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Abstract
Exposure to heatwaves may result in adverse human health impacts. Heat alerts in South Africa are currently based on 
defined temperature-fixed threshold values for large towns and cities. However, heat-health warning systems (HHWS) should 
incorporate metrics that have been shown to be effective predictors of negative heat-related health outcomes. This study 
contributes to the development of a HHWS for South Africa that can potentially minimize heat-related mortality. Distrib-
uted lag nonlinear models (DLNM) were used to assess the association between maximum and minimum temperature and 
diurnal temperature range (DTR) and population-adjusted mortality during summer months, and the effects were presented 
as incidence rate ratios (IRR). District-level thresholds for the best predictor from these three metrics were estimated with 
threshold regression. The mortality dataset contained records of daily registered deaths (n = 8,476,532) from 1997 to 2013 
and data for the temperature indices were for the same period. Maximum temperature appeared to be the most statistically 
significant predictor of all-cause mortality with strong associations observed in 40 out of 52 districts. Maximum temperature 
was associated with increased risk of mortality in all but three of the districts. Our results also found that heat-related mor-
tality was influenced by regional climate because the spatial distribution of the thresholds varied according to the climate 
zones across the country. On average, districts located in the hot, arid interior provinces of the Northern Cape and North 
West experienced some of the highest thresholds compared to districts located in temperate interior or coastal provinces. As 
the effects of climate change become more significant, population exposure to heat is increasing. Therefore, evidence-based 
HHWS are required to reduce heat-related mortality and morbidity. The exceedance of the maximum temperature thresholds 
provided in this study could be used to issue heat alerts as part of effective heat health action plans.
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Introduction

Climate change is projected to intensify the adverse health 
impacts of extreme heat by increasing their frequency, 
severity, and duration of heatwave events (Ebi et al. 2021; 
Zhao et al. 2022). Several record-breaking heatwaves have 
been reported in many parts of the world. In the summer 
of 2003, for example, Europe experienced its hottest heat-
wave in 500 years; studies showed that heat-related excess 
deaths during the 2003 European summer exceeded 70,000 
(Luterbacher et al. 2004; Trigo et al. 2009; Christoph and 
Gerd 2004; Robine et al. 2008; Fouillet et al. 2006). Simi-
larly, in 2010, Russia experienced its worst heatwave since 
records began that resulted in an estimated 55,000 deaths 
(Hoag 2014; Grumm 2011). In 2006 in the USA, Cali-
fornia (which was the most affected state) recorded 655 
heat-related deaths over 2 weeks (Coumou and Rahmstorf 
2012; Knowlton et al. 2012, 2008). Devasting heatwaves 
which were associated with high numbers of deaths and 
illnesses have also been reported in Australia and India 
(Nitschke et al. 2011; Azhar et al. 2014; Mazdiyasni et al. 
2017).

It is evident that research on health-related impacts of 
heatwaves is unevenly distributed as the majority of studies 
are concentrated in mid-latitude temperate regions including 
North America, Europe, eastern China, and Australia while 
lacking in lower middle-income settings such as Africa 
and South America (Campbell et al. 2018). For example, 
South Africa has experienced prolonged, intense heatwaves 
in recent years; however, there are no published articles 
that present the health effects of these events leading to 
an underestimation of the risks. Most reports about health 
outcomes attributed to extreme heat in the country are 
from media sources, such as recent media releases that 
revealed eight people, most of them farm workers, died from 
heatstroke in the Northern Cape province of the country 
during a heatwave in late January 2023 (AfricaNews 2023).

Given the severity of the impacts of extreme heat 
events, several countries (mainly in Europe and North 
America) have implemented heat-health warning systems 
(HHWS) to reduce heat-related morbidity and mortal-
ity (Casanueva et al. 2019; Kotharkar and Ghosh 2022). 
According to recommended methodologies, the develop-
ment of HHWS should be based on knowledge of cause-
effect relationships between temperature and the health of 
a given population (Kim et al. 2006; Montero et al. 2010). 
This information can then be used to estimate thresholds to 
trigger heat warning alerts (McGregor et al. 2015). How-
ever, the South African Weather Service (SAWS) currently 
issues heat warnings using city/town-specific absolute 
threshold values that are not associated with a negative 
human response (SAWS 2017).

