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Abstract
Leptospirosis, the infectious disease caused by a spirochete bacteria, is a major public health problem worldwide. In Argen-
tina, some regions have climatic and geographical characteristics that favor the habitat of bacteria of the Leptospira genus, 
whose survival strongly depends on climatic factors, enhanced by climate change, which increase the problems associated 
with people’s health. In order to have a method to predict leptospirosis cases, in this paper, five time series forecasting meth-
ods are compared: two parametric (autoregressive integrated moving average and an alternative one that allows covariates, 
ARIMA and ARIMAX, respectively), two nonparametric (Nadaraya-Watson Kernel estimator, one and two kernels versions, 
NW-1 K and NW-2 K), and one semiparametric (semi-functional partial linear regression, SFPLR) method. For this, the 
number of cases of leptospirosis registered from 2009 to 2020 in three important cities of northeastern Argentina is used, as 
well as hydroclimatic covariates related to the presence of cases. According to the obtained results, there is no method that 
improves considerably the rest and can be recommended as a unique tool for leptospirosis prediction. However, in general, 
the NW-2 K method gets a better performance. This work, in addition to using a long-term high-quality time series, enriches 
the area of applications of statistical models to epidemiological leptospirosis data by the incorporation of hydroclimatic vari-
ables, and it is recommended directing further efforts in this line of research, under the context of current climate change.

Keywords Parametric · Nonparametric · Semiparametric · Leptospirosis outbreak prediction · Hydroclimatic covariates

Introduction

Leptospirosis, the zoonosis caused by the spirochete bac-
teria Leptospira interrogans, is a public health problem 
all over the world, particularly in tropical and subtropical 
areas. In Argentina, some regions present climate and geo-
graphic characteristics that favor the habitat of the bacteria 
L. interrogans. Infectious diseases, particularly leptospi-
rosis, are climatic-sensitive (Coelho and Massad, 2012; 
López et al. 2018, 2019; World Health Organization and 
World Meteorological Organization. Atlas of health and 

climate, 2012) so that extreme climate events enhanced by 
climate change increase the problems associated with peo-
ple’s health (Bell et al. 2018; Ebi et al. 2021). For instance, 
northeastern of Argentina is a region in which extreme pre-
cipitation events have increased both, in intensity and fre-
quency, in the last decades (Lovino et al. 2018a and 2018b), 
favoring the reproduction of the bacteria L. a interrogans. 
This region has important rivers such as Paraná and Uru-
guay, and the highest precipitation caused significant flood-
ing in the last decade; this trend has continued to rise in 
recent years (Lovino et al. 2018b). However, since 2019, 
the region has been under the influence of La Niña period, 
which has triggered a severe drought, with historical records 
of low precipitation values and hydrometric levels (Gomes 
et al. 2021; Naumann et al. 2021). For these reasons, health 
services must consider, in addition to the treatment of indi-
vidual cases, the estimated number of cases of such disease 
also based on the prevailing hydroclimatic conditions. This 
estimation would improve the response of health systems 
during potential outbreaks, cutting off, or delaying the dis-
ease transmission (Canals, 2010).
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In this direction, this work is attempted to make a statisti-
cal study of leptospirosis incidence taking into account the 
hydroclimatic covariates. Many authors have also remarked 
that extreme climatic factors, like heavy rainfall and flood-
ing events, increase the incidence of leptospirosis infec-
tion (Covertino et al. 2021; Lau et al. 2010; Mwachui et al. 
2015). In particular, this study uses a long-term high-quality 
time series of the leptospirosis incidence and also of the 
covariates that have been identified in López et al. (2019) as 
the main hydroclimatic indicators that can influence lepto-
spirosis outbreaks occurrence in northeast Argentina.

