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Abstract
High-altitude environments are highly susceptible to the effects of climate change. Thus, it is crucial to examine and understand 
the behaviour of specific plant traits along altitudinal gradients, which offer a real-life laboratory for analysing future impacts 
of climate change. The available information on how pollen production varies at different altitudes in mountainous areas is 
limited. In this study, we investigated pollen production of 17 birch (Betula pubescens Ehrh.) individuals along an altitudinal 
gradient in the European Alps. We sampled catkins at nine locations in the years 2020–2021 and monitored air temperatures. 
We investigated how birch pollen, flowers and inflorescences are produced in relation to thermal factors at various elevations. 
We found that mean pollen production of Betula pubescens Ehrh. varied between 0.4 and 8.3 million pollen grains per catkin. 
We did not observe any significant relationships between the studied reproductive metrics and altitude. However, minimum 
temperature of the previous summer was found to be significantly correlated to pollen (rs = 0.504, p = 0.039), flower (rs = 0.613, 
p = 0.009) and catkin (rs = 0.642, p = 0.005) production per volume unit of crown. Therefore, we suggest that temperature 
variability even at such small scales is very important for studying the response related to pollen production.

Keywords Plant ecology · Elevation · Mountain-valley gradient · Thermal factors · Reproduction · Air temperature

Introduction

Plant traits such as phenology and tree growth have 
been repeatedly reported to be very sensitive to ongoing 
climate change (Dobbertin 2005; Menzel et  al. 2006, 
2020). For plant species, this sensitivity is amplified at Athanasios Damialis and Susanne Jochner-Oette equally 
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the limits of species distribution (Mellert et al. 2016), 
where the ecological conditions do not meet the optimal 
requirements for plant survival and growth. Cold-
adapted plant species growing at higher elevations in the 
European Alps are especially susceptible to the effects of 
climate change (Albrich et al. 2020; Engler et al. 2011), 
and tree species at the tree line were reported to be more 
sensitive to environmental changes (Wielgolaski et al. 
2017). In general, mountain ecosystems allow studying 
climate change impacts as they cover a variety of changes 
related to abiotic and biotic factors along the elevational 
gradient (Tito et al. 2020). For instance, air temperature 
decreases by on average 0.5  °C for every 100  m of 
elevation, as reported for the Bavarian Alps, Germany 
(Kirchner et al. 2013). Studying plant responses using 
such lapse rates can be easily translated into thermal 
responses as often applied in phenological research 
(Cerlini et al. 2022; Damialis et al. 2020; Jochner et al. 
2012). The plants’ behavior along an altitudinal gradient 
provides indications on potential impacts of climate 
change at small horizontal distances (Damialis et  al. 
2011; Jochner et al. 2012).

It is already widely documented that the flowering time 
of many spring flowering species has shifted earlier in the 
year due to increases in temperature (Khanduri et al. 2008; 
Menzel et al. 2020; Ziello et al. 2009). In addition to this 
well-known response in phenology, pollen production of dif-
ferent species was found to be affected by factors related to 
global change (Ladeau and Clark 2006; Ziska et al. 2003). 
However, most of these studies refer to warming experi-
ments, and only very few studies assessed climate change 
impacts in real-life ecosystems, either in urban or rural and 
mountainous environments (e.g. Charalampopoulos et al. 
2013; Damialis et al. 2011, 2020; Jochner et al. 2012).

Knowledge of changes in pollen production is important 
for inter alia predicting crop yield in agriculture (González-
Fernández et  al. 2020) and seed production in forestry 
(Allison 1990). Furthermore, exposure to airborne 
pollen of certain plant taxa provoke immune responses 
and allergic symptoms in sensitized individuals (Buters 
et al. 2012; D’Amato et al. 2007; Damialis et al. 2019). 
Even though there are sophisticated European models 
of airborne pollen abundance and timing (e.g. SILAM, 
Sofiev et al. 2015) including inter-seasonal variations of 
the potential amount of pollen emission (Verstraeten et al. 
2019), most of them have not incorporated information on 
pollen production, which undoubtedly plays a vital role in 
forecasting the intensity of the airborne pollen season and 
associated allergic symptoms. Information on individual-
specific values of pollen production can help understand 
the involved processes that contribute to modifications of 
pollen concentrations and hence might be important for 
implementation in pollen forecasting systems.

