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Abstract
Crop fungal diseases constitute a major cause of yield loss. The development of crop disease monitoring and forecasting tools 
is an important effort to aid farmers in adapting to climate variability and change. Recognizing weather as a main driver of 
fungal disease outbreaks, this work assesses the climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum, 
MoT) development in Asian wheat-producing countries. MoT was reported for the first time in Bangladesh in 2016 and 
could spread to other countries, provided that environmental conditions are suitable to spore development, distribution, and 
infection. With results from a generic infection model driven by air temperature and humidity, and motivated by the neces-
sity to assess the potential distribution of MoT based on the response to weather drivers only, we quantify potential MoT 
infection events across Asia for the period 1980–2019. The results show a potential higher incidence of MoT in Bangladesh, 
Myanmar, and some areas of India, where the number of potential infection (NPI) events averaged up to 15 during wheat 
heading. Interannual trends show an increase in NPI over those three countries, which in turns show their higher interannual 
variability. Cold/dry conditions in countries such as Afghanistan and Pakistan appear to render them unlikely candidates 
for MoT establishment. The relationship between seasonal climate anomalies and NPI suggests a greater association with 
relative humidity than with temperature. These results could help to focus future efforts to develop management strategies 
where weather conditions are conducive for the establishment of MoT.
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Introduction

The occurrence of crop diseases caused by fungal patho-
gens is among the main factors affecting crop yields glob-
ally (Figueroa et al. 2018). Although advances in resistant 
varieties and efficient and environmentally friendly con-
trol options are numerous, losses associated with fungal 
diseases remain very important and, in some cases, dev-
astating (Fisher et al. 2012). The risk of crop disease out-
breaks is increasing given the global trade of agricultural 
commodities, which can increase the exposure of crops to 

new diseases that have been imported (Bebber et al. 2014). 
This is the case of wheat blast (MoT) disease caused by 
the fungus Magnaporthe oryzae pathotype Triticum (MoT), 
which evolved and has been present in South America since 
1985 (Igarashi et al. 1986). MoT was reported for the first 
time in South Asia in Bangladesh in 2016 (Malaker et al. 
2016; Ceresini et al. 2018), and more recently in Southern 
Africa in Zambia (Tembo et al. 2020). MoT is considered a 
potentially devastating fungal disease in countries where it 
has been historically present, such as Brazil (Igarashi et al. 
1986), Bolivia (Barea and Toledo 1996), and Argentina 
(Perelló et al. 2015), causing periodic and significant yield 
losses (Cruz et al. 2016; Duveiller et al. 2016). MoT is also 
an emerging threat to wheat production and food security 
in countries where wheat is a major staple, such as in Asia 
(Islam et al. 2020a, b).

In Bangladesh, the first MoT outbreak affected about 
15,000 ha of wheat, with an estimated reduction of nearly 
30% in production in 2016 (Islam et al. 2020a, b; Yesmin 
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et al. 2020). Although subsequent outbreaks have not been 
recorded, the disease remains present in Bangladesh with 
low to moderate severity when detected (Singh et al. 2021). 
The impacts of MoT on wheat yields and grain quality can 
be devastating for susceptible cultivars, but they can vary 
greatly in response to other factors such as weather con-
ditions, growth stage, or planting date (Cruz and Valent 
2017). In this way, when weather conditions are suitable 
for MoT infection, grain yield losses can range from slight 
to total (Duveiller et al. 2011; Singh et al. 2021), as it has 
been reported in South American countries such as Brazil or 
Bolivia, where yield losses have reached up to 100% (Gou-
lart and Paiva 1992; Barea and Toledo 1996).

Although there are still no official reports of the presence 
of MoT in others countries than Bangladesh in Asia, studies 
of climate suitability for MoT have suggested that it may 
spread to areas with humid and warm climates in neigh-
boring countries such as India or Pakistan (Motaleb et al. 
2018a). Research has also suggested that Ethiopia (Duveiller 
et al. 2011) and the USA (Cruz et al. 2016) may be risk-
prone. In these regions, both seed-born and air-born spore 
propagation, suitable weather conditions, and disease sus-
ceptible cultivars can act synergistically to increase the risk 
of disease outbreak, potentially threatening food security 
(Ceresini et al. 2018). These risks have motivated a number 
of efforts to monitor pathogen presence (Fernandes et al. 
2021; Islam et al. 2016; Yesmin et al. 2020), and to develop 
management strategies including resistant varieties (Hos-
sain et al. 2019), chemical and nonchemical control methods 
(Singh et al. 2021), and early warning systems (Fernandes 
et al. 2021; Kim and Choi 2020).

