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Abstract
ABSOLUT v1.2 is an adaptive algorithm that uses correlations between time-aggregated weather variables and crop yields 
for yield prediction. In contrast to conventional regression-based yield prediction methods, a very broad range of possible 
input features and their combinations are exhaustively tested for maximum explanatory power. Weather variables such as 
temperature, precipitation, and sunshine duration are aggregated over different seasonal time periods preceding the harvest 
to 45 potential input features per original variable. In a first step, this large set of features is reduced to those aggregates very 
probably holding explanatory power for observed yields. The second, computationally demanding step evaluates predic-
tions for all districts with all of their possible combinations. Step three selects those combinations of weather features that 
showed the highest predictive power across districts. Finally, the district-specific best performing regressions among these 
are used for actual prediction, and the results are spatially aggregated. To evaluate the new approach, ABSOLUT v1.2 is 
applied to predict the yields of silage maize, winter wheat, and other major crops in Germany based on two decades of data 
from about 300 districts. It turned out to be absolutely crucial to not only make out-of-sample predictions (solely based on 
data excluding the target year to predict) but to also consequently separate training and testing years in the process of feature 
selection. Otherwise, the prediction accuracy would be over-estimated by far. The question arises whether performances 
claimed for other statistical modelling examples are often upward-biased through input variable selection disregarding the 
out-of-sample principle.

Keywords  Crop yield modelling · Multiple linear regression · Weather-based yield prediction · Machine learning · 
Statistical inference

Introduction

Weather-based crop yield predictions have a long history; cor-
relations between weather variables and agricultural yields 
had already been studied in the first quarter of the twentieth 
century (Meinardus 1901; Hooker 1907; Fisher 1924), and 
estimating regional yields by multiple linear regressions from 
time-aggregated weather data has been applied for decades. 
The full spectrum of potentially yield-relevant meteorological 
averages in varying seasonal time windows is however rarely 
scrutinized by the existing models; the same holds for land-
scape-specific weather response patterns of different crops. 
The algorithm presented in this article attempts to minimize 

these gaps by extensive regression testing for automatically 
selecting the most informative weather aggregate combina-
tions on a per-district basis (however guided by multi-district 
performance), finally aiming for reliable extrapolations in 
climate change scenario assessments.

The challenge of weather-based yield regressions is 
hardly in validating the general approach; it usually works 
and explains a significant part of the observed yield vari-
ations. Numerous studies have just demonstrated that for 
different crops in different locations around the world 
(e.g. Ceglar et al. 2016; Nemoto et al. 2016; Schauberger 
et al. 2017b). It is the details of the implementation which 
matter and finally decide to what extent the unavoidable pre-
diction errors can be reduced. Even resorting to simple linear 
regression models leaves the modeller with further decisions 
galore, frequently too easily taken based on personal beliefs 
but in fact defining the true challenge of research and devel-
opment with this class of models.
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Optimizing the selection of predictor variables defines 
the focus of this contribution. The “oldschool approach” still 
taken by many researchers is largely an expert choice. It 
might have been guided by selective correlation analyses for 
preselected candidate variables (González-Fernández et al. 
2020; Ji et al. 2019), stepwise regression (Kern et al. 2018; 
Salehnia et al. 2020), or consideration of crop growth stages 
for suitable time windows (Butts-Wilmsmeyer et al. 2019; 
Zhang et al. 2017). In some cases, the selection effort is 
critically flattened, even if continental climate impact assess-
ments are at stake: (Moore and Lobell 2014, 2015) used tem-
perature and precipitation averages of the growing season as 
sole meteorological basis for that purpose. The challenge of 
choosing suitable input variables where optional input data 
are abundant however paves the way to machine learning. 
As a non-meteorological example, Gómez et al. (2019) had 
potato yields automatically fitted to 54 spectral bands and 
indices of Sentinel 2 satellite images by diverse methods 
(including generalized linear model, quantile regression, 
support vector machines, and neural networks). While a 
massive, automated search for the best predictor features 
and methodology evades modeller subjectivity, explanations 
for a certain system behaviour can hardly be given, and an 
eventual gain in predictive performance remains question-
able if there is no strict separation between training and test-
ing data (“out-of-sample”).

By no means, the method presented here can be claimed 
to be the last word on the subject; however, it systemati-
cally optimizes the often disregarded input variable selec-
tion process while maintaining the principal approach of 
multivariate linear regressions. Therefore the code shall be 
named “Assessing Best-predictive Sets fOr multiple Linear 
regressions throUgh exhaustive Testing”, in short: ABSO-
LUT. Version 1.0 lacked the consequent out-of-sample pro-
cessing in the feature and regression selection parts albeit 
it was observed for regression testing. This was corrected 
in v1.1, and the current version 1.2 presented here also 
excludes overlaps of weather features’ time aggregations in 
the regression formulas.