The assessment of pollen production and the extraction 
methods are not standardized, and most previous studies 
were descriptive in nature reporting quantitative estimates of 
single species and/or single locations (Fernández-González 
et al. 2020; Hidalgo et al. 1999; Khanduri and Sharma 2009; 
Molina et al. 1996; Subba Reddi and Reddi 1986). The spa-
tial extent is larger (horizontally or vertically) when examin-
ing the influence of urbanization or altitude as these studies 
are based on environmental gradients (Damialis et al. 2011; 
Fotiou et al. 2011; Jochner et al. 2011; Ziska et al. 2003). 
However, there is still limited research on flower and/or pol-
len production along elevation gradients. This understanding 
is important since it would give information on the plant’s 
plasticity and how different environmental conditions impact 
reproductive traits (Charalampopoulos et al. 2013). Few 
studies assessed and attempted to explain pollen production 
of several woody species along elevation gradients, namely 
Corylus avellana, Cupressus sempervirens, Olea europaea, 
Pinus halepensis, Platanus orientalis and Quercus coccifera, 
mostly in Mediterranean regions (Aguilera and Valenzuela 
2012; Charalampopoulos et al. 2013; Damialis et al. 2011; 
Rojo et al. 2015), and Alnus incana in the Nordic region 
(Moe 1998). Reproduction studies conducted along altitu-
dinal gradients mainly focus on characteristics of seeds, e.g. 
seed quality, germination rate or weight (Allen et al. 2012; 
2014). For birch species, Holm (1994) studied the repro-
ductive patterns along an altitudinal gradient in Northern 
Sweden. So far and to the best of our knowledge, no previous 
study has investigated the variation of pollen production of 
birch at different altitudes. There has been a general lack of 
studies examining the pollen production of anemophilous 
species within alpine ecosystems as well as in the European 
Alps. In contrast, there are some studies on differences in 
birch pollen concentration in ambient air along altitudinal 
gradients in the Alps (Gehrig and Peeters 2000; Jochner 
et al. 2012; Wörl et al. 2022) and on pollen abundance and 
its correlation with allergic symptoms and immune reactions 
in sensitised patients (Damialis et al. 2019).

Birch (Betula spp.) trees are widely distributed across 
the Northern Hemisphere (Atkinson 1992), and their pol-
len are highly allergenic (D’Amato et al. 2017) and present 
a major cause of allergic rhinitis in central and northern 
Europe (Biedermann et al. 2019). They often grow in low-
lands, although they are also present at higher altitudes 
(Emberlin et al. 2002). In Germany, birch is found up to 
an altitude of approx. 1800 m a.s.l. (DWD 1991). The lat-
est citizen-science generated data demonstrated that Betula 
pubescens (downy birch) can occur at altitudes as high as 
1840 m a.s.l., and Betula pendula (silver birch) was found 
at a maximum altitude of 1610 m a.s.l. in the Bavarian 
Alps (BAYSICS Webportal). Based on future projections 
using IPCC scenarios, birch trees in Bavaria are anticipated 
to become less common at lower elevations but shift their 
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treeline and become more dominant at higher elevations in 
the Bavarian Alps over the next half century (Rojo et al. 
2021). Spatiotemporal studies on birch pollen concentrations 
in the Bavarian Alps have also shown the effect of differing 
meteorological conditions such as wind patterns on birch 
pollen concentration (Jochner et al. 2012). Therefore, the 
estimation of actual and prospective pollen production and 
knowledge on spatial and temporal variations are important 
for forecasting future effects on respiratory allergies.

In the current work, we studied pollen production of 
Betula pubescens along a valley-mountain gradient in the 
Bavarian Alps for 2 consecutive years (2020 and 2021). The 
main aim of this work was to quantify the production of 
birch pollen, flowers and inflorescences (i.e. catkins) at sites 
ranging from 700 to 1220 m a.s.l. In addition, the relation-
ship between reproductive metrics and thermal parameters 
was studied.

Materials and methods

Study area

The study area was located in southern Bavaria (Germany) 
and Tyrol (Austria) in the topographically complex region of 
the Zugspitze area (Fig. 1). With 2962 m a.s.l., the Zugspitze, 
which belongs to the Northern Limestone Alps in the Wetter-
stein Mountains, presents the highest mountain in Germany 

(Jochner et al. 2012). The birch trees were located in the 
city of Garmisch-Partenkirchen (700 m a.s.l.) and followed 
an altitudinal gradient up to the lake Eibsee (1000 m a.s.l.) 
and Ehrwald in Austria (1100 m a.s.l.). The highest location 
was at 1220 m a.s.l. (Ehrwald Cable Car Station); thus, the 
study covers an elevational gradient of 522 m. At lower sites, 
meadows are dominating; at higher elevations until approx. 
1800 m, forests with spruce as the dominating tree species.

The average annual temperature recorded at Garmisch-
Partenkirchen is 7.7  °C and the average precipitation 
sum amounts to 1373  mm (1991–2020). For the years 
2019–2021, the average temperature and total precipita-
tion at Garmisch-Partenkirchen are 7.9 °C and 1315 mm 
(in 2019), 6.1 °C and 1419 mm (in 2020), and 7.4 °C and 
1434 mm (in 2021), respectively (Fig. 2) (DWD 2022).

Birch tree selection and inflorescence sampling

For assessing pollen production, we studied the species Bet-
ula pubescens Ehrh. The selection of individual trees was 
based on their presence, and the criteria of accessibility of 
the site and the reachability of catkins. Consideration was 
given to have at least one site for every 100 m of differ-
ence in elevation and to have representatives especially at 
the lowest (700–900 m; nine individuals) and highest sites 
(> 1100 m; six individuals) (Table 1). We collected inflores-
cence samples from 17 trees at nine locations (Table 1) in 
spring 2020 and 2021.