Although recent South African studies have found strong 
associations between hot days and mortality especially in 
children and older adults (Wichmann 2017; Scovronick et al. 
2018), these analyses were not restricted to summer months 
to model heat effects only. Furthermore, the methods used 
in these studies did not account for population size, which is 
an important confounder considering that previous studies 
show heat extremes often have substantially higher impacts 
when they occur in highly populated areas (Chebana et al. 
2013; Harrington and Otto 2018).

Stakeholder participation at local level is necessary to 
ensure sustainability and effectiveness of HHWS (Climate-
ADAPT 2023). In South Africa, there are three tiers 
of government, namely, national, provincial, and local. 
Local government comprises 52 districts nationally, and 
this administrative level is responsible for coordinating 
development and service delivery. The South African Heat 
Health Guidelines acknowledge that district municipalities 
play a crucial role in reducing the burden of disease due 
to heat exposure (Department of Health 2020). Therefore, 
districts should be incorporated in the design and 
implementation heat health action plans such as HHWSs.

Here, we used distributed lag nonlinear models (DLNM) 
using quasi-Poisson regression models to identify the 
most statistically significant temperature metric between 
maximum and minimum temperature and diurnal 
temperature range (DTR) while adjusting for population in 
each of the 52 districts in South Africa. We further estimated 
district-level heat thresholds for the most statistically 
significant temperature metric. This study enables 
recommendations for an appropriate exposure metric and the 
associated location-specific thresholds to issue heat alerts 
to contribute towards the development of a health-outcome 
evidenced HHWS for South Africa.

Methods

Mortality and population data

Statistics South Africa provided the mortality data for 
1997–2013, which contains all deaths registered and 
collated through the South African civil registration system 
maintained by the Department of Home Affairs. A data 
quality assessment conducted by Statistics South Africa 
estimated that adult (15 years and older) death registrations 
were ~ 89% complete early on in the study period, increasing 
to ~ 94% completion by 2013, while the child death records 
had not been sufficiently reported (Stats SA 2014; Scovronick 
et al. 2018). Records with missing or incomplete information 
about location of death (district) and/or date of death were 
excluded from the dataset used for analysis. This study used 
all-cause mortality similar to most epidemiological studies 
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because temperature-related mortality is often misclassified 
and underestimated (Hajat and Kosatky 2010; Alahmad et al. 
2019). District-level population estimates for the study period 
were also obtained from Statistics South Africa.

Temperature data

Data for maximum and minimum temperature were provided 
by the National Oceanographic and Atmospheric Adminis-
tration (NOAA) and South Africa’s Agricultural Research 
Council (ARC). This dataset comprised daily minimum and 
maximum temperatures for each of the country’s 52 district 
municipalities. The NOAA dataset comprised daily data 
covering 30 district municipalities, while the ARC dataset 
covered 50 districts except the City of Johannesburg and 
Nelson Mandela Bay. Using the most complete datasets from 
the two sources, the final dataset consisted of temperature 
data from ARC for 34 district municipalities and NOAA data 
from 18 district municipalities. In-depth quality control was 
conducted on the dataset to exclude invalid values resulting 
from instrument error or human error during data upload-
ing and capturing. The collation, quality control procedures, 
and processing of the temperature dataset are described in 
more detail in Scovronick et al. (2018). Daily DTR was cal-
culated as the difference between maximum and minimum 
temperature.

Heat-related mortality studies often limit temperature 
data to summer months because this excludes the effects 
of cold temperature (Li et al. 2012; Basu 2009). Therefore, 
this study limits its temperature data from October to March, 
which are considered “summer” months in South Africa due 
to the warmer temperatures compared to the rest of the year.

Statistical analysis

To explore the association between maximum temperature 
and minimum temperature and DTR on all-cause mortality, 
a distributed lag nonlinear model (DLNM) using a quasi-
Poisson regression model was implemented to express the 
nonlinear exposure-lag-response relationship. This was 
performed separately for each district due to heterogeneity 
between the locations. The model was adjusted to account 
for the population of each district, and results are reported 
as IRR (incidence risk ratio) per 10,000 people. The R 
package “dlnm” was used to carry out the DLNM analysis 
(Gasparrini 2011).