The ABSOLUT approach can be counted as a kind of brute 
force machine learning uncommon to regression-based crop 
yield prediction: Among the 362 crop forecasting studies pub-
lished in the years 2004–2019 that were evaluated by Schau-
berger et al. (2020), there were 258 utilizing regression, and 
only a few dozen implementing established machine learn-
ing approaches most of which were automated neural net-
works (28 cases) followed by random forests (12). This study 
should therefore serve as proof of concept for bridging the gap 
between regression and machine learning approaches which 
may also be transferable to similar setups, e.g. with panel or 
nonlinear regression models. The working hypothesis is that 
regression-based modelling can still compete with machine 
learning approaches if automated optimizations are applied.

Materials

Hard‑ and software

As ABSOLUT builds on exhaustive searches for optimal 
feature combinations in linear regressions, parallel execution 
of the code on a cluster computer using several dozen cores 
is advisable. A state-of-the-art single PC or notebook would 
probably need 1–2 weeks for the Germany example given all 
CPU cores (usually four) are engaged.

The code is written in R (https://​www.r-​proje​ct.​org/) and 
requires version 3.5.1 (used in this study) or newer. It makes 
use of the extension packages leaps (Lumley 2017; v.3.0) and 
doMPI (Weston 2017; v.0.2.2). Suggestions for pre- and post-
processing software can be found in a separate “Directions for 
use” document placed in the code repository (Conradt, 2021b).

Input data

Any ABSOLUT application needs a domain divided into 
spatial subunits, henceforth called districts, for which there 
are individual crop yield time series and monthly weather 
data available. A large number of districts (ideally more 
than 100) and many years with yield data (preferably more 
than 20) are required for the selection of valid regression 
feature combinations.

Monthly weather data are needed for each district and should 
spatially correspond to the agricultural areas within them. The 
weather data should start at least 1 year before the yield records 
start and end not earlier than with the growing season of the final 
year covered by the yield data; otherwise, not all yield infor-
mation can be considered. In detail, the modeller fixes the last 
calendar month whose weather data are to be considered for 
the growing seasons, and the model will evaluate weather–yield 
correlations in the 12-month periods ending with this month. 
For example, if there are yield data for the years 1996–2015 and 
this “cut-off month” is set to May, the weather data must cover 
the period from June 1995 to May 2015 to utilize the complete 
yield information.

As it is not necessary to include the very end of the growing 
season (the actual harvest dates shift between years anyway), 
a timely cut-off and weather data reaching far enough into the 
current year can be used for pre-harvest yield forecasts (Schau-
berger et al. 2017b, regarding the effects of shortened weather 
input). All data are to be provided in form of ASCII tables; see 
the example files in the data repository (Conradt, 2021a).

Specifics of the example application

Germany is a challenging test bed for agricultural model-
ling due to the heterogeneity of its landscapes and cropping 
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conditions; for a brief geographical description, see sec-
tion S1 in the Supplement. The spatial basis of the example 
is Germany’s 401 district-level subdivisions (including the 
city states of Hamburg and Berlin as single units) as they 
existed on 1st January 2018. The time frame was princi-
pally determined by the district-wise crop data covering the 
years 1999–2020; yield predictions for 2021 were however 
possible through more recent weather data. Observed yields 
for 2021 and further weather data allowing first 2022 pre-
dictions became available shortly before publication of this 
article and were considered in Table 2.

Primary data from external sources

The district geometries were taken from the official 1: 1 mil-
lion digital map of administrative areas, status 1st January 
2018, published by the German Federal Agency for Car-
tography and Geodesy (BKG 2018). Crop yield data are 
provided by the Statistical Offices of Germany (Statistische 
2021b; DESTATIS, 1982ff). National, state, and district 
level data were obtained for ten crop species in the harvest 
years 1999–2020. Additionally, district-wise crop growing 
areas (Statistische 2021a) were obtained for the year 2016 
and applied as weighting factors in aggregating the esti-
mated district yields to state and national averages. Monthly 
weather data were obtained from the Climate Data Centre 
of the German Weather Service (DWD). Point of departure 
was their monthly 1-km grids of meteorological variables 
for the years 1998–2021 (DWD 2021).

The spatial distribution of agricultural areas within the 
districts has to be taken into account for determining the 
locally relevant weather conditions, especially for districts 
including both an agricultural lowland and a mountainous 
part (Conradt et al. 2016). The 2012 Corine Land Cover data 
(Copernicus 2020) were used for this purpose. Details of 
the necessary preprocessing are given in S2.2. Respectively 
prepared input data as used for the example application have 
been published (Conradt, 2021a).

Methods

At its core, the ABSOLUT algorithm applies multiple linear 
regressions of the form

for each spatial subunit (“district”) of the target domain. 
Herein, y(t) is the yield, i.e. the harvested mass per area, 
in dt ha−1 of a certain crop in the year t; α is the intercept; 

(1)y(t) = � + �0t +

d∈{0,…,4}
∑

i=1

�iwi,t + �

and the β are the other regression parameters: There is a 
linear basis trend over time β0 t, and there can be up to four 
additional terms for aggregated weather variables wi,t. Such 
an aggregated weather variable could, for instance, be the 
precipitation sum of December, January, and February pre-
ceding the harvest in the summer of t. These aggregates are 
henceforth called weather features to avoid confusion with 
weather variables like temperature or precipitation in gen-
eral. The closing ε is the estimation error to minimize.