Fig. 1  Location of the study sites in Germany/Austria (Eurostat GISCO) and in the Zugspitze region (NASA JPL 2020). Red dots: nine birch 
tree locations (with in total 17 birch individuals). White font locations are in Germany and black font locations are in Austria
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After catkin elongation was initiated and before 
anthesis, male catkins with mature and closed anthers 
were collected in March and April 2020 and 2021. Cat-
kins were harvested in all four cardinal directions from 
various branches at reachable heights (1.5 to 2 m a.g.l.). 
We also assessed tree parameters that were used for the 
extrapolation of pollen production from catkins to the 
crown volume: the height of the crown using Suunto PM-
5/1520PC Height Meter and the crown diameter, which 
was computed by averaging the crown’s two widest per-
pendicular diameters. We counted the number of catkins 
inside a sampling cuboid in the crown with a volume of 
50 cm × 50 cm × 50 cm and selected those areas of the 
tree crown that represent the typical distribution of catkins 
(Damialis et al. 2011).

Pollen extraction method

We adapted the method of Damialis et al. (2011) for the 
extraction of birch pollen grains from closed inflores-
cences. The length and width (at the broadest point) of 
one medium-sized inflorescence from each cardinal direc-
tion and per tree were measured, and the number of flow-
ers was counted. Then, each catkin was immersed in a 
10% KOH solution overnight (Faegri et al. 1989; Moore 
et al. 1991; Ranpal et al. 2022). After boiling the solu-
tion the next day at 120 °C for 10 min, the soft catkin was 
mashed with a glass rod to discharge pollen. We added 
a bipolar solvent, glycerol (70%), to a volume of 20 mL 
(Ranpal et al. 2022) to prevent pollen from clustering 
(Shivanna and Rangaswamy 1992); safranin was applied 
as a stain. Using a VITLAB® micropipette, two aliquot 
samples (10 µL each) of each suspension were taken 
while the mixture was continuously stirred to achieve 
homogeneity. The extraction was then placed on micro-
scope slides and covered with slips. We then counted the 
pollen grains on these slides using a 100 × magnification 
(Zeiss AXIO Lab.A1, Germany). In case of a substantial 
difference in the pollen counts between these two slides 
(> 30%), the progress was repeated to increase homogene-
ity of the suspension.

We estimated pollen production for different scales fol-
lowing the formulae mentioned by Damialis et al. (2011). 
The number of pollen grains per catkin (Pca) was calculated 
by multiplying the number of pollen grains on a microscope 
slide with the ratio of the volumes of the suspension (20 mL) 
and the sample taken (10 µL). Following, the number of 
pollen grains per flower ( P

f l
 ) was derived as a quotient of 

Fig. 2  Monthly meteorological data recorded at DWD station 
Garmisch-Partenkirchen for the years 2019–2021. Solid lines show 
monthly average temperature: 2019 (orange), 2020 (dark blue) and 
2021 (red) and blue bars the monthly precipitation sum: 2019 (dark 
blue), 2020 (blue) and 2021 (light blue). x-axis: months, left y-axis: 

monthly mean temperature in °C, right y-axis: monthly precipitation 
sum in millimetres. Mean values (1991–2020) are displayed as black 
dashed line (temperature) and grey bars (precipitation sum). Data: 
DWD 2022

Table 1  Description of the location of the trees selected for studying 
their pollen production, including their coordinates, mean altitude 
(m a.s.l.) and number of the trees at each site in the Garmisch-
Partenkirchen area

Location Coordinates Altitude 
(m a.s.l.)

n trees

Kurpark N 47°29′46″E 11°05′26″ 696 1
Hindenburg N 47°29′47″E 11°06′19″ 706 1
Alpspitzbahn N 47°28′18″E 11°03′40″ 749 2
Riessersee N 47°28′47″ E 11°04′53″ 781 2
Griesen N 47°28′40″ E 10°56′27″ 824 3
Eibsee N 47°27′38″ E 10°59′14″ 982 1
Eibsee Alm N 47°27′16″ E 10° 59′34″ 1,011 1
Ehrwalder Alm N 47°23′17″ E 10°56′17″ 1,102 3
Ehrwald Zugspitzbahn N 47°25′36″ E 10°56′30″ 1,218 3
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Pca divided by the numbers of flowers per catkin (Flca). The 
number of pollen grains per volume unit (1  m3) of crown 
(Pvuc) was determined by multiplying Pca with the ratio of 
the number of catkins per crown sampling unit (Csu) and 
the volume of the sampling unit (0.125  m3). In addition, the 
number of flowers (Flvuc) and catkins (Cvuc) per volume unit 
of crown was extrapolated.

Environmental data

To assess the influence of temperature on pollen production, 
we positioned nine loggers with radiation shields (HOBO 
Pro v2 U23-001, Onset, Bourne, MA, USA). Each logger 
was set up at a height of 2 m a.g.l. on the northern side of 
one birch tree from one location, which recorded tempera-
ture at 10-min intervals from February 2020 until June 2021. 
A new HOBO logger was installed at the location Griesen in 
January 2021 as the previous one was lost, and no data were 
available for this site until December 2020. The location’s 
missing daily temperature data were interpolated applying 
linear regression with daily temperatures and altitudes of the 
other eight loggers. The root-mean-square errors (RMSE) 
between predicted and observed daily mean temperature dur-
ing January until June 2021 were 1.2. The software package 
HOBOware (Version 3.7.23; Onset, Bourne, Massachusetts, 
USA) was used to download the data from the loggers and 
to export the raw data as text files.