To determine the threshold values for the significant tem-
perature metrics for each district, threshold regression was 
used. Threshold regression models are a class of models 
where the predictors are believed to impact the outcome 
at different change points or thresholds. Threshold regres-
sion extends linear regression to allow coefficients to vary 
across different regions (Fong et al. 2017). These regions 

are identified as either being above or below a threshold 
value. The threshold parameter can be thought of as a change 
point, and the model provides an easy to interpret method of 
describing nonlinear relationships between an outcome and 
predictors (Fong et al. 2017). A model is fitted to obtain an 
estimate of the threshold and the coefficients on either side 
of it. The two regions are defined by a threshold value γ with 
(Gonzalo and Pitarakis 2002)

where yt is the dependent variable, xt is a 1 × k vector of 
covariates, � is a k × 1 vector of region-invariant parameters, 
�t is an IID error with mean 0 and variance �2 , zt is a vec-
tor of exogenous variables with region-specific coefficient 
vectors �

1
 and �

2
 , and �t is a threshold variable that may be 

one of the variables in xt or zt . The conditional least squares 
function is used to estimate the parameters of the threshold 
regression model for each district. Stata version 15.1 was 
used for the threshold regression analysis (StataCorp 2017).

Results

Descriptive statistics

The descriptive statistics of mortality and temperature met-
rics are illustrated in Supplementary Tables S1. Total warm-
season mortality in South Africa from 1997 to 2013 was 
4,066,276. As illustrated in Table S1, the eThekwini dis-
trict (number 19) had the highest number of reported deaths 
for all causes (n = 284,598), and the Central Karoo district 
(number 8) recorded the lowest number of deaths (n = 6547). 
Both the highest maximum and lowest minimum tempera-
tures of 47.3 and 0.84 °C, respectively, were observed in 
districts of KwaZulu-Natal province across all study years.

DLNM

Maximum temperature was the most statistically significant 
temperature metric in 40 (77%) districts out 52 (Table 1). 
A majority of the districts showed a significant associa-
tion (p < 0.05) with maximum temperature. Minimum tem-
perature was second (7 districts, 13%) followed by DTR 
(3 districts, 6%). Maximum temperature was associated 
with increased risk of mortality per 10,000 people rang-
ing from 3 to 164% (IRR = 1.03, coefficient = 0.03, 95% 
CI =  − 0.93–0.98, not statistically significant and IRR = 2.64, 
coefficient = 0.97, 95% CI =  − 31.69–33.63, not statistically 
significant), respectively. However, three district municipali-
ties, namely, Buffalo City (Eastern Cape), Cape Winelands 

yt = xt𝛽 + zt𝛿1 + 𝜀tif −∞ < 𝜔t ≤ 𝛾

yt = xt𝛽 + zt𝛿2 + 𝜀tif𝛾 < 𝜔t < ∞
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Table 1   DLNM model results 
showing the effects of summer 
temperatures on mortality 
expressed as the incident rate 
ratio (IRR) per 10,000 people

District Index Coefficient 95% CI IRR p value

alfn DTR  − 0.28  − 0.79 0.23 0.76
Max temp 0.26 0.10 0.41 1.29 ***
Min temp 0.29 0.00 0.58 1.34 **

amjb DTR  − 0.14  − 0.61 0.33 0.87
Max temp 0.22 0.06 0.37 1.24 ***
Min temp  − 0.01  − 0.27 0.26 0.99

amth DTR  − 0.03  − 0.54 0.49 0.97
Max temp 0.41 0.27 0.54 1.50 ***
Min temp 0.14  − 0.09 0.37 1.15

bffc DTR 0.23  − 0.88 1.34 1.26
Max temp  − 0.30  − 0.73 0.13 0.74
Min temp  − 0.32  − 0.78 0.13 0.73

bjnl DTR  − 0.02  − 0.37 0.33 0.98
Max temp 0.64 0.47 0.80 1.89 ***
Min temp 0.25 0.08 0.42 1.29 ***

cacd DTR  − 0.23  − 0.73 0.26 0.79
Max temp 0.31 0.17 0.45 1.37 ***
Min temp 0.17  − 0.08 0.41 1.18

chrh DTR 0.12  − 0.40 0.64 1.13
Max temp 0.22 0.02 0.41 1.24 **
Min temp 0.01  − 0.25 0.27 1.01

cntk DTR 0.24  − 0.93 1.40 1.27
Max temp 0.07  − 0.24 0.38 1.07
Min temp  − 0.57  − 1.07  − 0.07 0.57 **