Multiple tools have been developed for the monitoring 
and forecasting of fungal disease outbreaks based on field 
observations or empirical and deterministic models com-
bining weather variables to generate early warnings of the 
potential risk of disease outbreaks (Launay et al. 2014). Con-
sidering MoT in Asia, studies of its potential spread have 
been carried out using monthly climate statistics (e.g., Mot-
aleb et al. 2018a) or limited temporal and spatial domains 
(e.g., Kim and Choi 2020). No large-scale, continental, and 
high-resolution assessments have conversely been carried 
out in Asia. However, given increasing availability of envi-
ronmental data and computing capacities, the use of simula-
tion models to diagnose and forecast favorable conditions for 
the development of crop diseases has grown in importance 
(Donatelli et al. 2017).

Diagnosis and applications vary from regional assess-
ments of climate suitability (Bebber et al. 2017), sensitiv-
ity analysis to environmental drivers and parameterizations 
(Bregaglio et al. 2012), and future projections in risks asso-
ciated with climate change (Bregaglio et al. 2013). The latter 
suggested that the suitable conditions for the establishment 
of fungal diseases can be well captured by models forced by 

climate variables (e.g., atmospheric humidity and tempera-
ture), provided that parameters are adequately set for a spe-
cific disease (Bregaglio et al. 2012; Bregaglio and Donatelli 
2015). In the case of MoT, Fernandes et al. (2017) devel-
oped a wheat blast–specific model aiming at implementing 
an early warning system for Brazil, which was applied and 
evaluated at the local level using a single-location approach 
and then extended to Bangladesh (Fernandes et al. 2021). 
The need for decision-making tools for farmers from other 
wheat-growing regions in Asia has been emphasized later 
(Singh et al. 2020), given the potential risk for the range of 
disease expansion (Islam et al. 2020a, b). In this context, the 
aim of this work is to provide a large-scale and long-term 
assessment of the climate suitability for MoT development 
over wheat-growing areas of Asia in terms of mean histori-
cal (1980–2019) weather conditions and interannual vari-
ability, based on the analysis of the results obtained from 
high-resolution meteorological data and a generic infection 
model. The results from this work, which represent an esti-
mate of the potential pressure that can be exerted by MoT 
driven by background meteorological conditions, can con-
tribute to the understanding of the spatial patterns in suitable 
weather conditions for MoT and their main large-scale driv-
ers, and can potentially provide guidance for future efforts 
and regional prioritization in the development of early warn-
ing systems based on weather monitoring and forecasting.

Data and methods

Study area

Eight Asian countries were identified based on the extent of 
wheat cultivation and consumption and the recent emergence 
of wheat blast disease in 2016 in Bangladesh, which are sum-
marized in Table 1 for 2019. In alphabetic order, these include 
Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, 
Nepal, and Pakistan. In these countries, winter wheat is planted 
in the autumn, with a long vegetative stage during the dry sea-
son in winter, and the reproductive stage generally occurring 
with the onset of the spring. In addition, spring wheat is culti-
vated in areas with mild winters such as in India, and at eleva-
tion in the Himalayas, where wheat is sown in autumn and har-
vested after the winter without vernalization, though land area 
devoted to spring wheat is limited in South Asia (Curtis 2002; 
Krupnik et al. 2021). For this reason, this study focuses on 
winter wheat as the predominant crop. Wheat is a major staple 
food in Afghanistan and Pakistan, with a total production of 
4.9 and 24.3 Mt (million tonnes) over 2.3 and 8.7 Mha (million 
ha) in 2019, respectively (Fig. S1; FAOSTAT 2021). Wheat 
consumption has been increasing progressively in India, Bhu-
tan, Myanmar, and Bangladesh, becoming the second most 
important staple food after rice (Motaleb et al. 2018b). China 
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is the world’s largest wheat producer, with 133.5 Mt grown 
on 23.7 Mha in 2019; India is the second largest producer, 
growing 103.6 Mt in 2019 on 29.3 Mha (FAOSTAT 2021). 
Bangladesh conversely is a net importer of wheat, producing 
1 Mt over 0.33 Mha in 2019, cultivated exclusively during 
the winter after monsoon season rice fields are drained. In 
Nepal, wheat is grown in the low-lying Terai (up to 500 m 
above sea level) and in the Himalayan mid-hills (Morris et al. 
1994; Krupnik et al. 2021), with a total of 2 Mt produced from 
0.7 Mha in 2019. In Myanmar, more than 90% of the wheat 
is found in the hilly Sagaing and Shan states (USDA, 2019), 
with a production of 110,000 tonnes from 59,000 ha in 2019. 
In Bhutan, wheat is also produced at elevation, reaching 1319 
tonnes from 1004 ha in 2019 (Tshewang et al. 2017).