We focussed on temperatures measured in the summer 
previous of flowering, since this period is assumed to be 
important for pollen production (Ranpal et al. 2022), as cat-
kins already start to develop and elongate (Dahl and Strand-
hede 1996). Thus, we were able to compare temperature 
data of 2020 with pollen production of 2021. For the first 
study year, we cannot resort to 2019 data; thus, we link pol-
len production of 2020 to March temperatures of 2020. For 
comparison, we also link 2021 pollen data to 2021 March 
temperatures.

Furthermore, we calculated growing degree-days (GDD; 
in °C) of summer 2020 (June–August) by cumulating posi-
tive differences between the daily mean temperature (derived 
as an average of Tmax and Tmin) and a threshold temperature. 
In our study, we used a base temperature of 5 °C (Bucher 
et al. 2018; Estrella and Menzel 2006).

Statistical analyses

All levels of flower, catkin and pollen production were 
checked for normality using Shapiro–Wilk test, which 
revealed that these reproductive measures were not nor-
mally distributed. Non-normality was dealt with by using 
non-parametric tests.

We examined differences between sampling years using 
the non-parametric Mann–Whitney U test and applied 

Spearman’s correlations to analyse association between 
altitude and reproductive metrics. In addition, the influ-
ence of the altitude on the tree-specific differences in 
reproductive metrics between 2021 and 2020 was checked. 
To investigate the effect of environmental factors on pol-
len production of birch along the elevational gradient, we 
compared reproductive metrics with temperature variables 
(Tmean, Tmin, Tmax, GDD).

All statistical analyses were carried out with R version 
4.2.2 (R Core Team 2020).

Results

Pollen, flowers and catkins production

Pollen production per catkin (Pca) for all selected 17 birch 
trees in the area of Garmisch-Partenkirchen was 5.23 ± 1.52 
million pollen grains in 2020 and 2.51 ± 1.23 million pol-
len grains in 2021 (see Table 2). Pca varied within a wide 
range from approx. 400,000 (minimum of 2021) to 8.3 mil-
lion pollen grains (maximum of 2020). Pca in 2021 was 
52% lower compared to 2020 when regarding mean values. 
The number of catkins in a crown sampling unit (Csu; 0.125 
 m3) ranged between 1 (minimum of 2021) and 50 (maxi-
mum of 2020) with an average of 28 catkins in 2020 and 
5 catkins in 2021 (− 82%). In addition, all other estimated 
parameters, i.e. pollen production per flower (Pfl), per vol-
ume unit of crown (Pvuc) and the number of flowers per 
catkin (Flca), were consistently higher in 2020, which does 
not only apply to mean, but also to minimum and maximum 
values (Table 2).

Year‑to‑year variation in reproductive metrics

The Mann–Whitney U test revealed that the means of all 
reproductive metrics except for flowers per catkin (Flca) 
(p = 0.214) were significantly different between 2020 and 
2021. In each case, the percentage change was positive, i.e. 
the highest values were measured in 2020. Figure 3 shows 
exemplary the differences of Pfl, Pca, Pvuc, Flca, Flvuc and Cvuc 
between 2020 and 2021.

Effects of altitude and temperature on reproductive 
metrics

Altitude

In 2020, there were no significant correlations between the 
reproductive metrics and altitude (Table 3). In 2021, some 
correlation coefficients increased in magnitude, but were 
not statistically significant (marginally significant for Flvuc, 
rs =  − 0.446, p = 0.073 and Cvuc, rs =  − 0.443, p = 0.075).



1130 International Journal of Biometeorology (2023) 67:1125–1139

1 3

Figure 4 illustrates the relationship between altitude and 
reproductive metrics estimated in 2020 and 2021. Espe-
cially in 2020, but also in 2021, there is a large scattering, 

which was also reflected by the non-significant relationship 
(Table 3). Regression lines were added in case of marginally 
significant relationships.

Table 2  Descriptive statistics of pollen production per flower (Pfl), 
per catkin (Pca) and per volume unit of crown (Pvuc); flower produc-
tion per catkin (Fca) and per volume unit of crown (Flvuc) and catkin 
production per crown sampling unit (Csu; 0.125  m3) and per volume 

unit of crown (Cvuc) estimated for 17 selected birch trees along an 
altitudinal gradient in the Garmisch-Partenkirchen area during 2020–
2021. The second last column indicates the results of the Mann–
Whitney U test for comparison of means

Reproductive 
metric

Year Minimum Maximum Mean Median Standard devia-
tion

W statistic (p value) Difference 
2020 to 2021 
(in %)

Pollen production
Pfl 2020 20,442 79,007 45,738 44,886 13,041 256 (≤ 0.001) 48%

2021 4,445 56,139 23,639 23,154 12,798
Pca 2020 2,197,500 8,257,667 5,228,025 5,255,750 1,521,924 262 (≤ 0.001) 52%

2021 398,667 5,409,250 2,507,427 2,412,500 1,230,822
Pvuc 2020 187,620,000 2,039,200,000 1,095,620,550 929,480,000 562,490,982 287 (≤ 0.001) 91%

2021 6,378,672 482,500,000 96,997,804 69,294,000 109,138,708
Flower production
Flca 2020 84 146 115 114 16 181 (0.214) 6%

2021 77 125 108 112 14
Flvuc 2020 4560 42,560 25,163 24,240 12,085 278 (≤ 0.001) 82%

2021 896 20,800 4314 2712 4800
Catkin production
Csu 2020 5 50 28 25 14 276 (≤ 0.001) 82%