The decision to limit the number of weather features d 
to a maximum of four was guided by practical experience 
with statistical yield model performance. Including more 
features would not necessarily increase prediction accura-
cies but come with an even more extensive computational 
demand for testing myriads of possible feature combina-
tions. Using less features however provides more reliable 
regression parameter estimations and can be a better choice 
for certain years and districts. The automatic consideration 
of different numbers of weather features in Eq. 1 was intro-
duced with v1.2; former versions were hard-wired to d = 4.

The R code of ABSOLUT is freely available (Con-
radt, 2021b) and consists of five programs that have to be run 
subsequently. The first three of them determine the weather 
features to be used in the finally selected district models. The 
sectional workflow, delineated in Fig. 1, is partly owing to 
different stages of code development and was kept to allow 
for checks into the intermediate output/input files. The fol-
lowing subsections briefly describe the purposes and main 
features of the programs; further details are given in S3.

The five steps of ABSOLUT

Program 1: “the prospector”

This initial step is principally exhaustive input feature test-
ing for obtaining best-fitting multiple linear regressions. 
Although the results cannot be used for predictive purposes 
directly, it contributes to narrowing the search window for 
regressions of higher predictive capability. Time aggregates 
of the chosen weather variables are calculated for periods 
of 2 to 6 months taken from the 12 months before harvest; 
these are called weather features. Using all possible start 
months, this means 11 different 2-month features per vari-
able, ten 3-month features, nine 4-month features and so 
on, in total 45 features per weather variable, each with one 
value per year.

The better purpose of program 1 is to subset the pool of 
possible regression features to those very probably contain-
ing predictive power, and this is based on counting the num-
ber of occurrences of weather features among the best-fitting 
regressions. Accordingly, all weather features used in these 
regressions are sorted along their frequencies of use, and a 
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relevance cutoff is determined based on binomial probabili-
ties—features need to have been selected more often then 
they would have occurred by pure chance with 99.9% prob-
ability; the number of features above this threshold is hence-
forth denoted q. Details of the calculation are explained with 
the case study example below.

Note that all calculations made in this and the following 
programs are done separately for each target year, so that 
any feature selection and prediction is made solely based on 
information from other years plus the meteorological data of 
the target year. Only for current and future year projections 
(scenarios), all available data from the past are utilized.

Program 2: “the workhorse”

Program 2 effects the highest computational burden, using 
parallelisation is strongly recommended. Again, possible 
input feature combinations are investigated for their pre-
dictive power in multiple linear regressions according to 
Eq. 1, but the weather features are now chosen from the 
target year-specific preselections of significant features 
provided by program 1. Consequently, only predictions 
for these years whose yield data are censored from the 
regression equations (leave-one-out) are calculated. What 
is demanded here is an evaluation of the predictive skill 
of the input feature combinations, not just single features. 
This is done by Pearson correlations (r values) between 

reported yields and the out-of-sample yield predictions 
from the regressions.

Program 3: “the gold pan”

The logically following task addressed by this program is 
determining the optimal regression model for each spa-
tial subunit. Simply choosing the feature combinations 
separately for each district from top of their local r rank-
ing (“local heroes”) could however be misleading because 
a single yield time series estimation provides rather insuf-
ficient validation; any chosen combination should be cross-
validated by above-average performances in many districts.

The solution currently implemented (“global and local 
heroes”) merges globally best performing combinations 
(highest average r values) with those working exceptionally 
well in smaller subsets, down to 10% of the districts. The 
idea behind is to account for special conditions in certain 
landscapes. The locally best-performing regression out of 
this third selection is finally implemented for each district.

Programs 4 and 5: “crucible and mould”

What remains is using the selected regression equations 
for yield prediction in the respective target years; this is 
done by program 4. Program 5 aggregates the district 

Fig. 1   Flowchart of the ABSO-
LUT programs (yellow boxes) 
with input, intermediate, and 
output data. Inputs to be pro-
vided by the user are coloured 
greenish; any other data will be 
generated in the process. Princi-
pal outputs are tinted in red

Intermediate output/input files

District results

User input

General settings Read by all programs

Crop yield data Read by programs marked

Crop area data

Monthly

weather data

Selection of

weather features

Program 1
Map output

(requires postprocessing)

Map output

(requires postprocessing)

Time series plots

Program 2

Program 3

Program 4

Program 5

Spatially aggregated yield predictions
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yield predictions by weighted averaging to predictions for 
the full modelling domain. Spatial aggregation provides 
higher prediction accuracy due to mutual error compensa-
tion among noisy district results.

Setup of the Germany application

Three principal weather variables were selected: aver-
age temperature, precipitation, and sunshine duration. 
Temperature governs the physiological processes in plant 
growth and fertility. Sunshine is used as proxy for radia-
tion, the energy source for photosynthesis. Precipitation 
and radiation (the main driver for evapotranspiration) are 
finally decisive for water stress. There are actual radiation 
data available, but sunshine duration is measured at more 
locations and regularly delivered better results. Applying 
ABSOLUT to other world regions and crop species may 
require other meteorological variables for optimal results, 
and data availability has always to be considered. Even 
non-meteorological variables would be acceptable, but 
here, we focus on weather effects. The minimum of yield 
data per district had been set to 17 because the example 
dataset was limited to 22 years (1999–2020), and a higher 
requirement would have excluded many districts with 
incomplete observations.