Since changes in the covariates may have a time-
lagged effect in the leptospirosis incidence, the ecolog-
ical-environmental process considered in this paper is 
highly non-linear. As it is well known, in any non-lin-
ear system, a first step in the analysis is to identify and 
quantify the causal relationships between the elements 
of the system. Following Covertino et al. (2021), that 
quantification can be made by measuring the informa-
tion transfer between the elements of the system to infer 
the presumed causality. This information is measured 
throughout the transfer entropy (TE), and in particu-
lar, in this paper, it would be of interest to compute the 
TE between covariates and leptospirosis incidence. In 
addition, in the context of non-linear systems such as 
leptospirosis and hydroclimatic covariates, to perform a 
statistical predictive study, it is necessary to determine 
the optimal time delay that leads a better accuracy. This 
is made by computing the time delays that minimize the 
distance between the measures of probabilities of lep-
tospirosis and each covariate or, equivalently, the ones 
that maximize the mutual information (MI) between them 
(see Covertino et al. 2021).

On the other hand, to identify the key determinants of 
leptospirosis variability, a variance-based sensitivity analysis 
(SA) is performed to see how the variability in the covari-
ates affects the variation in the leptospirosis incidence. SA is 
widely used in ecological-environmental models, a complete 
review of the existing methods can be found in Pianosi et al. 
(2016) (see also Saltelli et al. 2010).

Although in the last years, many mathematical models 
have been proposed to analyze the spread of infectious 
diseases, little has been done with leptospirosis. Some 
references on the deterministic modeling of this disease 
are Alemneh (2020), Chadsuthi et al. (2021), Gualtieri 
and Hecht (2019), Warnasekara et al. (2021), and Gómez 
et al. (2022) and, on the statistically modeling of it, are 
Cunha et al. (2019), Rahmat et al. (2020), and Souza 
et al. (2021). Epidemiology modeling can contribute to 
understanding the transmission characteristics of the 
disease in particular regions, improving the forecasting 
performance and, in this way, decreasing the transmis-
sion and number of cases.

In the statistical field, the best-known models for time 
series forecasting are the autoregressive ones. The autore-
gressive moving average (ARMA) model (Wold, 1938) 
regresses the response variable in terms of a linear com-
bination of its previous values and various past values of a 
stochastic term. The autoregressive integrated moving aver-
age (ARIMA) model (Box et al. 1994) is a generalization 
of the ARMA to non-stationary series. The integrated part 
refers to a differencing initial step, which can be applied to 
eliminate the non-stationarity of the series. Some applica-
tions of this method to epidemiological time series can be 
found, for instance, in Coutín (2007), Liu et al. (2011), and 
Promprou et al. (2006). As an extension of ARIMA that 
allows for covariates, such as hydroclimatic variables, is the 
so-called ARIMAX method that can be found, for instance, 
in Kongcharoen and Kruangpradit (2013) and some applica-
tions in Chadsuthi et al. (2012) and Desvars et al. (2011).

Concerning to nonparametric methods applied to time 
series, most of them are based on the classical nonparamet-
ric kernel estimator of the regression function, commonly 
named Nadaraya-Watson (NW) estimator due to its creators 
(Nadaraya E. 1964 and 1965; Watson, 1964). Nonparamet-
ric models are less common in epidemiological studies, and 
applications of them can be found in the literature mainly for 
the spatial analysis of leptospirosis. For instance, in Moham-
madinia et al. (2019), the authors use support vector machine 
(SVM) and artificial neural network (ANN) to predict the 
spatial distribution of leptospirosis. In Cunha et al. (2019), 
the authors fit nonparametric models to investigate the rela-
tionship between the incidence and the explanatory vari-
ables. This paper concerns to the kernel estimator introduced 
by Collomb (1984). In addition, an alternative method that 
combines both methods developed in Collomb (1984) and 
Dabo-Niang et al. (2016) is also used. This involves two 
kernels, one of them controlling the difference between the 
values of the series and the other one controlling the differ-
ence between times.