coct DTR 0.17 0.03 0.31 1.18 **
Max temp 0.22 0.16 0.29 1.25 ***
Min temp 0.02  − 0.06 0.10 1.02

cprc DTR  − 0.07  − 0.41 0.27 0.94
Max temp 0.35 0.21 0.49 1.42 ***
Min temp 0.10  − 0.06 0.26 1.11

cpwn DTR  − 0.68  − 6.47 5.12 0.51
Max temp  − 0.05  − 2.49 2.39 0.95
Min temp  − 0.05  − 3.82 3.71 0.95

ctoj DTR  − 2.28  − 48.91 44.36 0.10
Max temp 0.97  − 31.69 33.63 2.64
Min temp 0.90  − 27.48 29.29 2.46

ctot DTR 0.401  − 3.76 4.57 1.49
Max temp 0.864  − 1.77 3.50 2.37
Min temp 0.26  − 2.33 2.85 1.30

drkk DTR  − 0.18  − 0.73 0.36 0.83
Max temp 0.29 0.03 0.54 1.33 **
Min temp  − 0.10  − 0.31 0.10 0.90

drsm DTR 0.07  − 0.36 0.51 1.08
Max temp 0.49 0.30 0.69 1.64 ***
Min temp 0.04  − 0.11 0.19 1.04

eden DTR 0.19  − 0.31 0.69 1.21
Max temp 0.24 0.08 0.39 1.26 ***
Min temp 0.10  − 0.15 0.36 1.11

ehln DTR 0.11  − 0.33 0.56 1.12
Max temp 0.22 0.05 0.39 1.24 ***
Min temp  − 0.09  − 0.32 0.14 0.92
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Table 1   (continued) District Index Coefficient 95% CI IRR p value

ekrh DTR 0.36  − 2.79 3.51 1.43
Max temp  − 0.06  − 2.09 1.97 0.94
Min temp  − 0.19  − 2.10 1.73 0.83

ethk DTR  − 0.26  − 1.68 1.16 0.77
Max temp 0.03  − 0.93 0.98 1.03
Min temp  − 0.08  − 0.89 0.73 0.92

frnb DTR 0.12  − 0.33 0.56 1.12
Max temp 0.26 0.08 0.44 1.29 ***
Min temp  − 0.05  − 0.22 0.11 0.95

fzld DTR  − 0.03  − 0.45 0.39 0.97
Max temp 0.26 0.07 0.45 1.30 ***
Min temp 0.09  − 0.12 0.30 1.10

grtb DTR  − 0.39  − 1.00 0.23 0.68
Max temp 0.24 0.06 0.42 1.27 **
Min temp 0.09  − 0.19 0.37 1.09

grts DTR  − 0.30  − 0.55  − 0.06 0.74 **
Max temp 0.39 0.24 0.54 1.48 ***
Min temp 0.11  − 0.05 0.27 1.12

ilmb DTR  − 0.43  − 0.89 0.02 0.65 *
Max temp 0.60 0.41 0.79 1.82 ***
Min temp  − 0.15  − 0.42 0.13 0.86

jgqb DTR  − 0.09  − 0.65 0.47 0.91
Max temp 0.12  − 0.09 0.32 1.12
Min temp 0.18  − 0.03 0.39 1.20 *

jhtg DTR  − 0.12  − 0.86 0.61 0.89
Max temp 0.26  − 0.09 0.61 1.30
Min temp  − 0.16  − 0.52 0.20 0.85

ljwl DTR  − 0.25  − 0.71 0.21 0.78
Max temp 0.43 0.26 0.60 1.54 ***
Min temp 0.17 0.00 0.34 1.19 **

mngn DTR 0.13  − 0.33 0.59 1.14
Max temp 0.27 0.07 0.46 1.30 ***
Min temp 0.01  − 0.14 0.17 1.01

mopn DTR 0.05  − 0.23 0.32 1.05
Max temp 0.42 0.31 0.53 1.52 ***
Min temp 0.14  − 0.04 0.32 1.15

ngmm DTR 0.02  − 0.29 0.32 1.02
Max temp 0.40 0.25 0.56 1.49 ***
Min temp 0.06  − 0.05 0.16 1.06

nkng DTR 0.07  − 0.28 0.42 1.07
Max temp 0.28 0.16 0.41 1.33 ***
Min temp 0.02  − 0.15 0.18 1.02

