the assumptions that corrections make cannot be
ignored. Bias correcting at sub-daily timescales is a develop-
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ing field and can have major impacts on compound metrics
such as the UTCI, which combines four diurnal cycles.
Figure2 demonstrates how rigidly the bias correction forces
the diurnal cycles present in BARRA-TA onto themodel out-
puts. This is not necessarily incorrect, but does assume that
BARRA-TA’s diurnal cycles will be valid for 2040–2059, or
are at least better than those in the ensemble. Similarly strong
correction and assumption is shown in Figure S2, in partic-
ular for wind speed and radiation. BARRA-TA contains a
weaker annual cycle for wind speed than the ensemble, and
this manifests in the bias-corrected projections. This weaker
annual cycle is still present when the entire BARRA-TA
time series (1990–2019) is analysed, instead of the over-
lapping 1990–2005 data. Compared to the model ensemble,
BARRA-TA also contains lower mean downwelling solar
radiation in February and December, which is reflected in
the bias-corrected projections. When the entire BARRA-
TA time series (1990–2019) is used, the difference in mean
downwelling solar radiation between BARRA-TA and the
model ensemble is reduced, demonstrating that the use of a
longer historic period for bias correctionwould have tangible
impacts on the corrected projections.

When interpreting trends in mean air temperature from
the historic to future periods by month and hour (Fig. 3),
it is important to remember that these trends are ensemble
means and that theMBCnmethod is inherently trend preserv-
ing. This means the observed trends originate in the models,
and were not imposed by bias correction. The strong early
afternoonwarming trends in November air temperatures pro-
vide an example (Fig. 3A). An analysis of November trends
in the individual models before bias correction revealed the
major driver of these warming trends to be a very strong
diurnal cycle in the trends of the HadGEM2-CC model.
For HadGEM2-CC, night-time trends averaged 2.2◦C, while
midday trends from 1100 through 1600h averaged 3.2◦C.
MIROC5 and ACCESS 1–0 showed similar diurnal cycles
in their warming trends, but at lower magnitudes—trends for
1100 through 1600h averaged 2.4◦C and 2.43◦C, respec-
tively. The remaining three models showed little in the way
of diurnal cycles in their trends and contained no warming
trends greater than 1.8◦C at any time of day. This dis-
agreement within the ensemble is reflected in the standard
deviation data for November (Fig. 3B). The same analysis
showed that the largest standard deviations for air tempera-
ture trends were driven by opposing January diurnal cycles:
HadGEM2-CC contained its highest warming signals dur-
ing the daytime, whileMIROC5 and NorESM1-M contained
their lowest warming signals. Similar patterns were observed
in UTCI trends (Fig. 4A and B). The most noticeable differ-
ence between air temperature and UTCI trends is the very
strong mid-afternoon increasing trend in UTCI seen in both
November and December. An analysis of the four contribut-

ing factors revealed this was driven by simultaneous trends
in air temperature and downwelling solar radiation.

Interpreting the heat stress data

When interpreting Figs. 5, 6, and 7, it is important to consider
the relationship between shading and the plotted statistics.
UTCI site maximums describe open conditions during the
daytime and vegetation-shaded conditions at night, due to
the presence of shortwave radiation and the insulating effect
of the canopy respectively. Conversely, UTCI site minimums
describe locations shaded by vegetation and buildings dur-
ing the day and open areas at night. Therefore, Fig. 5A–D
illustrates the impact of shade in reducing stress extremes
throughout the day, as described in Weeding et al. (2023).
This dampening effect is also visible in the changes to the
50th percentiles in Fig. 5E and F, where the change signal
for site minimumUTCI is muted during daylight hours com-
pared to the site UTCI maximums. Interestingly, the 95th

percentiles show greater increases for the site UTCI mini-
mums than maximums. These minimums will occur under
shade during hours of high air temperature. This illustrates
that these increases in air temperatures have slightly greater
net effects on stress conditions under the shade than in the
open.