The primary test crop was winter wheat, and the last 
month for weather input before each year’s harvest (typi-
cally in July or August) was set to June. For the secondary 
test crop silage maize, the weather input season was set to 
end by August; maize harvest may occur late in the year 
but growth stagnates in autumn.

Results

Observations along the workflow for winter wheat

Running program 1

With the three weather variables 3 · 45 = 135 weather fea-

tures were generated. This meant 
(

135

4

)

= 13 232 835 

different regressions per district and target year to be 
tested which required a couple minutes using 24 CPUs in 
parallel.

There is a stark difference between the goodness-of-
fit of the top-ranked regressions applied to the same data 
that was used for selecting them and their performance 
in validation mode, i.e. with the observed yield value of 
any single year to predict censored from the input (out-of-
sample validation across all target years). The respective 
r2 values for winter wheat averaged over all district models 

are 0.878 and 0.115, Fig. S2 shows maps of the the spatial 
distributions. It is clear that the regressions selected in this 
step cannot be immediately used for predictions.

Which weather features do however appear significantly 
often in these regressions, each target-year collection includ-
ing the top 23 per district? The algorithm requires that the 
number of occurrences exceed a frequency expected by 
pure chance with 99.9% confidence. If there were pure 
noise in the data, each of the 135 features originally pro-
vided would turn up with a constant probability of p =

4

135
 

per regression sample. With a finite number of samples 
their frequencies follow a binomial distribution. In the win-
ter wheat case, there were n = 7498 samples (326 districts 
times 23) per target year; thus, the expectation value for 
any weather feature in the noninformative case would be 
E(x) = np = 222.163 occurrences with an expected standard 
deviation of E(�) =

√

np(1 − p) = 14.683 . The number of 
occurrences not to be exceeded in 99.9% of the cases would 
be P999(n,p) = 269. Depending on the actual frequencies in 
the separate target-year outputs, between 29 and 36 weather 
features were selected in the winter wheat case; Fig. 2 shows 
the selections and frequencies for four target years.

The average temperature towards the end of the grow-
ing season (temperature aggregates for May and June and 
March to June) stick out clearly for each target year; this is 
in full agreement to the often described temperature sensi-
tivity of wheat during and after anthesis (Akter and Islam 
2017; Farooq et al. 2011; Schauberger et al. 2017a). Conse-
quently, the majority of the aggregates shown in Fig. 2 are 
temperature averages (magenta), while less than a quarter 
are precipitation depths (cyan) and only 18 out of 134 are 
sunshine durations (orange). The frequency of selections 
depends strongly on which year was omitted from the input 
data, but there are also quite stable and interesting patterns: 
For example, sunshine duration in July and August (in the 
pre-harvest years, before sowing!) is selected for every year 
shown in Fig. 2 and in 21 of the 23 target years considered 
in total.

Running programs 2 and 3

The 23 target-year specific output tables of program 2 have 
between A2004 = 4050 and A2000 = 16 216 lines (below the 
header) for all possible input variable combinations and 
326 columns representing the districts for which enough 
yield data were available. Negative correlation coefficients 
could be found in 28.3% of the table cells. The negative 
extremes are near-perfect anticorrelations; eight target years 
had rmin <  − 0.97.

Given the number of 22 out-of-sample regression esti-
mates behind every correlation coefficient, the compu-
tational demand is significant. Running program  2 on 
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112 CPU cores took about 23 h for winter wheat. Calcula-
tions for other crops led to fewer pre-selected input weather 
features and could be done in a few hours, though. It should 
also be noted that the major numerical effort is done with 
program 2, the remaining code parts only take a couple min-
utes to complete on a single CPU.

Even for the generally best performing feature combina-
tions, the individual per-district correlations between out-
of-sample predictions and observed yields are rather noisy. 
Consequently, 258–290 different combinations make up the 
individually best-performing regressions for the 326 dis-
tricts considered in the winter wheat case, and their average 
correlations of 0.717–0.766 still deteriorate when used for 
predictions based on new data.

The input feature combinations leading to the highest 
out-of-sample average correlations (averaged over all spa-
tial subunits) are determined by program 3. The top-ranked 
combination for each target year is listed in Table 1: Note 

that tas0506 is frequently included, while tas0306 does not 
occur at all here despite the fundamental positioning of both 
features in Fig. 2.

The “global and local heroes” selection was finally applied 
to determine the target-year specific sets of predictors; see S4 
for the analysis of the alternative selection methods. For most 
years, 12–16 combinations were actually applied, the maxi-
mum was c2004,2005 = 19, and the minimum c1999 = 9. These 
combinations contained 12–17 different weather features, and 
the correlation averages of the so determined district models 
were in the range of 0.572–0.650; these numbers are a more 
realistic indication of the expectable prediction performance.