Modeling potential wheat blast infections

Model description

The generic infection model developed by Magarey et al. 
(2005) was used to assess the climate suitability of MoT infec-
tions. This model has been previously applied for large-scale 
studies of fungal disease infections given the biological sig-
nificance of its parameterizations and simple implementation 
(Bregaglio et al. 2012, 2013). The model considers both the 
effect of hourly air temperature and plant surface wetness (or 
relative humidity) duration on the development response of a 
generic fungal pathogen by using two functions describing its 
sensitivity to air temperature and humidity. The model uses the 
air temperature response function proposed by Yan and Hunt 
(1999), which combines a set of pathogen’s cardinal tempera-
tures to estimate the shape of the response as:

where f(T) (dimensionless, values from 0 to 1) is the temper-
ature response function; T (°C) is the hourly air temperature; 

(1)

f (T) =

(

Tmax − T

Tmax − Topt

)(

T − Tmin

Topt − Tmin

)(Topt−Tmin)∕(Tmax−Topt )
,

Tmin, Tmax, and Topt are the minimum, maximum, and opti-
mum temperatures for infection, respectively. These cardi-
nal temperatures were taken from Cruz et al. (2016), who 
suggested the following values for MoT: Tmin = 10  °C, 
Tmax = 32 °C, and Topt = 27.5 °C. As an example, Fig. S2 
shows the resulting shape of f(T), where, following a slow 
response, exponential increasing response to temperature is 
observed between Tmin and around 20 °C, which turns from 
almost linear to a decreasing-rate increment until Topt, to 
then drops rapidly until f(T) = 0 at Tmax. The air temperature 
response f(T) is subsequently scaled to the wetness dura-
tion requirement for infection according to the following 
relationship:

where W(t) (dimensionless, values from 0 to 1) corresponds 
to the wetness response function, and WDmin and WDmax 
(hours), taken as 12 and 24, respectively (Cruz et al. 2016), 
are the minimum and maximum leaf wetness duration 
requirement for infection, respectively. Therefore, when the 
infection models use hourly forcing data, it is necessary to 
account for the number of hours that may interrupt a wet 
period without terminating the infection process, as Magarey 
et al. (2005) explained. For this, the model considers the 
impact of critical dry periods through the parameter D50 
that is calculated as:

where Wsum is the sum of the surface wetting periods and W1 
and W2 indicate two wet periods separated by a dry period 
(D, in hours). As in Magarey et al. (2005), D50 is defined as 
the duration of a dry period at relative humidity < 95% that 
will result in a 50% reduction in disease compared with a 
continuous wetness period. Therefore, if D > D50, the model 
considers the two wet periods as separate wetting events. 

(2)W(T) =

{

WDmin

f (T)
, if

WDmin

f (T)
< WDmax

0, elsewhere
,

(3)Wsum =

{

W1 +W2, ifD ≤ D50

W1,W2, elsewhere
,

Table 1  Main wheat production 
statistics for the eight Asian 
countries considered in this 
study for the year 2019. Values 
in brackets correspond to the 
slope of the linear fit of the 
corresponding statistics for the 
period 1961 through 2019. Data 
from FAOSTAT 2021

Country Production (tonnes) Area harvested (ha) Aver-
age yield 
(tonnes/ha)

Afghanistan 4,890,000 (39,767) 2,334,000 (− 372) 2.095 (0.02)
Bangladesh 1,016,811 (24,511) 330,348 (8360) 3.078 (0.04)
Bhutan 1319 (− 18) 1004 (− 68) 1.314 (0.02)
China 133,596,300 (2,079,597) 23,730,000 (− 37,782) 5.630 (0.09)
India 103,596,230 (1,612,311) 29,318,790 (297,338) 3.533 (0.05)
Myanmar 110,663 (2125) 58,866 (289) 1.880 (0.02)
Nepal 2,005,665 (34,027) 703,992 (12,368) 2.849 (0.03)
Pakistan 24,348,983 (412,302) 8,677,730 (73,567) 2.806 (0.04)
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When the plant surfaces are wet and f(T) > 0, the model 
assumes that inoculant is present in the environment and 
adds a cohort of spores. Infection events are triggered when 
the value of Wsum ranges between WDmin and WDmax (Brega-
glio et al. 2012). Although the values of the D50 parameter 
were gathered by Magarey et al. (2005) for a number of 
species of fungal diseases, D50 has not yet been calibrated 
for MoT. We however included a value of D50 of 4, which 
was used by Bregaglio et al. (2013) for the assessment of 
potential infections of Pyricularia oryzae, a MoT anamorph, 
in Europe (Martínez et al. 2019). The above set of equations 
were solved for the wheat heading period, which was esti-
mated using a phenological model based on thermal time 
accumulation, as presented below.

Infection model forcing

Multiple global gridded climate products are currently avail-
able, which can be potentially used to model and diagnose 
crop diseases. However, meteorological information must be 
provided at appropriate temporal and spatial scales, given 
the behavior of crop pathogens. Among the meteorological 
variables most used for crop disease modeling are air tem-
perature, precipitation, relative humidity, and leaf wetness 
(Donatelli et al. 2017). More complex and highly demanding 
in computer resources, transport-based Lagrangian models 
require wind speed and direction to calculate fungal spores’ 
trajectories and deposition (Meyer et al. 2017).