In 2008, Aneiros-Pérez and Vieu (2008) introduced the 
semi-functional partial linear regression (SFPLR) model 
which consists of two terms, one modeling nonparametri-
cally the (temporal) response variable and other adding 
the additional information presented in the covariates 
by linearly combining them. This method cuts the long 
time series trajectory into short curves and uses them as 
a sample of functional data incorporating to the model 
one past curve rather than many single past values. This 
strategy overcomes the problem of choosing or estimat-
ing the number of past values to be used in the model. In 
addition, since the covariates are included in the para-
metric part of the model, it does not suffer of the curse 
of dimensionality being, thanks to the nonparametric 
term, still flexible in terms of model requirements. In the 
context of infectious diseases with seasonal cycles, this 
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approach uses the observed value of the covariates only in 
the month of interest. An important difference with ARI-
MAX is that SFPLR uses past values of the covariates, 
which makes it not necessary to predict a future value 
of them. Although there exists a vast literature concern-
ing with the theoretical study of the SFPRL model, the 
bibliography concerning to applications is very scarce, 
especially in the epidemiological area. This model is fre-
quently used to predict electricity demand as in Aneiros 
et al. (2013), Vilar et al. (2012), and Vilar et al. (2018). 
The present work aims to enrich the area of applications 
of these models to epidemiological leptospirosis data by 
the incorporation of hydroclimatic variables.

The rest of the paper is organized as follows: in the 
“Data” section, the source of data is presented. The treat-
ment of data and the parameters estimation are explained in 
the “Numerical implementation and parameter estimation” 
section. The “Results and discussion” section is devoted 
to present exploratory, causal, and sensitivity analyses 
together with the results obtained when applying the predic-
tion methods to leptospirosis. Final conclusions of the work 
are presented in the “Conclusions and future work” section.

Materials and methods

Data

To perform the analysis, three cities with the highest num-
ber of cases of leptospirosis reported in the northeast region 
of Argentina were selected from the study area (Fig. 1): 
Santa Fe and Rosario from Santa Fe province and Paraná 
from Entre Ríos province. Leptospirosis incidence has 
been recorded in Argentina since 2009, the year in which 
the National System of Epidemiological Surveillance by 
Laboratories of Argentina (SIVILA) was implemented. 
Before this year, there are no reliable records in the coun-
try. The analyzed period of time ranges from 2009 to 2020. 
The confirmed cases of leptospirosis were provided by the 
Directorate of Health Promotion and Prevention, Ministry 
of Health of Santa Fe province and by the Epidemiology 
Division, Ministry of Health of Entre Ríos province. For the 
mentioned period, the total number of confirmed leptospi-
rosis cases in the three cities was 283: 98 in Santa Fe, 111 
in Rosario, and 74 in Paraná. This study does not include 
suspected, probable, or unconfirmed cases.

Fig. 1  Left panel: study region in northeast Argentina including Santa Fe and Entre Ríos provinces. Right panel: zoom in of the left panel where 
the three cities included in the analysis (Santa Fe, Paraná, and Rosario) are marked with red stars
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In Fig. 2, the long time series corresponding to the cli-
mate covariates and leptospirosis cases for each city are 
plotted. In the top row of this figure, it can be seen that the 
number of cases in each city for certain years is small, with 
many null values and saw-like behavior, which makes any 
statistical analysis difficult. Unfortunately, as mentioned in 
the previous paragraph, reliable recorded data for leptospi-
rosis starts in 2009 since, prior to this year, the registration 
of cases was not mandatory in health centers nor was it sys-
tematized or standardized, so there are no reliable records 
in the region. To overcome this limitation of small sample 
size, in the “Exploratory analysis” section, the analysis is 
performed considering the cases of all cities together and 
increasing, in this way, the number of cases in study.

Selected covariates are those identified in López et al. 
(2019) as the main hydroclimatic indicators that can influ-
ence leptospirosis outbreak occurrence in northeast Argen-
tina. Hydroclimatic datasets include total monthly precipi-
tation, monthly maximum hydrometric river level of the 
Paraná River, and the Oceanic Niño Index. Precipitation data 
were provided by the National Weather Service of Argentina 
(SMN) and the National Institute of Agricultural Technol-
ogy (INTA). The meteorological stations include Sauce Viejo 
Aero (which will be called Santa Fe), Paraná, and Rosario 
Aero. Hydrometric data were provided by the National Water 
Institute of Argentina (INA). The Oceanic Niño Index (ONI, 
NOAA/NWS/CPC) is used to determine the years and months 
under El Niño, La Niña, or neutral conditions. The ONI is 
the 3-month running mean of the sea surface temperature 