Projected changes for Hobart are comparable to those in
the literature. An increase in mean UTCI of 1.8◦C over 35
years equates to 0.05◦C per year (Table 1). This is equal
to recent observations for Cfb climates in Europe and com-
parable to RCP8.5 projections of Cfb climates in Germany
(Antonescu et al. 2021; Brecht et al. 2020). The projection
of an overall increase in the number of no stress conditions
in the near future has also been projected in four contrast-
ing European cities, albeit at a broader spatial scale (0.11◦
grid) (Katavoutas et al. 2022). In both our work and that of
Katavoutas et al. (2022) this is due to reductions in the occur-
rence of cold stress conditions dominating increases of heat
stress conditions, with changes of comparable magnitude.
However, thermally neutral conditions were more common
in Hobart than in any of the four European cities.

Figures 5, 6, and 7 describe a markedly different thermal
environment in Hobart for 2040–2059 than that experienced
during 1990–2005. HigherUTCI values, recorded earlier and
later in the day, and greater average hours of heat stress over
the majority of hours of the day and months of the year
will likely change perceptions of seasons and hours of the
day, place acclimatisation demands on citizens, and drive
behaviour changes. For example, from the perspective of
hours of heat stress across the entire site—that is, heat stress
occurring even in the shade—future Marches and Novem-
bers are equivalent to historic Februaries (Fig. 6). Similarly,
when considering hours of the day, citizens can expect more
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Fig. 5 A All 1990–2005
bias-corrected ensemble
site-wide UTCI maximum
values by hour of the day,
overlaid with 5th, 50th, and 95th

percentiles. B All 1990–2005
bias-corrected ensemble
site-wide UTCI minimum values
by hour of the day, overlaid with
5th, 50th, and 95th percentiles. C
All 2040–2059 bias-corrected
ensemble site-wide UTCI
maximum values by hour of the
day, overlaid with 5th, 50th, and
95th percentiles. D All
2040–2059 bias-corrected
ensemble site-wide UTCI
minimum values by hour of the
day, overlaid with 5th, 50th, and
95th percentiles. E Changes to
5th, 50th, and 95th percentiles of
bias-corrected ensemble
site-wide UTCI maximums by
hour of the day. F Changes to
5th, 50th, and 95th percentiles of
bias-corrected ensemble
site-wide UTCI minimums by
hour of the day

future hours of heat stress at 1700 than historically experi-
enced at 1400, themost stressful hour of the historic period. In
terms of cold stress hours, future Junes are equivalent to his-
toric Septembers, and future Julys and Augusts are halfway
between historic Junes and Septembers. From an hourly per-
spective, the largest reductions inmean cold stress hourswere
observed during the night, with future early morning stress
levels closer to historical levels around midnight than early
morning.

Considering cumulative stresses, Fig. 7 shows citizens can
expect to experience approximately double the number of
hours some strong or very strong heat stress in open loca-
tions from one winter to the next for 2040–2059 compared to
1990–2005, and expect heat stress conditions to begin almost
three weeks earlier. Perhaps the most striking illustration of
the changes projected for 2040–2059 is that the median num-
ber of hours of strong heat stress (184) is 18h greater than
the maximum number of strong heat stress hours reported
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Fig. 6 A Annual mean hours of
site-wide heat stress conditions
by month of the year for
1990–2005 and 2040–2059
bias-corrected ensembles. B
Annual mean hours of site-wide
cold stress conditions by month
of the year for 1990–2005 and
2040–2059 bias-corrected
ensembles. C Annual mean
hours of site-wide heat stress
conditions by hour of the day for
1990–2005 and 2040–2059
bias-corrected ensembles. D
Annual mean hours of site-wide
cold stress conditions by hour of
the day for 1990–2005 and
2040–2059 bias-corrected
ensembles

for 1990–2005. Almost as striking is that for very strong heat
stress, only four out of 60 historic model run years contain
more hours than the projected futuremedian. These statistics,
and Fig. 7 are of particular relevance for those working out-
doors in urban environments, as they indicate the conditions
they will be exposed to, and consequently have to plan for.
It is important to note that the UTCI is calibrated for some-
one performing light activity in regular clothing, and heat
stress levels will be amplified for those performing physi-
cally strenuous work or wearing highly insulating clothing.

This is a significant point that should be emphasised when
raising awareness of the dangers of heat stress.