Most global gridded climate products are provided at 
daily time-steps as the higher temporal resolution, which 
may be limiting for the simulation of crop diseases. 
Although there are methods to statistically disaggregate 
daily time series to hourly values via empirical models or 
weather generators (Bregaglio et al. 2010), their accuracy 
can be limited by the available historical data and their 
implementation can be difficult when it comes to large 
datasets. This study used hourly data from the last genera-
tion European Centre for Medium-Range Weather Forecasts 
(ECMWF) ERA5 global atmospheric reanalysis as mete-
orological observations to force the infection model. This 
product is provided at an hourly time scale with a horizontal 
resolution of 0.25° × 0.25° (~ 31 km), covering the period 
1979 to present for single (surface) and multiple vertical 
levels (Hersbach et al. 2020). ERA5 is generated using a 
4D-Var data assimilation scheme to optimally combine out-
puts from the ECMWF Integrated Forecasting System with 
satellite and ground observations. We utilized the hourly 
ERA5 air and dewpoint temperature at surface level (2 m 
height), and rainfall data for the period from January 1980 
through December 2019. Relative humidity (RH) for the 
infection model was calculated using the widely used equa-
tion involving actual and saturated vapor pressure, which 

are obtained from dewpoint (Td) temperature and actual air 
temperature (T), respectively (Allen et al. 1998):

with ea and es are expressed in kPa, and temperatures in 
°C. Maps of the seasonal climatology of these variables are 
provided in Fig. S3.

Representing wheat distribution and phenology

The spatial distribution of wheat area was represented using 
the Spatial Production Allocation Model SPAM 2010 v1.0 
global crop production data product developed by the Inter-
national Food Policy Research Institute (IFPRI) (Wood-
Sichra et  al. 2016; International Food Policy Research 
Institute (IFPRI) 2019). This product provides statistics on 
crop production by merging sub-national statistics, satellite-
derived land cover, environmental crop suitability, popula-
tion, cropping systems, and markets, among other variables. 
The operational product is generated after the crop produc-
tion data derived from the above-mentioned information 
is aggregated into a regular grid of spatial resolution of 
around 10 km × 10 km using a cross-entropy method (You 
and Wood, 2006). In this work, the original data grid was 
bilinearly interpolated to the 0.25° × 0.25° climate forcing 
resolution and then converted into a binary mask (Fig. S4).

MoT infections were estimated for the phenological 
period from heading to the end of the reproductive phase 
(maturity). The starting and ending dates of this suscepti-
ble period were calculated using crop growth modeling and 
global climate products. Thus, the spatially explicit critical 
dates necessary for bounding the modeling time window are 
sowing date, emergence, beginning of the heading stage, 
and beginning of physiological maturity. After represent-
ing the spatial distribution of wheat, the key phenological 
dates were stated. First, winter wheat sowing dates were 
obtained from the interpolated Crop Calendar Dataset of 
Sacks et al.’s (2010) product, which provides 5′ × 5′ spatial 
resolution global dates of crop sowing and harvest dates rep-
resentative of the year 2000. Here, the original resolution 
dataset was bilinearly aggregated to match the 0.25° × 0.25° 
ERA5 resolution (Fig. S4).

The wheat heading period was estimated using point-
based simulations with the CSM-CROPSIM-CERES-wheat 
model, embedded in the Decision Support System for Agro-
technology Transfer (DSSAT) v.4.6 (Jones et al. 2003). 

(4)ea = 0.611 × exp

(

17.27×Td

237.3+Td

)

(5)es = 0.611 × exp

(

17.27×T

237.3+T

)

(6)RH = 100 ×
ea

es
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CROPSIM-CERES simulates wheat phenology according 
to the Zadoks stages (Zadoks et al. 1974) as a function of 
growing degree day accumulation and accounting for envi-
ronmental stresses, vernalization, and photoperiod effects. 
Simulations were performed over a set of 163 wheat-grow-
ing locations belonging to the International Wheat Improve-
ment Network (IWIN; Reynolds et al. 2017) for the period 
1979 through 2019 (Fig. S5). The meteorological forcing 
(air temperature, solar radiation, rainfall, relative humidity, 
wind speed) was performed using ECMWF’s AgERA5 prod-
uct (Copernicus Climate Change Service (C3S), 2019), a 
statistically downscaled (0.1° × 0.1°) daily version of ERA5. 
Global soil profiles from the HC27 product (Koo and Dimes 
2010) were used to provide soil physical and chemical prop-
erties to CROPSIM-CERES. Genetic coefficients necessary 
for wheat simulations were set based on the cultivar distribu-
tion over the International Maize and Wheat Improvement 
Center’s (CIMMYT’s) wheat mega-environments, which 
correspond to homogeneous agroecological zones for wheat 
cultivation (Pequeno et al. 2021). A comparison between 
CROPSIM-CERES simulated number of days from sow-
ing to anthesis and IWIN observations showed a normalized 
root mean square error of 7.6% (data not shown). Finally, 
using sowing dates from Sacks et al. (2010), simulated dates 
of anthesis and maturity were obtained for every location, 
and the heading date was assumed to occur 10 days before 
anthesis. Both heading and maturity dates were bilinearly 
interpolated to 0.25° × 0.25° working spatial resolution of 
the SPAM product (Fig. S5). A flow diagram schematically 
describing the main steps of the modeling approach is shown 
in Fig. 1.