nlmb DTR 0.10  − 0.30 0.51 1.11
Max temp 0.27 0.11 0.44 1.31 ***
Min temp 0.00  − 0.13 0.13 1.00

nmkw DTR 0.80  − 0.80 2.40 2.22
Max temp 0.36  − 0.37 1.09 1.43
Min temp 0.19  − 0.43 0.81 1.21

ortm DTR  − 0.03  − 0.66 0.60 0.97
Max temp 0.26 0.08 0.44 1.29 ***
Min temp 0.30 0.00 0.60 1.35 *
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Table 1   (continued) District Index Coefficient 95% CI IRR p value

ovrb DTR  − 0.04  − 0.77 0.69 0.96
Max temp 0.18  − 0.05 0.40 1.19
Min temp 0.07  − 0.14 0.27 1.07

pxks DTR  − 0.10  − 0.56 0.35 0.90
Max temp 0.54 0.25 0.83 1.71 ***
Min temp 0.17  − 0.08 0.42 1.19

sdbn DTR 0.22  − 0.20 0.64 1.25
Max temp 0.31 0.12 0.50 1.37 ***
Min temp  − 0.17  − 0.37 0.03 0.85 *

ssnk DTR  − 0.06  − 0.61 0.50 0.95
Max temp 0.41 0.24 0.58 1.51 ***
Min temp 0.34 0.06 0.62 1.40 **

synd DTR 0.42  − 0.14 0.98 1.52
Max temp 0.45 0.20 0.70 1.56 ***
Min temp 0.10  − 0.17 0.36 1.10

thbm DTR  − 0.32  − 0.71 0.08 0.73
Max temp 0.22 0.02 0.41 1.24 **
Min temp  − 0.03  − 0.20 0.14 0.97

uguc DTR  − 0.31  − 0.68 0.05 0.73 *
Max temp 0.12  − 0.09 0.33 1.13
Min temp 0.29 0.11 0.47 1.33 ***

umgn DTR 0.48  − 0.20 1.15 1.61
Max temp 0.43 0.29 0.57 1.54 ***
Min temp  − 0.03  − 0.26 0.20 0.97

umkh DTR  − 0.10  − 0.45 0.25 0.90
Max temp 0.58 0.39 0.76 1.78 ***
Min temp 0.19  − 0.30 0.68 1.21

umzn DTR 0.05 0.21 0.38  − 0.383, 0.477
Max temp 0.28 0.16 0.41 1.32 ***
Min temp  − 0.09  − 0.29 0.12 0.92

uthk DTR 0.35  − 0.03 0.73 1.42 *
Max temp 0.26 0.13 0.39 1.30 ***
Min temp 0.02  − 0.12 0.17 1.02

uthn DTR 0.05  − 0.42 0.52 1.05
Max temp 0.29 0.12 0.47 1.34 ***
Min temp  − 0.06  − 0.30 0.18 0.94

vhmb DTR  − 1.08  − 1.63  − 0.52 0.34 ***
Max temp 0.56 0.37 0.75 1.75 ***
Min temp 0.15  − 0.12 0.41 1.16

wstc DTR  − 0.18  − 0.63 0.27 0.84
Max temp 0.25 0.07 0.43 1.28 ***
Min temp 0.13  − 0.14 0.40 1.14

wstr DTR 0.08  − 0.37 0.52 1.08
Max temp 0.20 0.00 0.39 1.22 **
Min temp  − 0.02  − 0.22 0.19 0.99

wtrb DTR 0.18  − 0.31 0.67 1.20
Max temp 0.42 0.18 0.67 1.53 ***
Min temp 0.00  − 0.21 0.22 1.00

xhrp DTR  − 0.03  − 0.60 0.55 0.97
Max temp 0.54 0.24 0.83 1.71 ***
Min temp  − 0.22  − 0.48 0.04 0.80 *
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(Western Cape), and Ekurhuleni (Gauteng), showed that 
max temperature led to a reduction of 26%, 5%, and 6% in 
risk of mortality per 10,000 people, respectively.