Running programs 4 and 5

Program  4—utilizing the out-of-sample-determined dis-
trict-specific regressions for the out-of-sample yield pre-
dictions—loops through all districts within a minute. Their 

Fig. 2   Frequencies of weather features found significantly often in 
the regression equations optimally describing observed winter wheat 
yields in the district-level administrative units of Germany. Results 
for four selected target years whose yield data have been omit-

ted from the input data available for 1999–2020. The feature names 
consist of variable acronyms (tas = temperature, pr = precipitation, 
sund = sunshine duration; also signalled by the colours) and two-digit 
numbers of the start and end months of their time aggregation
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spatial time-series aggregation towards Germany’s national 
winter wheat yields, computed by program  5, is shown 
in Fig. 3 together with the results for silage maize. In con-
trast to the intermediate aggregation for the federal state of 
Saxony (Fig. S3), the national estimates for winter wheat 
yields expose higher noise but reduced errors (R2

val = 0.417, 
RMSE = 4.58 dt ha−1), while the spatially aggregated silage 
maize modelling shows remarkable accuracy (R2

val = 0.837, 
RMSE = 13.9 dt ha−1).

Prediction performance

Regional performance for 2018 silage maize yields

Using district regressions provides not only a basis for 
aggregate results but can also help identify spatial pat-
terns despite the higher noise in single district results. In 
contrast to major agricultural zones of the world like the 
North China Plain or the US corn belt, Germany is char-
acterized by a high diversity of soil landscapes forming a 
distinct pattern of high and low yield regions (Hennings 

2013; Kruse 2016); hence, the ability to predict spa-
tial yield patterns should be determined from relative 
changes as shown in the upper map panels of Fig. 4.

The silage maize harvest forecast for the drought year 
2018 was chosen as an example due to extreme yield 
losses concentrating in Eastern Germany. The S5 section 
in the Supplement presents respective maps for the 2019 
yield changes of winter wheat, sample statistics of both 
cases, and observations from the error compensation for 
spatial aggregates.

Despite the noise, the maps of the predicted and 
observed relative yield changes in districts shown in 
Fig. 4 (a and b) show a general similarity of spatial pat-
terns. There are regional misses especially in north-west-
ern parts of the country and along the southern border, 
but the centre of gravity of the strongest yield losses 
could correctly be located. Panel (c) gives an impression 
of the regional distribution of prediction power through 
absolute RMSE values calculated from the complete 
record of 1999–2020 out-of-sample prediction errors. In 
general, the method works fine in Northern Germany 
and some parts of the south, but has some issues in west-
ern to central areas. The actual 2018 forecast errors (d) 
were much larger in many districts including those with 
comparably small RMSEs. It may be assumed that the 
training period (1999–2017) did not contain enough ref-
erence drought years; in fact, only 2003 might have been 
comparable to some extent.

Table 1   Target year-specific combinations of input weather aggre-
gates performing best across all districts and the average Pearson cor-
relation of their out-of-sample predictions in the winter wheat exam-
ple for Germany; output of program 3. The input feature tas0506 is 
bolded to highlight its many occurrences

Target Input weather aggregtes r̄

1999 tas0506 sund0506 tas1202 tas0811 0.465
2000 tas0102 tas0506 tas0710 pr1102 0.475
2001 tas0506 sund0506 tas1202 tas0811 0.466
2002 tas0102 tas0810 tas0406 pr1102 0.434
2003 tas0506 sund0506 tas0104 sund0104 0.441
2004 pr0102 tas0506 sund0506 tas1202 0.455
2005 tas0506 sund0506 tas1202 tas0710 0.467
2006 tas0506 sund0506 tas1202 pr1103 0.460
2007 tas0102 tas0506 pr0506 pr1102 0.453
2008 tas1011 tas0506 tas1202 pr1102 0.484
2009 tas1011 pr0102 tas0506 tas1202 0.463
2010 tas0506 sund0506 tas1203 sund0104 0.504
2011 tas0102 tas0506 tas0710 pr0902 0.488
2012 tas0506 tas0710 pr0811 tas1203 0.495
2013 tas0506 pr0506 tas1202 pr1202 0.444
2014 tas0102 tas0506 tas0710 pr0812 0.446
2015 tas0506 sund0506 tas1202 tas0711 0.474
2016 tas1011 pr0102 tas0506 tas1202 0.524
2017 tas0102 tas0506 tas0710 pr0801 0.482
2018 tas0102 tas0506 tas0710 pr0812 0.464
2019 pr0102 tas0506 sund0506 tas1202 0.474
2020 tas0506 sund0506 tas1202 tas0710 0.478
2021 tas0506 sund0506 tas1202 tas0710 0.473

Fig. 3   Winter wheat and silage maize yields in Germany according 
to the official statistics (DESTATIS, 1982ff, solid dots) and their out-
of-sample predictions with uncertainty intervals. The uncertainty bars 
on the hindcasts extend to ± 1.96 times the sample standard devia-
tion of the prediction errors and should therefore cover 95% of the 
observed yields. For 2021, the actual prediction interval is shown; 
this is slightly wider due to the uncertainty of the estimation and cen-
tred on the sample mean of prediction errors which may slightly devi-
ate from zero
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Yield predictions for Germany

There are at least two institutions regularly publishing crop 
yield forecasts or estimates: the German Federal Statistical 