Fig. 2  From top to bottom long time series of leptospirosis cases, 
monthly maximum hydrometric river level (m), monthly total precipi-
tation (mm), and ONI for Santa Fe, Paraná, and Rosario cities (from 

left to right). The dashed lines show some correspondence between 
leptospirosis outbreaks and high values of the covariates
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anomaly for the Niño 3.4 region (https:// ggwea ther. com/ enso/ 
oni. htm) where the mean is computed with the i-th month, the 
next month i + 1 , and the past month i − 1 . More precisely, the 
k-th time lag for the i-th month i is defined as the trimestral 
mean computed with months i − k − 1 , i − k , and i − k + 1 ; 
it is called k-lag. Since the 0-lag involves a future month, it 
makes no physical sense to analyze it.

Numerical implementation and parameter 
estimation

The numerical implementation of the prediction methods 
is performed using the free statistical software R (R Core 
Team 2013) and its following functions: for ARIMA, arima; 
for ARIMAX, arimax from package TSA; for Nadaraya-
Watson and SFPLR methods, k.smooth from package stats 
and fregre.plm from package fda.usc, respectively. TE and 
MI are performed using the OIF Toolbox presented in Li 
and Covertino, (2021) (see also de webpage https:// github. 
com/ Hokun daiNe xusLab/ net- valid). SA is performed using 
the SAFE Toolbox by Pianosi et al. (2015) (see also de web-
page http:// brist ol. ac. uk/ cabot/ resou rces/ safe- toolb ox/). All 
the own computational codes are available at https:// www. 
fiq. unl. edu. ar/ inves tigac ion/ inves tigac ion- repro ducib le/, and 
the data (Fig. 2) are available under request.

As usual in statistics, for each city and year (or all cities 
together), the whole sample is divided into two, the train-
ing and the testing samples. The training sample consists 
of all years except the last one, and it is used to learn the 
models, this is to estimate the parameters of them. The 
testing sample consists of the last year (not used in the 
training sample), and it is used to measure the (out-of-
sample) predictive power of the methods. In this direction, 
the predictive power of each method computed in the test-
ing step, as well as the parameter selection perform in the 
training step, is measured using the root mean square error 
(RMSE) given by

where Ŷ
i
 and Y

i
 are the predicted and observed monthly 

values of the last year, respectively. The advantage of this 
measure of error is that it returns the results in the same units 
that the original variables, unlikely another commonly used 
measures like the mean square error.

Both in nonparametric and semiparametric methods, 
a crucial point is the choice of the measure of closeness 
between curves. For instance, when the data is smooth, the 
classical L2-distance is probably the best choice. However, 
when the data is rough (as in the case of the data presented 
in this paper), a more suitable measure of closeness should 
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be used, maybe one that can be used even when the data is 
not smooth (Ferraty and Vieu, 2006). In this direction, when 
applying the methods to leptospirosis data, the L2-distance 
and the PCA-distance (Ferraty and Vieu, 2006) were com-
pared, obtaining similar results for both metrics; however, 
given the rough nature of the leptospirosis data (Fig. 3), the 
PCA-distance is used.

For the nonparametric and semiparametric methods, no 
assumptions are required to the time series since they are 
free-model methods (see Collomb 1984; Aneiros-Pérez and 
Vieu 2008). For the parametric ones, ARIMA and ARI-
MAX, the methods themselves find the best differencing 
order to get stationarity and no seasonality, so it is not neces-
sary to check assumptions neither in this case (see Shmueli 
and Lichtendahl 2016).