2021 1 25 5 3 6
Cvuc 2020 40 400 223 200 108 276 (≤ 0.001) 82%

2021 8 200 41 24 46

Fig. 3  Boxplots based on (a) Pfl, (b) Pca, (c) Pvuc, (d) Flca, (e) Flvuc 
and (f) Cvuc estimated for 17 trees along an altitudinal gradient in 
the Garmisch-Partenkirchen area for 2020 and 2021. The interquar-
tile range (IQR) is represented by the height of the boxes, maximum 

and minimum values by the upper and lower whiskers, the median by 
bold horizontal lines in the boxes, dots represent observations exceed-
ing or falling below 1.5 times the IQR
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Figure 5 demonstrates the differences in the selected 
reproductive metrics (Pca, Flca and Cvuc) between 2020 and 
2021. Though the correlations are all non-significant, some 
interesting patterns can be revealed: Only two trees, located 
above 1100 m a.s.l., were linked to a negative Pca value, i.e. 
higher pollen production, in 2021 (Fig. 5a). Three trees at 
the highest location (Ehrwald Zugspitzbahn; EZ) showed 
relatively small differences, but two trees at Ehrwalder Alm 
(EA) the largest differences. No or a very small differences 
in Flca between 2020 and 2021 were obtained for trees at 
Alpspitzbahn (AB; 749 m a.s.l.) and Kurpark (KP; 696 m 

a.s.l.). Four trees were linked to less flowers in 2021, the rest 
to more flowers. A clearer pattern was seen for the differ-
ences in Cvuc between 2020 and 2021. Here, only one tree 
(located at Riessersee; RS) was associated to a lower number 
of catkins in 2020. However, correlation analyses revealed 
no significant relation to altitude.

Temperature

In general, mean summer temperatures (June–August 2020) 
recorded at each site were negatively and strongly correlated 

Fig. 4  Scatterplots of altitude and Pfl in 2020 (a), 2021 (b); Pca in 
2020 (c), 2021 (d); Pvuc in 2020 (e), 2021 (f); Flca in 2020 (g), 2021 
(h); Flvuc in 2020 (i), 2021 (j); and Cvuc in 2020 (k), 2021 (l) esti-

mated for 17 trees in the Garmisch-Partenkirchen area. Regression 
lines were added in case of marginally significant relationships

Fig. 5  Scatterplots of the difference in the selected reproductive met-
rics (a) Pca, (b) Flca and (c) Cvuc between 2020 and 2021 estimated 
for 17 trees in the Garmisch-Partenkirchen area (locations: AB, Alp-

spitzbahn; EA, Ehrwalder Alm; EZ, Ehrwald Zugspitzbahn; KP, Kur-
park; and RS, Riessersee) and respective altitudes
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with altitude (rs =  − 0.940, p < 0.001). GDD of the same 
period was also negatively and strongly correlated with 
altitude (rs =  − 0.880, p < 0.001). The highest temperature 
mean (17.8 °C), considered for the period of June–August 
2020, was measured at Hindenburg (706 m a.s.l.), which is 
one of the lowest locations of the study. The lowest mean 
annual temperature (14.8 °C) was recorded at the highest 
site, at Ehrwald Zugspitzbahn (1218 m a.s.l.) (Table 1). The 
sites with the highest (Hindenburg; 5.0 °C) and the lowest 
(Ehrwald Zugspitzbahn; 1.7 °C) temperature mean recorded 
in March 2020 were the same as mentioned above.

The relationships with reproduction metrics and tem-
perature variables (minimum, mean, maximum tempera-
ture and GDD) were not statistically significant in 2020, 
the year in which the highest pollen and catkin production 
was observed. For 2021, however, we found some significant 
correlations. Cvuc was significantly (p = 0.005) correlated to 
summer Tmin (rs = 0.642). Since the amount of catkins in 
a sampling volume also influences the reproduction meas-
ures Flvuc and Pvuc, positive and significant relationships 
were also derived in these cases: Flvuc and summer Tmin 
(rs = 0.613, p = 0.009), Pvuc and summer Tmin (rs = 0.504, 
p = 0.039). Interestingly, other temperature variables calcu-
lated for the period June to August (mean and maximum 
temperatures, GDD) were not significantly associated to 
any of the reproductive metrics. Instead, March tempera-
tures were sometimes superior in describing the relationship. 
The highest correlation was achieved with Pvuc and GDD 
(rs = 0.774, p = 0.000). In summary, warmer conditions were 
related to higher pollen and flower production, which was 
only obvious for higher levels, i.e. for the volume unit of the 

crown, as a result of the temperature dependency of catkin 
numbers in 2021.

For visualization (Fig. 6), we focused on the relationships 
with reproductive metrics estimated in 2021 and minimum 
summer temperature in 2020. The subplots (a), (b) and (d) 
in Fig. 6 demonstrate that pollen and flower production of 
male inflorescences in 2021 was random with respect to the 
Tmin of the previous summer. However, an increase in the 
number of pollen, flowers and catkins per volume unit of 
crown was observed with higher values of Tmin in summer 
2020 (Fig. 6c, e, f).