Office (Statistisches Bundesamt, DESTATIS) and the Joint 
Research Centre (JRC) of the European Commission with 
their MARS (Monitoring Agricultural ResourceS) activity. 
The DESTATIS reports (DESTATIS, 1982ff) with national 

Fig. 4   Spatial characteristics of the silage maize yield prediction for 
the drought year 2018. a Predicted yield changes compared to the 
average district yields of the years 2012–2017. b Observed changes 
according to the official statistics. c Root-mean-square errors (RMSE) 

of all out-of-sample district yield predictions for the years 1999–
2020. d Absolute values of prediction errors for 2018. a and b show 
relative deviations in percent (upper scale), c and d refer to absolute 
deviations in dt ha−1 (lower scale)
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and federal states’ estimates are based on extensive field 
monitoring, on-site observations during growth and harvest 
by farmers and travelling experts. The MARS forecasts uti-
lize a number of sources and predictors but seem to largely 
rely on remote sensing. National aggregate predictions are 
released via monthly bulletins (MARS 1993ff).

Yield predictions for crops harvested in June or July (cere-
als or rape) can usually be computed in the beginning of July 
as soon as the monthly weather data for June are available. For 
silage maize or sugar beets, the August weather data should be 
completed. Both conditions were constantly observed for the 

examples presented. Hence, the preliminary national crop yield 
estimations of DESTATIS, regularly published in the beginning 
of August and at the end of September, are used for compari-
son. Only the winter barley estimates are released in between 
(which explains their small deviations from the final figures), 
and DESTATIS does not provide early indications at all for sugar 
beet yields. For MARS, the annual issues 7 (typically released at 
the end of July) and 9 (typically released in mid-September) are 
the seasonal counterparts to compare with. Table 2 compares the 
official national yields with the different predictions for five crops 
in the years 2018–2021 and also shows some forecasts for 2022.

Table 2   National average yields for various crops: comparison of official statistics (yield) to near-harvest predictions of ABSOLUT, the German 
Federal Statistical Office (DESTATIS, 1982ff), and the European Commission’s Joint Research Centre (MARS, 1993ff)

a Hypothetical release dates for ABSOLUT predictions assuming 3 work days for calculations after publication of the meteorological grids
b The winter wheat figures given for MARS have been obtained by adding 0.6 dt ha−1 to their original soft wheat prediction

Yield ABSOLUT DESTATIS MARS

Prediction Error Prediction Error Prediction Error

Year dt ha−1 dt ha−1 dt ha−1 dt ha−1 dt ha−1 dt ha−1 dt ha−1

Winter wheat 07–09 Julya 02–03 August 22–27 July
2022‍ 76.3 71.0 74.5b

2021 73.5 77.5  + 4.0 77.5  + 4.0 79.3b  + 5.8
2020 78.8 83.3  + 4.5 71.9  − 6.9 76.0b  − 2.8
2019 74.5 79.6  + 5.1 73.0  − 1.5 77.1b  + 2.6
2018 67.7 71.2  + 3.5 66.4  − 1.3 71.6b  + 3.9 

Winter barley 07–09 Julya 24–29 August 22–27 July
2022‍ 67.1 71.9
2021 71.6 72.3  + 0.7 71.9  + 0.3 70.5  − 1.1
2020 67.3 75.3  + 8.0 67.5  + 0.2 68.8  + 1.5
2019 72.2 73.4  + 1.2 72.1  − 0.1 71.3  − 0.9
2018 60.6 58.8  − 1.8 60.8  + 0.2 63.5  + 2.9 

Rye 07–09 Julya 02–03 August 22–27 July
2022‍ 49.7 52.2 52.0
2021 52.7 54.8  + 2.1 58.4  + 5.7 57.1  + 4.4
2020 55.2 54.8  − 0.4 51.7  − 3.5 52.5  − 2.7
2019 50.9 47.5  − 3.4 51.7  + 0.8 52.8  + 1.9
2018 42.1 46.0  + 3.9 42.7  + 0.6 44.6  + 2.5 

Rape 07–09 Julya 02–03 August 22–27 July
2022‍ 33.5 33.2 35.1
2021 35.1 36.1  + 1.0 36.7  + 1.6 37.6  + 2.5
2020 36.9 37.7  + 0.8 32.8  − 4.1 32.7  − 4.2
2019 33.1 34.9  + 1.8 33.8  + 0.7 34.7  + 1.6
2018 30.0 29.9  − 0.1 28.8  − 1.2 30.0  ± 0.0 

Silage maize 07–09 Septembera 22–26 September 14–20 September
2022‍
2021 472.3 445.8  − 26.5 451.0  − 21.3 457.0  − 15.3
2020 423.9 435.3  + 11.4 410.3  − 13.2 400.0  − 23.9
2019 390.0 383.1  − 6.9 383.7  − 6.3 394.0  + 4.0
2018 352.9 387.9  + 35.0 342.7  − 10.2 361.0  + 8.1
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Weather input of Gornott and Wechsung

Experiments with district-based crop yield prediction in Ger-
many through multiple regression using weather aggregates 
had already been presented by Gornott and Wechsung (2016). 
In contrast to the algorithm presented here, only year-on-year 
(YoY) changes were considered saving the explicit estimation 
of an underlying linear trend. The study investigated different 
options to couple the coefficients of the district models (panel-
ling), an approach further pursued with cluster analysis (Conradt 
et al. 2016). The nearest equivalent to ABSOLUT are therefore 
the independent district regressions of Gornott and Wechsung 
(2016), called there “separate time series models” (STSMs), and 
the most fundamental difference is that all STSMs used the same 
set of input variables—predefined per crop—while ABSOLUT 
searches for some optimal combinations.