Results and discussion

Exploratory analysis

After an exploratory analysis of Fig. 2 where the leptospirosis 
cases and the covariates are plotted, some correspondence 
between leptospirosis outbreaks and high values of the covar-
iates for some periods is observed. For instance, in the three 
cities, at the beginning of 2010, there was an outbreak, and 
all covariates had high values. In Santa Fe, at the beginning 
of 2015, the covariates had high values but not extremely 
high, and the outbreak in that year had fewer cases, which 
suggests that the covariate values influence the occurrence 
and magnitude of outbreaks. The same occurs in Paraná in 
2013 where the covariates even had lower values. Conversely, 
in Rosario, at the beginning of 2016, all covariates had high 
values, but there was not an outbreak, so this could corre-
spond to increased prophylaxis in the city or other variables 
not considered in this analysis due to lack of information.

The short time series of total cases of leptospirosis, for 
each city, are plotted in Fig. 3. As can be seen, during 
outbreak years (2010 for the three cities, 2015 for Santa 
Fe, and 2013 for Paraná), leptospirosis cases have a cer-
tain seasonal behavior in the cities: in all cases, outbreaks 
occur during the first months of the year. Particularly, in 
Santa Fe, the highest number of cases is observed between 
January and April, with outbreaks in February and March. 
In the rest of the year, the number of cases decreases 
and remains stable and close to zero. There is a similar 
behavior in Paraná, where the highest number of cases is 
observed between January and May, with an outbreak in 
March. The rest of the year, there are fewer cases. Finally, 
in Rosario, there is an outbreak in February, and months 
with a high number of cases extend from January to April, 
then they decrease, see López et al. (2019) for a deeper 
analysis of this figure.

2533International Journal of Biometeorology (2022) 66:2529–2540

https://ggweather.com/enso/oni.htm
https://ggweather.com/enso/oni.htm
https://github.com/HokundaiNexusLab/net-valid
https://github.com/HokundaiNexusLab/net-valid
http://bristol.ac.uk/cabot/resources/safe-toolbox/
https://www.fiq.unl.edu.ar/investigacion/investigacion-reproducible/
https://www.fiq.unl.edu.ar/investigacion/investigacion-reproducible/


1 3

Study of causal relationships

To study the causal relationships between covariates and 
leptospirosis incidence, the TE analysis is performed for 
all cities, but since the results are similar, for the sake of 
shortness, just the results for Santa Fe are presented. In this 
direction, Fig. 4 shows the TE between covariates and lepto-
spirosis incidence for Santa Fe. As can be observed in this 
figure, there is no significant interaction from leptospirosis 

to the covariates (black lines) except for small time delays, 
which, as Covertino et al. (2021) stated, it can be due to 
numerical mechanism, related to systematic errors that 
leave overestimation. This indicates that the leptospirosis 
incidence does not affect neither precipitation, ONI, nor 
hydrometric level. On the other hand, the reverse effect of 
the covariates on leptospirosis (gray lines) is detected by the 
TE, showing a significant causality in that direction (Cov-
ertino et al. 2021).

Fig. 3  Short time series of leptospirosis cases in Santa Fe, Paraná, and Rosario cities
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Optimal time delays selection

As was stated in the “Introduction” section, in the context of 
non-linear systems such as leptospirosis and hydroclimatic 
covariates, before performing the predictive study, it is nec-
essary to determine the optimal time delay for the covariates. 
Following Covertino et al. (2021), this is made by choos-
ing the time delay that minimizes the distance between the 
measures of probabilities of leptospirosis and each covariate 
or, equivalently, the ones that maximize the MI between 
them (because it minimizes the uncertainty). In Table 1, the 
optimal time delays are reported. Those time delays will 
be used in the five proposed prediction methods applied to 
predict leptospirosis as a function of the three covariates. 
For example, to predict leptospirosis cases in 2018 in Santa 
Fe city, 0, 3, and 4 months delays were used to precipitation, 
hydrometric level, and ONI index, respectively. As can be 
observed in the table, in all years in the three evaluated cit-
ies, ONI index presents the same or greater delays than the 
rest of the covariates, as was expected since it is a regional 

climate indicator unlike precipitations and hydrometric lev-
els which are more local hydroclimatic indicators in each 
city (Lovino et al. 2018b) and its impact is more immediate 
in terms of leptospirosis incidence.