Discussion

The value of gradient studies in pollen research

Long-term studies can profit from almost constant site con-
ditions (soil type, edaphic regime) and varying meteorologi-
cal conditions across years that may allow for calculating 
trends or response rates based on the same individual and 
therefore excluding genetic variability (Jochner et al. 2013a). 
Studies along altitudinal gradients can be affected by several 
factors such as complex environmental heterogeneity and 
extreme geography (Körner 2007). As the space-for-time 
approach also includes a multitude of different individuals 
at various sites, differences in local environmental factors, 
e.g. soil conditions, nutrient availability and water supply 
as well as differences in pollution or other factors related to 
local climate and genetics might exert additional influences. 
Thus, gradient studies do not only account for differences in 

Fig. 6  Relationship between (a) Pfl 2021, (b) Pca 2021, (c) Pvuc 2021, (d) Flca 2021, (e) Flvuc 2021 and (f) Cvuc 2021, and summer Tmin of 2020 
for 17 birches along the altitudinal gradient in the Garmisch-Partenkirchen area. Regression lines were added in case of significant relationships
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temperature, which is, however, the most important variable 
when the effect of climate change is aimed to be assessed.

Pollen, flowers and catkins production

In the present study, we investigated how reproductive met-
rics of Betula pubescens trees differ in 2 consecutive years 
along an altitudinal gradient in the Bavarian Alps. We esti-
mated mean pollen production values at the level of catkins 
ranging between 5 and 2.5 million. This estimate is com-
parable to that published by Erdtman (1954), who reported 
a value of 6 million pollen grains per inflorescence for B. 
pubescens. Our mean value, however, is an average of the 
estimates from 17 downy birch trees growing in various 
elevations for 2 years (n = 34). According to Ranpal et al. 
(2022), a catkin from Betula pendula (silver birch) produces 
on average 1.7 million pollen grains. Such estimations of 
pollen production might be important to assist pollen emis-
sion parameterization since commonly, their proxies were 
only related to plant characteristics such as leaf area index 
and canopy height (Helbig et al. 2004).

Estimation of pollen production by counting all pollen on 
microscope slides is a labour- and time-intensive method. 
Improved pollen counting methods, such as a cell counter 
(Kakui et al. 2020) or automatic identification of the num-
ber of pollen grains on microscopic slides (Kadaikar et al. 
2019), would make the method more efficient.

Year‑to‑year variation in reproductive metrics

The year 2020 was found to be a pollen- and catkin-rich year: 
We estimated on average 109% more pollen grains per catkin 
than in the following year. In addition, the number of catkins 
per volume unit of crown was 460% higher in 2020, but 
the number of flowers per catkin was only changed slightly 
(+ 6%) and associated to a non-significant difference.

Flower numbers were not substantially different between 
years. The number of anthers per flower is genetically fixed 
and does not vary substantially (Fernández-González et al. 
2020; Hidalgo et al. 1999; Subba Reddi and Reddi 1986). 
In the case of birch, flowers per catkin seem to have the 
most homogenous value among clones and years (Ranpal 
et al. 2022). However, the number of flowers per volume unit 
of crown was also calculated by multiplying the number of 
flowers of single catkins by the abundance of catkins within 
the volume. Thus, the number of catkins, which can largely 
differ between trees and years, is the most decisive factor for 
the value obtained for flowers per volume unit of a crown.

In general, reproductive metrics in birch trees can vary 
greatly from year to year, as found by Jato et al. (2007), 
Damialis et al. (2011) and Ranpal et al. (2022). Alternat-
ing patterns of flower (and seed) production are related to 
masting behaviour, an inherent common feature in temperate 

tree species that occurs, in the case of birch, every second or 
third year (Detandt and Nolard 2000; Latałowa et al. 2002). 
Given that the catkin (more than 10 times) and pollen pro-
duction (3 times) were extraordinarily high in 2020, one 
may assume that this year was a masting year. At a seed 
plantation in Baden-Württemberg, Germany (distance to 
Garmisch-Partenkirchen approx. 210 km), Ranpal et al. 
(2022) also found that mean Csu of a total of 28 trees in 2020 
was two times higher than in the preceding year and the sub-
sequent year. Data obtained from our pollen monitoring site 
in Eichstätt, Bavaria (distance to Garmisch-Partenkirchen 
approx. 160 km), also indicated that 2020 was linked to a 
high pollen load in the air: Here, an APIn (annual pollen 
integral) of 8720 pollen grains*day/m3 was measured, com-
pared to only 1923 pollen grains*day/m3 in the following 
year (unpublished data). In general, for defining mast years, 
a longer time-series would be needed for a detailed iden-
tification and evaluation (LaMontagne and Boutin 2009). 
The delineation of mast years is mostly based on concepts 
that include the coefficient of variation that accounts for the 
mean and standard deviation, but consistent and generally 
applicable methods are not available (LaMontagne and Bou-
tin 2009). In the case of pollen, one reason might be the 
underrepresentation of studies addressing flower masting 
(Pearse et al. 2016; Satake and Iwasa 2002).