How powerful are the predefined input variables in terms 
of prediction accuracy compared to the combinations drawn 
by ABSOLUT? To answer this question, the district regres-
sions were charged with the weather variables originally used 
by Gornott and Wechsung (2016); implementation details are 
given in S7. The time series for national yield predictions cal-
culated from the Gornott and Wechsung weather aggregates 
are shown in Fig. 5. Compared to the result of the ABSO-
LUT algorithm in Fig. 3, the lower accuracy is evident; the 
shares of explained interannual winter wheat yield variabil-
ity dropped from 41.7% to mere 18.6%. Note that the wheat 
predictions resemble the observed ups and downs predomi-
nantly in the first half of the time; from about 2010 onwards, 
there is hardly any correlation any more. The coefficient of 
determination for the national silage maize yield predictions 
reaches at least 42.7%, while Gornott and Wechsung (2016) 
reported 50% for their prediction of interannual changes. This 

is however clearly below the 83.7% obtained with ABSO-
LUT. Maps showing the spatial goodness-of-fit distributions 
can be found in the Supplement (Figs S5 and S6).

Discussion

Performance in comparison to previous studies 
and official yield predictions

The first lesson learned was that the excessive testing and 
optimization of regressor combinations consumes degrees 
of freedom, thus predictive power, just like the estimation of 
many coefficients within the multiple regressions. The solu-
tion was to require significant above-average performances 
in many districts for qualifying combinations of weather 
aggregates (input features) as predictors: Their performance 
exceeded the results obtained with pre-defined weather fea-
tures used in precursor studies (Gornott and Wechsung 2016; 
Conradt et al. 2016).

Considering the fact that the ABSOLUT results can be 
obtained 2–4 weeks in advance to those of the other sources, 
the quality of its predictions of national yield averages is in 
the same league with DESTATIS and MARS. The ABSO-
LUT regressions produced tendentially more overpredic-
tions, probably due to uncaptured drought effects (especially 
soil drought). The explained shares of yield variations are in 
accordance with the literature: Global studies assessing the 
relative impact of weather factors on crop yield variations 
(Frieler et al. 2017; Schauberger et al. 2017b) give typi-
cal ranges of 50–60% for wheat and maize yields of main 
producer countries; for wheat in the USA, only 30–40% 
were reported as well. A careful assessment separating 
the impacts of farm management and weather effects on 
wheat yield variations across Germany (Albers et al. 2017) 
found average shares of 43% of the variations caused by 
the weather and 49% owing to management. While non-
meteorological factors like irrigation status, fertilizer price, 
and general farming conditions are much more decisive in 
developing countries (Assefa et al. 2020), national aggregate 
yields of staple crops in Europe may depend even more on 
weather than previously assumed (Agnolucci and De Lipsis 
2020). To tap the full potential of weather-based yield mod-
elling, meteorological extremes (heat waves, storm precipi-
tation) need however also to be considered; by using only 
time aggregations over several months, this is not possible.

Regarding possible COVID-19 effects in the official 2020 
and 2021 yield data, farmers’ cropping operations had been 
done as usual in Europe (no COVID restrictions for single-
driver machines). Only pandemic-induced micrometeoro-
logical effects not reflected in the weather data like sunshine 
intensity and alterations in air chemistry (less NO2, more O3) 
caused by reduced air pollution (Skirienė and StasiškienėŽ 

Fig. 5   Winter wheat and silage maize yields in Germany according to 
the official statistics (DESTATIS, 1982ff, solid dots) and their out-of-
sample predictions calculated from the five weather aggregates used 
by Gornott and Wechsung  (2016). Uncertainty and prediction inter-
vals calculated as in Fig. 3
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2021, Torkmahalleh et al. 2021; Silva et al. 2022) may have 
affected the observed yields. However, no literature specifi-
cally devoted to lockdown effects on plant growth could be 
found, so these effects are probably hardly traceable.

An over‑confidence trap in statistical modelling

The most important improvement of ABSOLUT v1.2 over 
its predecessor v1.0 is that not only the parameter estima-
tions used for prediction are solely based on weather–yield 
relations in other years than the the target year (out-of-
sample) but also the search for the weather features to be 
applied. Originally, the feature combinations for the district 
regressions were fixed once and for all based on the full 
dataset. The biased R2

val indications of v1.0 reached more 
than 0.8 for the national winter wheat yield time series, and 
silage maize results were even breaking 0.9.