Analysis of sensitivity

To perform a variance-based SA, for each specific covariate, 
the first-order (FI) indices and total order (TI) indices are 
computed. The FI is defined as the expected reduction in the 
output (leptospirosis) variability when an input (covariate) 
is fixed. In consequence, it measures the direct contribution 
of a covariate to the leptospirosis variance. An FI value near 
one indicates that the covariate is highly influential in the 
output variance, whereas an FI near 0 indicates no influ-
ence. On the other hand, the TI measures the overall con-
tribution of a covariate considering its direct effect and its 
interactions with all the other covariates. For one specific 
covariate, it is defined as 1 minus the expected reduction 
in the output variance that would be obtained when the rest 

Fig. 4  From top to bottom 
transfer entropy of covariates 
and leptospirosis cases for 
different time delays to Santa 
Fe city in the study period 
(2009–2020)

Table 1  Optimal time delays for 
each city, for 2018, 2019, and 
2020, in months

2018 2019 2020

Santa Fe Paraná Rosario Santa Fe Paraná Rosario Santa Fe Paraná Rosario

Precipitation 0 3 0 0 1 1 0 1 2
Hydrometric level 3 3 0 2 3 0 2 0 0
ONI index 4 4 1 4 3 1 4 3 2
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of the covariates are fixed. A TI near zero indicates that the 
covariate is non-influential (Pianosi et al. 2016). As a result, 
it was obtained that, for all cities and years, no covariates 
have individual direct effect to the leptospirosis variance, 
since the FI obtained in each case was near 0. However, 
the computed TI (the corresponding table was omitted here 
since the values are all similar) shows that precipitation and 
ONI index have a large overall contribution to the leptospi-
rosis variance, since their TI was near 1, following results 
obtained using other methodologies by López et al. (2019) 
and Lau et al. (2010).

Prediction

A small number of cases were registered in 2020, the 
year in which the World Health Organization declared, as 
a public health emergency of international concern, the 
pandemic due to the SARS-CoV-2 (COVID-19) virus and 
the consequent mandatory isolation. Although leptospirosis 
is a water-borne (not of direct transmission) disease, the 
apprehension of the population to attend health centers may 
have resulted in unrecorded leptospirosis cases. In addition, 
the region has been experiencing a very severe drought 
since the end of 2019, causing scarce precipitation and 
hydrometric levels well below normal values (Gomes et al. 
2021; Naumann et al. 2021).

As it is the last year of the series and where predictions 
should be made, and due to this scarcity, the analysis may 
be not reflecting the real behavior of the long series. In this 
direction, once the time delays are selected (see the “Opti-
mal time delays selection” section), the five proposed pre-
diction methods were applied to predict leptospirosis as a 
function of the three covariates, for the last 3 years, 2018, 
2019, and 2020. Observed and predicted values are plotted 
in Fig. 5 for each method, city, and year. Table 2 reports 
the corresponding RMSE (best results are reported in bold).

It can be observed that, in general, ARIMA and ARI-
MAX methods have the same behavior in all cities and 
years, i.e., they predict cases at the beginning of the year, 
but the predictions are larger than the observed values. 
This behavior is to be expected since, as can be seen in 
Fig. 4, the outbreaks occurred at the beginning of the year. 
This implies that autoregressive methods are sensitive to 
covariates which present higher values in those months. 
Nevertheless, there are some particular years in which 
ARIMAX has good results like Paraná 2018 and 2020 and 
Santa Fe 2020. With respect to nonparametric methods, 
although they have an oscillating behavior, they make pre-
dictions within the range of the observed values. Conse-
quently, they present better results than the other methods, 
for example, NW-2 K has the minimum RMSE in Rosario 
2018 and 2020, Paraná 2019, and Santa Fe 2018, 2019, 
and 2020. On the other hand, semiparametric methods 

have a good performance in some particular years and 
cities, like Santa Fe 2018 and Paraná 2019, but in general 
over or underestimate the number of cases.