Analysis

Data analysis involved three analytical steps. The first step 
focused on the quantification of the average and interan-
nual variability (1980–2019) in the weather-driven number 
of potential infections (NPI) of MoT summarized for all 
selected countries, except for Bhutan, where model results 
showed non-suitable climate conditions for wheat blast 
development. The interannual trends (slope of the linear fit) 
in NPI were also evaluated, and their statistical significance 
was assessed using the non-parametrical Mann–Kendall test 
(Kendall, 1955) at a confidence level of 0.05. In the second 
step, the covariability between NPI and climate variables 
was assessed. This was performed by computing the Pear-
son correlation coefficient between pairs of detrended time 
series of NPI and air temperature, relative humidity, and 
rainfall anomalies. Lastly, a composite analysis of anomalies 
of the above-presented climate variables was performed for 
the years of highest MoT incidence predicted by the model, 
taking the upper quartile (75th percentile) of the NPI time 

series. Anomalies were obtained by removing the corre-
sponding long-term average.

Results

Mean patterns and interannual variability 
of number of potential MoT infections

Figure 2a shows the map of interannual mean total seasonal 
NPI in Asia. The mean seasonal NPI is 7.5 (median of 6) 
and interquartile range from 4 to 9 (Fig. 3a). In Fig. 2a, while 
57.6% of SPAM wheat grid cells present suitable conditions 
for MoT, 6.7% of them present favorable conditions during 
all 39 years studied. The map shows a spatial distribution of 
NPI indicating higher climate suitability for MoT develop-
ment over areas near the ocean over the southern fraction of 
the domain, such as in Bangladesh, some areas of West Ben-
gal and Bihar India, and in Myanmar. The model suggests 
that MoT can also establish over large areas of central India, 
Myanmar, and China, though at lower NPI levels. Con-
versely, other wheat-producing regions have air temperature 
and humidity ranges that would not represent favorable con-
ditions for MoT outbreaks, including most areas in Afghani-
stan, Pakistan, and central China. Figure 2b shows the inter-
annual variability (standard deviation) of potential infections 
in Asia, where a strong interannual variability is observed in 
areas of higher incidence (Bangladesh, Myanmar), but also 
a southward increase in potential infection risks in India. 
Similarly, interannual variability of NPI shows a wider 

Fig. 1  Flow diagram of the modeling approach for number of poten-
tial infections (NPI) of MoT. See text for acronyms and product 
names
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range over the areas of higher MoT potential incidence (e.g., 
Bangladesh). The southward increasing pattern in India and 
Myanmar suggests that the pressure of the disease could 
be much higher than the average conditions during more 
favorable years for its development, so long as sufficiently 
susceptible wheat cultivars are grown and alternative hosts 
maintain inoculum outside the wheat-growing season. The 
distributions of total multi-year NPI cases and NPI normal-
ized by the corresponding infected area and aggregated by 
country are presented in Fig. 3a and b, respectively. There is 
a considerable variation in the mean and spread of the dis-
tribution of normalized NPI across countries. However, it is 
clear that Bangladesh is the country with the highest relative 
potential MoT pressure associated with climate, followed by 
India and Myanmar, which present similar disease risk sce-
narios, and then in Nepal, China, Pakistan, and Afghanistan.

The long-term interannual trends in seasonal total NPI are 
displayed in Fig. 4, including their statistical significance. 
Our model outputs suggest generally increasing trends in 
NPI that concentrate over areas of higher MoT pressure 

shown in Fig. 2a, although only a small fraction is statisti-
cally significant according to the Mann–Kendall test. Posi-
tive trends are dominant in Bangladesh, central Myanmar, 
and over portions of the Indo-Gangetic Plains (IGP) of India. 
Decreasing trends are observed further south over warmer 
areas of India and in Myanmar’s delta, where recent tem-
perature trends may be above the maximum MoT develop-
ment temperature in the model (IPCC 2021).