Thus, the lack of studies related to flower masting along 
altitudinal gradients is not surprising. This is in contrast to 
seed masting, where changes of temporal patterns of mast-
ing were inter alia already linked to the variation in climatic 
conditions along elevational gradients (Masaki et al. 2020). 
The authors found that mean fruiting density and fruiting 
frequency of Quercus crispula decreased with elevation, 
while the annual variation in fruiting density increased. 
Therefore, harsh environmental conditions (e.g. low tem-
peratures) at high elevations might be linked to a reduced 
photosynthetic production and increased masting (Masaki 
et al. 2020). In our study, which was only based on two con-
secutive years, we found no significant dependency between 
the deviation from 2020 and 2021 in pollen, flower or catkin 
production and altitude (Fig. 5). In 2020, the vast majority 
of selected trees synchronously produced a higher amount 
of pollen, flowers and catkins. However, it was obvious that 
two trees located at high elevations were the only exceptions 
showing a negative deviation (i.e. higher flower and pol-
len production per catkins in 2021). The number of catkins 
produced in 2021 for those trees, however, was very low as 
well; thus, the pollen or flower production based on larger 
units (i.e. volume unit of the crown) was still higher in 2020. 
These findings also point to the need for defining and cat-
egorizing (flower) masting since reproductive metrics can be 
altered differently. For this reason, a larger dataset including 
more observation years and more birch trees, e.g. located at 
even harsher sites, would be desirable.
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It should be noted (but must remain unevaluated) that the 
masting year has occurred (in 2020) after the year (2019) 
with the highest temperature (7.9 °C) and lowest precipita-
tion sum (1315 mm), registered in Garmisch-Partenkirchen 
in the period of 2019–2021. This also calls for the installa-
tion of a long-term monitoring in order to be able to under-
stand the influence of meteorology on masting years in more 
detail.

Effects of altitude and temperature on reproductive 
metrics

Altitude

We found that there were no prominent changes in the ana-
lysed reproductive traits with increasing altitude (Table 3; 
Fig. 4). The results of very few prior studies studying pol-
len production along altitudinal gradients showed that there 
is no conclusive evidence on the associated relationships 
with increased elevation since a decrease in pollen produc-
tion (Markgraf 1980; Moe 1998), an increase (Aguilera and 
Valenzuela 2012) or no significant change (Charalampopou-
los et al. 2013; Hasegawa et al. 2022) was observed. Agu-
ilera and Valenzuela (2012) argued that higher olive pollen 
production observed at elevated regions might be related 
to intrinsic mechanisms of these trees to compensate for a 
limited pollination efficiency and a shorter growing period. 
However, these results may also be affected by human inter-
ventions (cutting) that may have a masking effect on pol-
len production. However, in some of the studied species at 
Mount Olympos, pollen and inflorescence traits at the higher 
reproduction level (e.g. per individual tree) were decreased 
with increasing altitude (Charalampopoulos et al. 2013). In 
this study, we decided not to integrate the number of pollen, 
flowers or inflorescences per individual, since this meas-
ure is strongly dependent on the age and height of a tree 
that considerably varies along the gradient under investiga-
tion. In addition, extrapolating production estimates to the 
whole tree is based on the assumption of a simplified geo-
metric shape of the tree (Molina et al. 1996). However, this 
potential geometric shape differs from its original form to a 
certain extent, implying uncertainties in the estimation for 
the level of an individual tree. All variables based on a spe-
cific volume are believed to be superior indicators of pollen 
production, since they account for the pollen produced per 
catkins and the number of catkins in a standard volume (1 
 m3). Some studies, such as those by Bogawski et al. (2019) 
and Katz et al. (2020), have used LiDAR data to determine 
crown parameters, which were used for estimating pollen 
production per tree or tree stand.

The result of this study indicated that the number of 
male inflorescences per crown sampling unit (Csu) in 2021 
decreased along the gradient (rs =  − 0.443, p = 0.075, 

Table 3). Thus, compensation for pollen limitation might 
more strongly affect the pollen produced by single inflores-
cences. Fernández-González et al. (2020) found that smaller 
sized tree species of the genus Quercus attempt to produce 
a higher amount of pollen per anther to ensure fertilization.

Temperature

Although we found a strong and significant relation with 
temperature and altitude, those variables associated to tem-
perature showed stronger and more significant correlations 
than altitude alone. This also points to the fact that tempera-
ture measurement should be implemented in any altitudinal 
gradient studies.

In 2021, we detected an increased catkin formation at 
warmer (lower) locations, which was also reflected in the 
reproductive metrics whose computations were based on the 
number of catkins. Our results indicated that minimum tem-
perature was superior in any statistical analyses than mean 
and maximum temperatures or even GDD.

Non-significant relationships with temperature were 
found in 2020, the assumed mast year. The reason might 
be that the amount of pollen and inflorescences produced 
by the selected birch trees in our study was most probably 
regulated by the resource balance of the trees, and mast-
ing-associated parameters masked other influences and 
variability present in normal reproductive years. Accord-
ing to the resource budget model, masting can occur due to 
plants’ resource balance even in the absence of interannual 
environmental variations (Isagi et al. 1997). In general, 
pollen concentration and therefore pollen availability is 
reduced at higher elevations due to a decreasing preva-
lence of birch trees (Charalampopoulos et al. 2013; Joch-
ner et al. 2012). A lower availability of birch pollen might 
also cause low seed production. Following the resource 
storage hypothesis, this may affect resource accumulation 
resulting in more flowering/fruiting (Bogdziewicz et al. 
2020) as observed in our study in 2020. Therefore, the fact 
that birch is only seldom represented at higher altitudes 
in our study area, might also affect its resource budget, 
which could mask the influence of environmental factors 
such as temperature.