The performance indications have now been corrected 
by the consequent separation of training and testing data for 
all aspects of feature selection and parameter estimation. 
Forecast and scenario outputs were hardly affected by the 
correction—all program versions use all available data from 
the past for predictions beyond the coverage of the observed 
yield time series. How much the performance measures had 
been upward biased revealed the enormous information con-
tent hidden in the selection of input feature combinations.

This is important for any related kind of statistical mod-
elling: Especially if the selection of input variables is less 
freely adaptive but guided by expert knowledge, it may hap-
pen quite often that the resulting model performs seemingly 
well, but only in the environment in which it was developed. 
With the recent input data, the historical prediction perfor-
mances of Gornott and Wechsung (2016) (cf. also Conradt 
et al. 2016) could be reconstructed to some extent for silage 
maize but hardly at all for winter wheat. An interpretation is 
that the formerly observed correlations between uniformly 
defined weather variables and wheat yield deteriorate under 
climate change and influential weather variables become 
gradually replaced by others (to which the ABSOLUT algo-
rithm will automatically adopt). Given the rather abrupt loss 
of correlation in Fig. 5 after 2010, the final year considered 
by Gornott and Wechsung (2016), it can as well be assumed 
that their input variable selection was (unconsciously?) 
guided by its performance in the historic environment, and 
any data from outside the original time window would spoil 
the original correlation even without climate change.

The question remains, to what extent information 
absorbed in the model setup process and henceforth con-
tained in model structures makes overconfidence in pre-
dictions from new input data a common issue, not only 

in weather-based crop yield modelling. In recent years, 
machine learning algorithms gained popularity in crop mod-
elling with seemingly better results than multiple regres-
sion modelling (Cai et al. 2019; Cao et al. 2021; Leng and 
Hall 2020; Zhang et al. 2020; Bouras et al. 2021). However, 
practically all of these studies have in common that an initial 
selection of predictor variables was made using all available 
data (and often simple tools like Pearson correlations) before 
the advanced methods were applied.

Improvement potentials and development 
opportunities

There are two critical spots of the present version of the 
algorithm which are at the same time opportunities for 
improvements with future revisions: The first one is the 
assumption of a linear base trend of yields independently 
estimated for each spatial subunit. This allows straightfor-
ward prediction of absolute yields instead of relative changes 
(a major difference to Gornott and Wechsung 2016, and 
Conradt et al. 2016), but might be oversimplistic: After sev-
eral decades of technological progress with ever increasing 
yields, there are stagnations reported for different crops and 
world regions (Chen 2018; Schauberger et al. 2018; Meh-
rabi and Ramankutty 2019). Already existing methods like 
the stochastic trend separation by Agnolucci and De Lipsis 
2020) highlight the potential for improvement.

The second area of concern is the final selection of inde-
pendent regressor variables, i.e. weather aggregates, for 
each spatial subunit. The general challenge is about finding 
the optimum balance between a high number of multi-site 
confirmations of predictive power and the flexibility needed 
to adopt to smaller regions demanding alternative combi-
nations for more exact predictions. Perhaps spatial clusters 
of predictors should be explicitly considered similarly to 
what has been done for parameter values (Cai et al. 2014; 
Conradt et al. 2016). Finally, there is also no stability of 
the weather–yield relations over time, probably caused by 
nonstationarity of meteorological variables in the context 
of climate change: Correlation shifts have been observed 
by Trnka et al. (2016) or Ceglar et al. (2020) which calls for 
additional flexibility.

This flexibility could also be connected to shifts in the 
phenological calendar, a well-known effect of climate 
change (Racca et al. 2015; Zhang et al. 2022). Shifting 
growth stages could probably be considered by shifting 
time windows for weather feature aggregation which in turn 
would require a finer time resolution of the weather input 
data, e.g. decadal instead of monthly data.

2297International Journal of Biometeorology (2022) 66:2287–2300



1 3

Conclusions

It could be demonstrated that the ABSOLUT algorithm, 
already in its present stage of development, is capable of 
explaining significant shares of the national yield varia-
tions of major crops in Germany solely based on weather 
variables. Given the near real-time availability of German 
weather data, early in-season yield predictions are pos-
sible with accuracies comparable to official national and 
EU forecasts.

Probably the most important finding was the “overconfi-
dence trap” for any kind of regression modelling with expert-
guided regressor selection: As the choice of regressors con-
tains a similar amount of information as the parameter values 
do, it is very easy to unvoluntarily violate the principle of 
independent model training and testing. Many performance 
figures given in the literature for statistical yield models may 
be positively biased for that reason. The algorithm presented 
here tries to escape this trap by objectivizing the regressor 
selection; however, some basic choices for relevant meteoro-
logical variables still remain with the modeller.

Primarily developed for demonstrating the feasibility and 
principal advantage of semi-automatic regression feature 
selection, ABSOLUT offers many potentials for improve-
ments. Among these is the capability to capture nonlinear 
long-term yield trends or a better way to balance tempo-
ral and spatial correlations in the input data. A weak spot 
shared with other regression models is the time aggregations 
blinding the model for exceptionality and effects of (short-
time) weather extremes which become more frequent under 
climate change. Consequently, related questions about the 
impact of climate change on food security underline the need 
for further research into this field.
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