Seasonal climate anomalies and number 
of potential MoT infections

The relationship between NPI and seasonal anomalies 
(from wheat heading to maturity) of air temperature (T), 
relative humidity (RH), and total rainfall (R) is described in 
Fig. 5a–c, which show the correlation coefficient calculated 
between NPI and these variables. The correlation map of 
NPI and T shows that most of the grid points with suitable 
climate conditions for MoT described in Fig. 2 do not present 
statistically significant correlations. This is likely due to the 

Fig. 2  Maps of a mean and b 
interannual variability repre-
sented by the standard deviation 
(1980–2019) of the number of 
Magnaporthe oryzae patho-
type Triticum (MoT) potential 
infections (NPI) in Asia. Black 
dots represent grid cells with 
presence of wheat but where the 
climate appears to not be suit-
able for MoT outbreaks. P99th 
is the 99% percentile
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scaling used in the temperature response function (Eq. 1), 
which implies a non-linear relationship between temperature 
and NPI. However, a small area in northern Bangladesh with 
relatively high MoT pressure (Fig. 2) has significant negative 
correlations. This area exhibits high temperatures during the 
wheat heading period (Fig. S6), which may imply a higher 
frequency of hours with the temperature above the range of 

suitability considered in the model, indicative of reduced 
infection risk potential. On the other hand, the correlation 
between NPI and RH (Fig. 5b) is much more apparent than 
with temperature; this is indicative of the importance of 
RH conditions for the potential development of the disease. 
In this case, strong positive correlations are observed over 
Bangladesh, Myanmar, and some areas of India, which cor-
respond to those of higher MoT pressure (Figs. 2 and 3). 
A very weak correlation between NPI and total rainfall is 
observed in Fig. 5c for the whole geographical domain. 
Since the calculation period falls in general within the dry 
season (Fig. S6), our models suggest that precipitation may 
not be a significant determining factor of the incidence of 
MoT at the scales of the present work, as other factors asso-
ciated with atmospheric water vapor transport might be more 
relevant (Ahmed et al. 2020). However, the 2016 outbreak of 
MoT in Bangladesh has been associated with strong storm 
events during the dry season (Singh et al. 2021), which is 
not captured by a correlation-based analysis.

The maps of mean composite anomalies of T, RH, and R 
calculated for the years of the highest infection events, repre-
sented by the upper quartile of NPI, are displayed in Fig. 5d–f. 
Figure 5d shows an area of negative temperature anomalies 
in northern Bangladesh that was already observed with high 
interannual correlations in Fig. 5a. In general, both India and 
Myanmar present a pattern of anomalies that are not very 
clear, although they in general follow what is observed in 
terms of correlations (Fig. 5a). Conversely, RH shows a spa-
tial distribution (Fig. 5e) that appears to be consistent with 
the interannual correlations (Fig. 5b), where anomalously 
high seasonal NPI is associated with positive anomalies in 
RH, appearing again as a variable with high discriminatory 
power for modeled NPI. Figure 5f shows that high incidence 
of MoT is likely to be associated with negative precipitation 
anomalies. The latter suggests that, despite the null correlation 
between both variables, drier-than-normal winters may tend 
to be more favorable for MoT outbreaks.

Discussion

Climate suitability for MoT in Asia

Assuming the presence of inoculum and susceptible culti-
vars, the primary goal of this study was to provide a general 
and objective overview of the background climate conditions 
for the development of MoT over a region where wheat cul-
tivation is important for food security (Yonar et al. 2021), 
and whose agricultural landscape is described as being 
highly exposed to the shocks associated with weather and 
climate variability (Amarnath et al. 2017). At the time of 
writing, MoT has only been officially reported in Bangladesh 
(Malaker et al. 2016), though unofficial reports of the disease 

Fig. 3  a Histogram of multi-year number of potential MoT infections 
(NPI) in Asia; P25% and P75% are the corresponding percentiles. b 
Boxplots of interannual distribution of NPI. In b, the red central mark 
shows the median and the box edges are the 25th and 75th percen-
tiles; dashed lines extend to the most extreme values not considered 
outliers, and outliers are plotted individually (× signs)
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have also been published in the popular media in eastern 
India, prompting the temporary banning of wheat cultivation 
in some areas (cf. Islam et al. 2020a, b); our modeling efforts 
also suggest high disease pressure risks, though not always 
with significant and positive interannual trends, potentially 
backing the consistent but spatially variable incidence and 
severity of MoT observed in this country between 2017 and 
present (CSISA 2021). The reasons for the variable nature 
of infections observed in Bangladesh and South Asia remain 
unclear; though recognizing weather conditions as a major 
driver of fungal disease outbreaks (Bregaglio et al. 2012; 
Juroszek et al. 2019), improved knowledge regarding the 
environmental suitability for the establishment of MoT can 
aid in anticipating the development of disease management 
strategies. These include but are not limited to the deploy-
ment of new resistant varieties, cultural control methods, and 
the use of early warning systems in wheat regions where the 
disease is a potential threat for food security.