Existing studies indicate varying relationships between 
temperature and pollen production. Jochner et al. (2013b) 
found a significant reduction in pollen production per cat-
kin in silver birch (Betula pendula Roth) at urban locations 
(under higher temperatures) in Munich (Germany). The 
authors argued that conditions in urban areas might have a 
negative effect on the physiology of birch and thus on pol-
len production. On the other hand, an urban gradient study 
indicated that an increase in temperature increased the pol-
len production of other species such as common ragweed 
(Ambrosia artemisiifolia, Ziska et al. 2003).
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In general, microclimate is believed to have a strong 
impact on pollen production (Aguilera and Valenzuela 
2012); therefore, a variability is quite expected and would 
be even more pronounced when studying a larger altitudinal 
gradient. With the calculated temperature lapse rates in this 
study (season-depended varying between 0.4 and 0.6 °C; 
not shown in the results section) and the given gradient of 
522 m, a temperature difference of 2.1 and 3.1 °C might 
be too low to observe strong effects on pollen, flower and 
inflorescence production.

Effects of other environmental parameters

In addition, other information than air temperature might 
be important: A study in alpine environments by Scherrer 
et al. (2011) found significant fluctuations in soil tempera-
ture of up to 4 °C depending on slope aspect and topography. 
Because of this, even trees at the same location and similar 
altitude are exposed to different microclimatic conditions 
that might affect reproductive traits.

Air pollutants such as nitrogen dioxide  (NO2) might 
reduce (Jochner et al. 2013b) or increase pollen produc-
tion of birch (Zhao et al. 2017). In addition, ozone  (O3) 
was also found to affect birch reproduction (Darbah et al. 
2008). Birch trees growing in areas with higher  NO2 levels 
were found to be more often affected with birch idaeovirus 
(Gilles et al. 2023), and such biotic stress could further influ-
ence the reproduction of infected trees. These pollutants are 
likely to change with increasing elevation and should also be 
incorporated in further studies. In the present study, we only 
measured  NO2 and  O3 during a 1-week period in late spring 
2020 and found significant correlations between  NO2 and 
Pvuc 2020 (rs = 0.520, p = 0.032) as well as between  O3 and 
Pca 2020 (rs =  − 0.519, p = 0.033) and Pfl 2020 (rs =  − 0.489, 
p = 0.047) (not shown). Since these results are only based on 
a short measurement duration, we decided not to incorporate 
these findings in the “Results” section but encourage fur-
ther research to specifically focus on pollution as potential 
influential factor. Since the effects of pollution might also 
be species-specific, there is also a strong need to compare 
different plant species.

Moreover, other factors can have an influence on pol-
len production, such as artificial pruning/topping, since the 
induction of stress results in a higher reproductive output 
(Ranpal et al. 2022). In addition, site characteristics such as 
stand density and exposure (Faegri et al. 1989) and genetics 
(Ranpal et al. 2022) were found to be relevant in the discus-
sion on pollen production.

Knowledge derived from seed masting studies suggest 
that nutrient availability which usually declines with eleva-
tion as a result of decreased organic matter decomposition 
and nutrient mineralization (Sundqvist et al. 2013) might 
also affect seed availability (Allen et al. 2014). Related to 

birch pollen production per catkin, it was found that iron 
concentration (assessed in birch leaves) was linked to a 
decrease (Jochner et al. 2013b), but other information on 
the influence on nutrients, specially assessed in the soil, is 
largely lacking.

Low temperature and high moisture availability 2 years 
before seed fall was linked to a higher amount of seed pro-
duction (Richardson et al. 2005). Relationships with repro-
duction variables related to pollen based on lag effects, how-
ever, are not commonly evaluated in existing research and 
highlights the need for long-term studies.

In addition, more experimental studies may be best 
suited to disentangle the influence of temperature and other 
factors influencing reproduction traits of plants and their 
magnitude free from masked effects. Birch trees become 
sexually mature (and bear male catkins) from the age of 
approx. 10–15 years (Perala and Alm 1990). Therefore, in 
the case of birch, experimental setups remain challenging 
since their relocation to laboratory conditions cannot easily 
be materialized.

In summary, future research could benefit from the inclu-
sion of more birch trees spanning an even larger altitudinal 
gradient and observation years. Ideally, a long-term monitor-
ing, which is still not established, is desirable. Spatial infor-
mation on air pollution along with meteorological measure-
ments is helpful to conclude on their influences on pollen 
production. Less time-consuming methods of pollen quan-
tification should be tested and more experimental research 
avoiding masked effects on pollen production is suggested.

Conclusions

In conclusion, this study provides valuable insights into the 
production of birch pollen, flowers and inflorescences in 
relation to thermal parameters across an elevational gradient. 
The findings of this study indicate that no significant changes 
in the reproductive traits were detectable with increasing 
altitude alone. Moreover, likely due to the temperature 
dependency of catkin numbers in 2021, warmer sites were 
associated with higher pollen and flower production, which 
was only apparent for higher levels, i.e. for the volume unit 
of the crown. Temperatures further from the optimum of 
birch growth might be linked to more pronounced changes; 
thus, studying pollen production along even larger altitudinal 
gradients is highly relevant in future research.
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