Note that in Rosario, models without covariates 
(ARIMA y NW-2 K) have better performance. It can be 
due to, as is mentioned in the “Data” section, increased 
prophylaxis or other social variables not considered in this 
analysis that could influence the probability of infection 
in Rosario city. Consequently, the covariates used in this 
study could not be sufficient to explain the behavior of the 
number of leptospirosis cases. On the other hand, in Santa 
Fe, semiparametric and nonparametric models have a better 
performance, whereas in Paraná, ARIMAX has the better 
performance.

It is observed that, although the results vary in each city 
and year, in most of them, the nonparametric and semipara-
metric methods have a better or equal performance than the 
parametric ones. Parametric methods are more sensitive to 
outbreak years, which tend to overestimate the number of 
cases and therefore increase the RMSE, while the semipa-
rametric and nonparametric ones are more adaptive to the 
shape of the time series through all the years, presenting an 
oscillating behavior and lowering the RMSE.

In Table 2, it can be also observed that for each city, 
although the RMSE of all methods does not change consid-
erably from year to year, it could be expected that data (and 
their distribution) change over time. This shift in the data 
should be taken into account to perform future predictions 
using models trained with this data.

All cities together

An analysis merging the data of the three cities together is 
performed in this section. Due to the scarcity of cases in 
2020, as in the individual analysis, a study of the methods 
in 2018, 2019, and 2020 is carried out. Because the three 
cities are relatively close (within a distance of no more than 
200 km) and present similar precipitation regime, the aver-
age of the total monthly precipitation is used as a predictive 
variable, as well as the ONI, which is a regional variable. 
The hydrometric level was not considered for this analysis 
since it has a more local behavior, so the covariates, in this 
case, are ONI index and precipitation.

Similar to the individual analysis, in order to select the 
optimal time delays, the MI is minimized (the “Optimal time 
delays selection” section). In this case, the optimal time lags 
selected are reported in Table 3. In this case, ONI index pre-
sents lower delay than precipitation due to the more regional 
scale considered.

In Fig. 6, the observed and predicted values are plotted 
for each method and year. It can be seen that, as mentioned 
above, 2020 was an atypical year with very few cases con-
centrated in just two months: three cases in January and 
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one in December. While in 2018 and 2019, there were more 
cases. In 2019, there were 19 cases, and most of them were 
concentrated in the first half of the year. In 2018, there were 
11 cases that had a more oscillating behavior throughout 
the year.

Regarding the predictions, in a similar way to the indi-
vidual analysis, it can be observed that the parametric meth-
ods predict, at the beginning of the year, more cases than 
those observed. With respect to the semiparametric and 
nonparametric methods, they predict fewer cases than the 

Fig. 5  Observed and predicted values by ARIMA, ARIMAX, NW-1 K, NW-2 K, and SFPLR for Santa Fe, Paraná, and Rosario in 2018, 2019, 
and 2020

Table 2  RMSE values obtained 
for 2018, 2019, and 2020 
predictions, corresponding to 
the five methods and the three 
cities. Best results are reported 
in bold

2018 2019 2020

Method Santa Fe Paraná Rosario Santa Fe Paraná Rosario Santa Fe Paraná Rosario

ARIMA 1.41 0.82 1.04 1.08 0.58 0.82 1.15 0.71 0.91
ARIMAX 0.87 0.50 0.95 0.71 0.76 1.19 0.50 0.50 1.04
NW-1 K 0.82 0.71 0.87 0.58 0.65 1.08 0.50 0.71 0.91
NW-2 K 0.65 0.65 0.65 0.58 0.00 1.29 0.41 0.58 0.29
SFPLR 0.65 0.71 0.86 0.76 0.41 1.29 0.76 0.65 1.22
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parametric ones, which correspond more to the observed 
values, although the predictions are oscillating and do not 
show a specific pattern. Table 4 shows the values of the 
RMSE obtained with each method (best results are reported 
in bold). Although the parametric methods seem to adapt 
to the behavior of the time series (predicting more cases at 
the beginning of the year), the predicted values are overes-
timating the values observed, and consequently, the RMSE 
is greater for those methods. While NW-2 K has the lower 
value of RMSE in all years.