Threshold regression

Maximum temperature was found to be the most impor-
tant predictor of mortality. Threshold regression was used 
to determine district-level threshold values for maximum 
temperature during the summer months, above which daily 
mortality increases. The spatial distribution of the thresh-
olds varies according to the climate zones across the country 

(Fig. 1). It resembles the distribution of climatic regions 
defined by the Köppen-Geiger classification system (Fig. 2). 
This is one of the most widely used approaches to classify 
regions into zones based on temperature and precipitation 
characteristics. The results of the threshold regression for 
each district are presented in Table S2. Figure 1 shows that, 
on average, districts located in the hot arid interior provinces 
of the Northern Cape and the North West had the highest 
thresholds (provincial average of 33.31 and 33.05) compared 
to districts located in the temperate interior (Mpumalanga 
province) and along the coast (Eastern Cape province) 
27.92 and 26.37, respectively. These are among the hottest 

Table 1   (continued) District Index Coefficient 95% CI IRR p value

zlln DTR  − 0.38  − 1.09 0.33 0.69
Max temp 0.35 0.12 0.59 1.42 ***
Min temp 0.31 0.01 0.61 1.36 **

CI confidence interval, IRR incident rate ratio, max temp maximum temperature, min temp minimum tem-
perature, DTR diurnal temperature range *p < 0.1, **p < 0.05, ***p < 0.01
# Only the first lag results are shown

Fig. 1   Maximum thresholds (in °C) for mortality for each of the 52 districts in South Africa estimated from threshold regression
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provinces in the country, and they have experienced several 
significant heatwaves that have impacted human health in 
recent years (Marue 2016; Mbokodo et al. 2020; van der 
Walt and Fitchett 2021).

Discussion

Our aim was to identify which temperature metric is the most 
important predictor of mortality during summer months. 
This metric can then be considered as an exposure outcome 
towards the development of a HHWS for South Africa. The 
temperature metrics included in this study were maximum 
and minimum temperature and DTR. We also calculated 

district-level thresholds for the most significant metric that 
can be used to issue heat warnings. An important component 
of HHWS involves choosing a temperature metric that is 
most appropriate in terms of prediction for adverse heat-
related health outcomes. However, the SAWS definition of 
extreme heat events does not incorporate the association 
between an exposure metric and a health outcome. 
Therefore, our study aimed to provide recommendations 
based on heat-health evidence.

Based on our analysis of the relationship between three 
daily temperature metrics and mortality during summer 
months, maximum temperature was found to be the best 
predictor of mortality across the country. Daily maximum 
represents the maximum thermal stress experienced by the 

Fig. 2   a Köppen-Geiger map of the climate zones in South Africa (Beck, Zimmermann et al. 2018). b Map depicting provinces of South Africa 
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human body and is therefore commonly used as an exposure 
metric in heat-mortality studies (Tan et al. 2007). This has 
been corroborated by studies that have found strong associa-
tions between maximum temperature and mortality (Davis 
et al. 2016). For example, a study conducted in India, a 
country with hot summers that has experienced several fatal 
heatwaves over the years, found high correlations between 
daily mortality and maximum temperatures during the hot-
test months of the year (April, May, and June) and all were 
statistically significant (Azhar et al. 2014). Also, a study in 
Australia, a region with a climate similar to South Africa, 
found that maximum temperature had a significant effect 
on mortality with a 10 °C increase in daily maximum tem-
perature resulting in an increase of 4.5–12.1% in mortality 
(Vaneckova et al. 2008). In addition, operational HHWS in 
several countries use the exceedance of a maximum tem-
perature threshold to issue heat alerts (Nogueira 2005; Basa-
rin et al. 2020; NHS 2020; Wu et al. 2020). This supports 
the feasibility of recommending maximum temperature as a 
meteorological index for high temperature warnings in South 
Africa.

We also found spatial variation in the distribution of 
maximum temperature thresholds related to the climate 
conditions in local regions. Provinces in hot arid regions 
experienced high district-level average maximum tempera-
ture thresholds. Findings from previous studies suggest that 
populations living in hotter climates cope better in extreme 
heat and therefore temperature thresholds for heat-related 
mortality are higher for warm regions compared to cooler 
areas (Kenny et al. 2019; Kalkstein et al. 2011). An analy-
sis of daily summer temperatures and mortality across the 
ten government regions of England and Wales found that 
regions with hotter climates had higher thresholds for mean 
temperature compared to colder climates (Armstrong et al. 
2011). In a study across seven regions in China, minimum 
mortality temperature was found to be higher in regions with 
warmer climates compared to those with cooler climates 
(Ma et al. 2015). More evidence of the geographical varia-
tion of the temperature-mortality relationship was found in 
a multi-country study where heat thresholds were higher in 
cities with hotter summers (McMichael et al. 2008).