Figures 3C and 4C present novel views of future tem-
perature and thermal stress levels in recent context. These
plots reveal patterns that are not evident when viewing mean
changes, and emphasise how projected median conditions
compare to those people have previously acclimatised to. For
temperature, the largest relative changes occurred in summer
and winter, but at opposing times of day. Summer temper-
atures show higher relative changes from the late evening
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Fig. 7 Plots A, C, E, and G
show cumulative hours of any
occurrence at the site of a
category of heat stress for a June
through May year, plotted by
year and model. Plots B, D, F,
and H show the corresponding
density histogram of the totals

through to mid-morning, with the greatest changes around
0000 and 0800h, while for winter, daytime temperatures
showed the largest changes. However, when considering rel-
ative changes in UTCI, we see an overall pattern of greater
changes during warmermonths and at night-time and a lower
and narrower range of changes. When interpreting these
changes and how they will change living conditions in the
future Hobart, it is important to remember they are based on
median conditions, and do not describe changes to extremes.
This is evident in Fig. 5, which shows changes for the 5th,
50th, and 95th percentiles are markedly different.

The changes above describe dramatic shifts in terms of
planning outdoor work and recreation and have the poten-
tial to significantly alter behaviours and demands, especially

in the construction, health and energy sectors. The UTCI is
calculated for someonewalking at 4 kmh−1, and correspond-
ing stress categories for a given UTCI value will therefore
increase with greater levels of exertion as the body must deal
with additional internally generated thermal energy. Humans
can certainly adapt to higher thermal stress levels than those
they are accustomed to as long as physiological thresholds
are not breached, and there are sound arguments for develop-
ing adaptive stress categories based on UTCI baseline data at
different locations (Lam and Lau 2018; Pantavou et al. 2018;
Krüger et al. 2021). However, the impacts of different rates
of acclimatisation are not well known and will vary signifi-
cantly across society, depending on a wide range of health,
economic, and cultural factors. Epidemiological monitoring
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of thermal conditions and their association with morbidity
and mortality could inform healthcare practice and improve
the prediction of demand. Ideally, comparisons of central
Hobart’s future conditions could be made to other locations
in Australia and beyond to inform adaptation.

Sources of uncertainty and error

Outputs bias corrected using reanalysis data as the observa-
tions are inherently subject to the biases contained within the
reanalysis. BARRA-TA’s known errors are described in Su
et al. (2021), with perhaps the most relevant being reduced
temperature extremes, and under-dispersed wind speeds for
the Tasmanian region. The impact of reduced temperature
extremes on the UTCI is relatively straightforward, reduc-
ing extreme UTCI values. The impacts of under-dispersed
wind speeds are more complex but can be broadly described.
Using under-dispersed data will result in speed reductions
of wind speeds above average and speed increases for wind
speeds below average. Therefore, for heat stress situations
with above-average winds, bias correcting with BARRA-TA
will likely overestimate heat stress, while for heat stress with
below-average winds heat stress is likely to be underesti-
mated. For cold stress situations, the opposite is true, with
cold stress in above-averagewinds likely under-reported, and
over-reported for below-average winds.

Errors will also arise from using 1.5 km scale BARRA-
TA data at 1.5 m scale, as meteorology can be influenced
by the urban environment at fine spatial scales. Vegetation
can reduce air temperature and increase humidity through
evapotranspiration and shading, all at scales not captured by
BARRA-TA. These effects vary significantly with time, sur-
face, and cover types, andwhile accurate localisedmodelling
has been developed, its integration into thermal stress calcu-
lation workflows has not yet been achieved and is beyond
the scope of this work (Rocha et al. 2022; Middel et al.
2021;Vulova et al. 2023). Therefore, it remains a contributing
driver of errors. Trees, building surfaces and geometries will
influencewind speeds, generally reducing themexcept in cer-
tain situations where urban canyons and building edges can
cause localised speed increases (Grimmond and Oke 1999;
Johansson et al. 2016; Yuan et al. 2017). A UMEP integrated
wind model capable of modelling building and tree geom-
etry as well as surface gradients is under development, and
given reasonable computation times and validated results,
should be adopted in future SOLWEIG based modelling and
projections (Robinson et al. 2023; Bernard et al. 2023).