The results highlight the importance of spatial variabil-
ity in the climate suitability for the establishment of MoT 
in Asia, with a higher potential observed in Bangladesh, 
Myanmar, and some areas of India, where low elevation, sea 
proximity, or regional low-level circulation can favor factors 
such as atmospheric water transport (Ahmed et al. 2020). 
Using a methodologically similar approach, a similar spa-
tial pattern in the suitability of rice leaf blast (Magnaporthe 
oryzae pathotype Oryzae) driven by summer weather over 
North India was described by Viswanath et al. (2017) for 
India. At the same time, regions that appear to have higher 
potential risks for infection in our model are also associated 
with higher interannual variability. This appears to reflect 
in literature on MoT from South America (Fernandes et al. 
2017) and observations in Bangladesh (CSISA 2021) that the 
disease is irregularly periodic, increasing in incidence and 
severity only during years of higher favorable conditions. 

On the other hand, we also observed increasing NPI risks in 
northwestern India. This result could potentially be associ-
ated with irrigation, which is intensively applied to wheat 
on over 80% of the land area devoted to rice–wheat rotations 
in northwestern India (Hussain et al. 2003; Jain et al. 2017; 
Ram et al. 2013;), which could contribute to land surface 
cooling during the pre- and post-monsoon period (Mishra 
et al. 2020). Intensified use of irrigation on the other hand 
has also increased evaporation, increasing actual water vapor 
pressure (Tuinenburg et al. 2014), which can determine an 
increase in relative humidity creating conditions that are 
more suitable for MoT development (Bregaglio et al. 2012). 
Additionally, our scenarios suggest that high incidence of 
MoT is likely to be associated with negative precipitation 
anomalies. The latter could be associated with the regulatory 
effect of rainfall on air temperature, which affects relative 
humidity during a period of the year where precipitation 
events are sporadic. However, further analysis is necessary 
to validate this hypothesis.

On the other hand, results suggest that wheat-producing 
regions with low temperature and humidity in Afghani-
stan, Pakistan, or some areas of India are unlikely to be 
at significant risk for MoT outbreaks, as climatic regime 
appears to be out of the range for the disease development 
(Magarey et al. 2005; Cruz et al. 2016). According to the 
observed relationship between interannual variability in 
NPI and the selected climate variables, a clear association 
between anomalies of RH and NPI was observed, which 
is explained by the structure of the infection model. This 
observation confirms those of Kim and Choi (2020) and 
Fernandes et al. 2017) that suggested that this variable 
could be potentially used for the development of seasonal 
early warning systems. Indeed, recent efforts to develop 
weather-based early warning systems in Bangladesh and 
Brazil (e.g., Fernandes et al. 2021; http:// beatt hebla stews. 

Fig. 4  Map of interannual 
trends (1980–2019) in NPI over 
Asia. Black dots represent areas 
where linear trends are statisti-
cally significant (α = 0.05) 
according to the Mann–Kendall 
test
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net/) rely largely on humidity and temperature as driv-
ing variables. Nevertheless, the association between NPI 
and climate anomalies seems to be clearer when using 
a composite approach, which could open the possibility 
of generating probabilistic seasonal forecasts of favorable 
conditions for MoT outbreaks. The latter could be further 
explored using indices from large-scale drivers (El Niño/
La Niña) and suitable lead times. In addition, although 
most of the area of the geographical domain studied did 
not exhibit statistically significant trends, areas that exhibit 
show positive trends in NPI that could increase in response 
to projected climate change scenarios, which should be 
addressed in future studies.

Limitations and uncertainties

The approach used in this study considers the combination 
of multiple sources of secondary information and modeling 
(cropping calendars, phenology, potential infections, etc.). 
This in turn implies multiple sources of uncertainty and 
limitations that should be considered in order to improve 
the understanding of the conditions conducive to the devel-
opment of crop diseases, including future projections in cli-
mate. For instance, the generic infection model considers the 
moment when favorable weather conditions for the devel-
opment of MoT are fulfilled to declare an outbreak. How-
ever, other complex disease-host interaction processes could 

Fig. 5  a–c Maps of local Pearson correlation coefficient between 
number of potential infections (NPI) and a mean temperature (T), b 
relative humidity (RH), and c total rainfall (R). Only significant cor-
relations at the 10% level are displayed. d–f Composites of seasonal 