The findings of our study relating to the high maximum 
temperature thresholds for hot regions indicate population 
adaptation to local climate. Previous studies conducted 
across the world also reported similar observations that 
support this hypothesis. For example, the national heat 
index threshold of 40.1 °C used by the US National Weather 
Service to issue heat alerts was found to be ineffective in 
the desert communities of California. The threshold was 
regularly exceeded in these communities, but residents 
are well adapted to extreme heat (Guirguis et al. 2014). In 
Croatia, the analysis of mortality and meteorological data 
over a 26-year period found that thresholds for maximum 

temperature were higher in continental parts of the country 
compared to cooler, coastal areas (Zaninović and Matzarakis 
2014). Another study that compared temperature and 
mortality associations in the UK and Australia found that 
relative risk attributed to the exceedance of heat thresholds 
was lower in Australian cities than in the UK (Vardoulakis 
et  al. 2014). Some of the suggested reasons were the 
physiological acclimatization and behavioral adaptation 
of the population of Australia due to the warmer climate 
(Vardoulakis et al. 2014).

The World Meteorological Organization and World 
Health Organization guidance on the development of HHWS 
acknowledges that there is no preferred meteorological 
variable or exposure metric that is recommended for use 
in HHWS (McGregor et al. 2015). Indicators that are used 
in operational HHWS across the world include maximum 
temperature, minimum temperature, mean temperature, 
apparent temperature, and air mass (calculated by combin-
ing air temperature, dewpoint temperature, total cloud cover, 
sea level pressure, windspeed, and wind direction). How-
ever, for increased effectiveness, heat indicators in HHWS 
should be based on variables that are easy to forecast with 
a certain level of confidence to ensure accurate prediction 
of heat events. According to Pascal et al. (2006), tempera-
ture forecasts up to 5 days in advance are within the accept-
ance level of confidence for heat early warnings. SAWS can 
forecast minimum and maximum temperature up to 3 days 
in advance with a high level of confidence; therefore, our 
study used maximum and minimum temperature and DTR as 
input variables. For future research, we recommend that the 
performance of maximum temperature on forecasted data 
should also be tested to ensure its effectiveness in a HHWS.

Several limitations were considered during this study. 
Firstly, we used all-cause mortality and not exposure to 
excessive natural heat (ICD-10 code X30). Although using 
heat-specific death would increase reliability of results, 
heat-related deaths are often misclassified as deaths due 
to heart attacks, cardiovascular disease, and respiratory 
disease (Basu and Samet 2002). According to the mortality 
dataset, there were about 10 deaths per year recorded as 
being heat-related across South Africa from 1997 to 2013 
which suggests gross underreporting (Stats SA 2014). 
The study also did not account for air pollution (parti-
cles, ozone, nitrogen dioxide, sulfur dioxide, and carbon 
monoxide), rainfall, or humidity which are potential con-
founder of the temperature–mortality relationship. High 
temperatures have been associated with increased levels 
of air pollution which also increases risk of mortality (Hu 
et al. 2022). Therefore, our results could have potentially 
overestimated the effect of heat on mortality due to the 
lack of adjustment for air pollution variables. Lastly, our 
study used mortality as a health outcome; however, hos-
pitalizations (including emergency department visits) and 
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ambulance callouts have been found to capture heat-related 
health outcomes more accurately (Bishop-Williams et al. 
2015; Li et al. 2015). Unfortunately, these data are difficult 
to obtain for South Africa due to controlled access to data, 
the slow pace of migration from hard copy record keeping 
to computerized records, and challenges with data quality.

Conclusions

Effective and efficient HHWS require that threshold 
values be informed by epidemiological studies assessing 
temperature–mortality relationship. The results of our analysis 
suggest that the development and implementation of HHWS 
should be country specific, taking the local climate into account 
in order to reduce heat-related mortality and morbidity. This 
study investigated which temperature index (maximum and 
minimum temperature or a combination of both) has the 
potential to be incorporated into a HHWS design that takes 
associations with a health outcome (in this case, mortality) 
into consideration. Maximum temperature was the most robust 
predictor of all-cause mortality, and thresholds varied across the 
country depending on the local climate. Based on the findings, 
this study recommends a HHWS incorporating district-level 
maximum temperature thresholds to issue heat alerts.
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