Conclusions and future work

In this work, the performance of five time series prediction 
methods was compared. In a first instance, two parametric 
methods were implemented: the classical ARIMA model 
and a new alternative that allows for covariates (ARIMAX). 
Then, two nonparametric methods were performed: the clas-
sical Nadaraya-Watson kernel estimator and an extension 
that involves two kernels, one controlling the differences 
between the value of the series and the other controlling 
the distances between times. Finally, the performance of a 
semiparametric method, the SFPLR was implemented.

These methods were applied to predict leptospirosis cases 
that occurred during 2018, 2019, and 2020 years in three 
cities of northeast Argentina, Santa Fe, Paraná, and Rosario. 
The statistical analysis was carried out in each city sepa-
rately, and since the number of registered cases in each city 

for certain years is small and presents many null values, it 
was also carried out merging the data of all cities together.

Previous to the statistical analysis, a causal relationship 
study between covariates and leptospirosis and also an opti-
mal time delay selection for any covariate were performed. 
The former analysis was carried out analyzing the TE and 
the last one by maximizing the MI.

According to the obtained prediction results, there is no 
unique method that improves considerably the rest and can 
be recommended as a tool for leptospirosis prediction. How-
ever, in general, nonparametric methods (without covari-
ates) got a better performance than the others, particularly 
the NW-2 K. This result is observed both, in the analysis 
of all the cities together and in the individual analysis. On 
the other side, parametric methods are more sensitive to 
outbreaks and tended to overestimate the number of cases, 
while the nonparametric ones presented an oscillating 
behavior in the range of observed values, which decreased 
the RMSE. The methods that use covariates (ARIMAX and 
SPFLR) are not yet able of reliably capturing the observed 
relationship between leptospirosis outbreaks and hydrocli-
matic variables as it was expected, and this can be attributed 
to the nature of the data.

To improve the performance of the methods in the future, 
the number of years of data should be increased by system-
atically recording confirmed cases of the disease in time 
by the public health authorities. Incorporate other covari-
ates to the methods in addition to the climatic ones that are 
related to leptospirosis also could improve its performance, 

Table 3  Optimal time delays for all cities together, for 2018, 2019, 
and 2020

2018 2019 2020

Precipitation 2 2 2
ONI index 1 1 1

Fig. 6  Observed and predicted values by ARIMA, ARIMAX, NW-1 K, NW-2 K, and SFPLR for all cities together in 2018, 2019 and 2020

Table 4  RMSE values obtained 
for 2018, 2019, and 2020 
predictions, corresponding to 
the five methods and the data 
of the three cities merged. Best 
results are reported in bold

2018 2019 2020

ARIMA 1.41 1.32 1.50
ARIMAX 1.29 1.47 1.47
NW-1 K 1.19 1.63 1.22
NW-2 K 0.87 1.26 1.08
SFPLR 1.55 1.66 1.66
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for example, social factors, such as health system prophy-
laxis that might influence the transmission rate of infection 
(López et al. 2019; Resende Londe et al. 2016).

Despite the aforementioned aspects, this work, in addition 
to using a long-term high-quality time series, enriches the 
area of applications of statistical models to epidemiologi-
cal leptospirosis data by the incorporation of hydroclimatic 
variables. Also, it can be said that predictive models of this 
climate-sensitive disease could become useful early warn-
ing tools in health systems, in the context of current climate 
change, directing more efforts in this line of research.

As mentioned in the “Prediction” section, shifts in the data 
over time could generate model performance degradation, so 
in a future work, it could be of interest to analyze how the 
incidence distribution changes as a function of the predictors 
variables. There exists different kind of shifts that can occur 
depending on which variable changes its distribution over 
time and which method it will be applied. For instance, for 
methods without covariates, just the distribution of the inci-
dence should be monitored over time. However, for methods 
including covariates, it is important to analyze how shifts in 
the covariates affect the leptospiroris distribution.
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