a mean air temperature, b relative humidity, and c total rainfall asso-
ciated with the upper quartile of NPI. Only grid cells exceeding the 
95% confidence interval are displayed in d–f 
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determine the successful establishment of the disease, which 
are not considered in the model, which also assumes that 
inoculant is present in the environments being studied (e.g., 
Bregaglio et al. 2012, 2021). Additionally, other relevant 
variables that have been considered in other similar works 
could be included. For instance, the “wash-off” effect of 
spores from spikes by rainfall above a specific intensity has 
been considered by Fernandes et al. (2017), which can be 
relevant over more where significant rains occur during the 
heading wheat period. Another source of uncertainty are the 
model parameters, and specifically the D50 parameter used 
in Eq. 3, which was extracted from similar fungal species 
(Puccinia sp. and Bipolaris sp.) in rice and wheat. Although 
this can lead to errors, Bregaglio et al. (2012) found that 
results are not very sensitive to the values of D50 for other 
fungal diseases. We however conducted a simple sensitiv-
ity analysis, S7, that was performed using a set of values of 
D50, from “sensitive” to “insensitive” to dry interruptions 
according to Magarey et al. (2005), presented in Fig. S7, 
which suggests that the calculated NPI are not very sensitive 
to variations in D50 values. In any case, a global sensitiv-
ity and uncertainty quantification analysis would provide a 
better understanding of the model structure and sensitivity 
to parameters and threshold values (Bregaglio et al. 2012), 
which is, however, out of the scope of this work.

In addition, and in spite of using phenology dates that 
are comparable to other works (e.g., Liu et al. 2020), the 
use of fixed planting and heading/maturity dates may rep-
resent a source of error during, for instance, anomalously 
warm/cold years, in which the phenological stages can 
be accelerated/delayed. The latter may represent a limi-
tation when developing early warning systems based on 
seasonal climatic forecasts, which currently provide infor-
mation on a monthly or longer scale. Moreover, we relied 
on a single, though comprehensive data source for plant-
ing dates from the interpolated Crop Calendar Dataset of 
Sacks et al. (2010). Although widely used, this dataset 
may have inaccuracies with observed planting dates, which 
can in turn affect phenological development. For exam-
ple, this dataset shows quite late wheat sowing dates into 
December in the north western IGP, and specifically in 
the Indian states of Haryana and Punjab (Fig. S4). These 
locations however tend to be associated with earlier plant-
ing than in the eastern IGP (Lobell et al. 2013; Jain et al. 
2017). The reasons for the lack of congruence between 
the Sacks et al. (2010) dataset and observations are not 
clear, although future studies should query the relationship 
between crop establishment dates and disease incidence, 
in an effort to identify if and how MoT risks could be 
mitigated through manipulation of sowing dates. Remote 
sensing–based regional sowing date estimations based 
on the seasonality of satellite time series such TIMESAT 
(Jönsson and Eklundh, 2004) could help to generate global 

products of key phenological stages. Similarly, although 
the SPAM dataset (Wood-Sichra et al. 2016; International 
Food Policy Research Institute (IFPRI) 2019) is widely 
used (e.g., Joglekar et al. 2019; Yu et al. 2020), it is par-
tially based on administrative report data for 2005 and has 
not been thoroughly ground-truthed and as such there may 
be spatial over- and under-estimation of wheat cultivation 
area. For example, Myanmar has a declining trend and less 
than 100,000 ha of wheat (FAOSTAT 2021; USDA PS&D 
2022), while the SPAM product suggests a cultivation area 
of around 85,500 ha, and a more southern distribution 
of cultivation than other sources suggest (USDA PS&D 
2022). Future researchers may therefore consider making 
use of satellite-derived estimates for wheat phenology to 
complement this data source, for example, using methods 
described by Jain et al. (2017). Yet despite these potential 
inconsistencies, our model outputs still provide a useful 
indication of the potential for MoT infection risks, and can 
therefore be used to help in crop planning and zoning, in 
addition to integrated pest management efforts, although 
care should be exercised when interpreting our results.

Conclusions

The sudden, unexpected arrival of wheat blast disease in 
Bangladesh in 2016 underscores the risk associated with 
this disease. Although formally reported in Bangladesh at 
the time of writing, there is a lack of clarity on the potential 
distribution of the MoT species and its effect on wheat cul-
tivation throughout the Asian continent. Our results suggest 
a differential suitability for the development of MoT—and 
a large interannual variation in some key wheat-producing 
areas—across Asia. The contrasting potential risk of MoT 
between Bangladesh, Myanmar, and some states within 
India, with infection events averaging up to 15 during the 
wheat spike, and limited risks in Afghanistan and Pakistan, 
and in central China, could allow focusing efforts to increase 
the resilience and preparation of farmers for potential 
future biotic shocks. Importantly, our results also highlight 
a stronger association between relative humidity and MoT 
infection than with temperature regime. Accordingly, future 
improvements should further investigate if and how rela-
tive humidity can be used to simplify data requirements and 
modeling efforts. New research should also focus on includ-
ing more complex pathogen-plant interaction processes, 
dynamic wheat phenology, source-sink relationships, and 
wind dispersal patterns, higher resolution climate forcing for 
historical and future assessments. Although still preliminary 
in nature, our results nonetheless may aid in the develop-
ment or refinement of early warning systems and agricultural 
climate services associated with MoT and similar diseases.
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