We generated elevation, surface, and canopy models from
the latest available lidar data. While major change to the
built environment of our site has not occurred since 1990
due to the predominantly heritage architecture at the site,
changes to the vegetation community and morphology will

have occurred due to planting, growth, and canopy manage-
ment (Gulson 2007; Howard 2016). Vegetation changes will
continue through to 2059—especially as the changing cli-
mate renders some species unviable—along with possible
changes to the surrounding built environment which would
alter shadow patterns and surface types. Therefore, comput-
ing our historic and projected outputs using a single set of
elevation, surface, and canopy models will introduce errors.
An example of such an error can be seen when comparing
the site photograph and lidar data; a tree in the northern-
most corner of the park is present in the lidar data, but not in
the recent photograph (Fig. 1). Ideally, such errors could be
reduced by using more frequently collected lidar survey data
for the historic period, but this was not available. Making
accurate predictions about changes to the site for the period
2040–2059 is likely insoluble. However, we do not consider
this to reduce the validity of the outputs for the purposes
of making realistic predictions of future climatic conditions.
Errorsmayhave been introducedwhengenerating the canopy
models.While somefilteringwas applied, additional filtering
to remove the remaining linear features should be applied in
future work (Lindberg and Grimmond 2011; Goodwin et al.
2009).

All trees were treated as evergreen, with the impacts
of vegetation canopies on radiation modelled using SOL-
WEIG’s default values. These are shortwave and longwave
transmissions through foliage of to 3% and 0%, respectively,
vegetation albedo of 15%, and emissivity of 90% (Konarska
et al. 2014; Oke 2002; Lindberg and Grimmond 2011). This
will introduce errors, as the values will vary by solar posi-
tion, species, canopy thickness and structure (Nyman et al.
2017; Hovi and Rautiainen 2020; Ribeiro da Luz and Crow-
ley 2007). Errors of a similar nature arise from the simplified
range of surface types modelled by SOLWEIG. Accurately
resolving all these parameters via fieldwork is certainly
impractical and likely impossible, andmust acknowledge the
associated errors, while noting that such errors are a conse-
quence of working at spatial scales where individual trees
and their canopies are resolved.

Conclusions

This study presents projections of thermal stress at spatial and
temporal scales relevant to human physiology, and an analy-
sis of these stresses in the context of recent values for Hobart,
Australia. These are the first hourly metre-scale projections
of thermal stress driven by multivariate bias-corrected data,
projecting thermal stress for 2040–2059 from a historical
period of 1990–2005.Building on thework ofCannon (2018)
and Faghih et al. (2022), we corrected four meteorologi-
cal variables from six GCMs individually, as well as their
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interrelationships, using the BARRA-TA reanalysis (Su et al.
2021). We demonstrated that such a bias correction is able to
powerfully correct means on multiple time scales, and accu-
rately preserve mean seasonal trends. This bias-corrected
data was used to drive modelling of thermal stress measured
by the UTCI for a 150 m× 150 m site in central Hobart, Tas-
mania, Australia, with radiative processes resolved at 1 m
scale by the SOLWEIG model (Lindberg et al. 2008). Plots
of changes in mean air temperature and UTCI by hour of
the day and month of the year revealed diurnal and annual
patterns in both temporal trends and model agreement. We
also analysed future median values by hour of the day and
month of the year in terms of historical percentiles, revealing
patterns not observed in the analysis of means. The ability of
shade to mute extreme values and trends was evident when
comparing site minimum and maximum UTCI values. Ways
in which the future thermal environment might be interpreted
and adapted to were considered, as well as the caveats that
must be considered when using a powerful bias-correcting
technique. Sources of error in the method were identified, in
particular, those associated with working at such a fine spa-
tial scale. The projections illustrated a significant change to
Hobart’s thermal stress environment, with higher and more
consistent numbers of hours of heat stress arriving earlier
in the year and extending further throughout the day. These
changes showed strong annual and diurnal patterns, demon-
strating the value of modelling thermal stress at fine temporal
scales.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00484-024-02622-
8.
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