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Abstract
Peatlands perform many important ecosystem functions at both the local and global scale, including hydrologic and climatic 
regulation. Although peatlands often act as climatic microrefugia, they have rarely been the subject of long-term microcli-
matic studies. In this study, we aimed to compare the local climatic conditions of a mid-forest mire to that of an open area 
and examine the differences in microclimates within the mire based on plant community diversity, shading, and water table 
depths. The peatland studied in this work was significantly cooler than the reference site, mainly due to a higher decline in 
nighttime air temperatures. However, the daily maximum air temperature near the ground was often higher. We also noticed 
that microclimates significantly differed within the studied peatland. Wet and shaded microsites were cooler than the sites 
having a lower water level and receiving higher amounts of solar radiation. The results of the study suggest that peatlands 
have locally cooler climates, and thus can serve as climate change refugia. These findings can help us interpret reconstructed 
data from the peat archive, and, when combined with experiments, identify tipping points for peatland ecosystems.
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Introduction

Peatlands, like any other ecosystem, are affected by climate 
change, which is expected to worsen in the coming decades 
(Malhi et al. 2020). Climate change causes a variety of 
disturbances in peatlands, ranging from hydrological 
to trophic changes, which are further exacerbated by 
detrimental human land-use practices. Although peatlands 
cover only 3% of the earth’s surface, they serve as carbon 
sinks, water reservoirs, habitat for specific species, and 
natural paleoenvironmental archives (Amesbury et al. 2019; 
Jassey et al. 2018; Nichols and Peteet 2019). Undisturbed 

peatlands (mires) act as net carbon sinks and contribute to 
global cooling if water inflow (precipitation, groundwater 
supply) exceeds water losses (evapotranspiration, runoff), 
and thus become the habitats of special management and 
protection (Limpens et al. 2008; Moore et al. 2002). Some 
ecosystems quickly show the effects of climate change than 
others (Bertrand et al. 2011; Settele et al. 2014; von Arx 
et al. 2012). Therefore, researchers have been performing 
intensive experimental studies on the response of peatland 
ecosystems to climate changes (Buttler et al. 2015; Delarue 
et al. 2011; Dieleman et al. 2015; Reczuga et al. 2020; 
Turetsky et al. 2011).

Despite often acting as microrefugia, as evidenced by the 
results of palaeoecological research, peatlands have rarely 
been the subject of long-term microclimatic studies (Dítě 
et al. 2018; Jones et al. 2009; Wieder 2006). Microrefugia 
are sites displaying favorable local conditions that allow spe-
cies populations to survive beyond their main distributions 
during unfavorable regional climatic conditions (Dobrowski 
2011). Morelli et al. (2016) defined climate change refu-
gia as areas relatively buffered from contemporary climate 
change over time that enable persistence of valued physical, 
ecological, and socio-cultural resources, and highlighted 
their importance as a climate change adaptation tool.
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The existence of a given refugium may be determined 
by external factors, such as terrain location (terrain-medi-
ated refugia) (Dobrowski 2011, Straberg et al. 2020) and 
water availability (hydrological refugia) (McLaughlin et al. 
2017), as well as internal regulatory processes (ecosystem-
protected refugia) (Shur and Jorgenson 2007; Waddington 
et al. 2015). Usually, several factors work together in syn-
ergy. According to paleoecological studies, some peatlands 
can resist disturbances and remain resilient for thousands of 
years (Lamentowicz et al. 2019a; Łuców et al. 2020).

Climate change forces living organisms to adapt to 
local climates or become extinct (Birks and Birks 2004; 
Huntington et  al. 2020; Moore 2011); however, some 
species may survive in locations that are characterized 
by local favorable environmental conditions outside their 
main area of distribution. Such locations are referred to as 
microrefugia (Ashcroft and Gollan 2013; Gubler et al. 2018; 
Rull 2009). Numerous studies analyzing different temporal 
and spatial microhabitat characteristics have indicated that 
the heterogeneity of habitats (Gallé et al. 2019), including 
their microclimates (Bramer et al. 2018), is underestimated. 
Free-air measurements obtained in standard meteorological 
stations at a height of 1.5–2.0 m over short grass or natural 
soil, in accordance with the guidelines of the World 
Meteorological Organization (WMO) (De Frenne et al. 2019; 
WMO 2018), provide general data about the macroclimate 
of an ecosystem. However, these measurements are not 
representative of a majority of the ecosystems. Although 
daily, seasonal, and interannual variations as well as multiyear 
trends converge with free-air measurements, the values of 
meteorological factors may significantly vary. The range of 
values of biotic and abiotic environmental factors determines 
whether or not a species exists in a given location. Therefore, 
due to the lack of monitoring and analysis of habitat 
properties, including microclimate, much information about 
individual species and their environmental requirements 
is unknown. To avoid extinction, an increase in global air 
temperature and the resulting habitat changes force species 
to track or adapt to the modified regional climate (Wasof 
et al. 2013). In recent years, species distribution models have 
been developed to aid in this analysis. Nevertheless, these 
models require specific measurement data for improvement 
and validation (Lembrechts et al. 2019).

Differences in macro- and microclimate may be espe-
cially large in ecosystems with high shading (forests), 
diverse landscape topography (mountains, young glacial 
landscapes) (Dobrowski 2011), and high soil moisture (e.g., 
wetlands) (Ashcroft and Gollan 2013; De Frenne et al. 2013; 
Słowińska 2016; Zellweger et al. 2019). This is also the 
case with urban areas, in which the phenomenon of urban 
heat island (UHI) is often observed (Manoli et al. 2020; 
Oke 1987; Stanley et al. 2019). In contrast to microclimate 
of forests, microclimate of peatlands has not been widely 

studied thus far (Chen et al. 1993; De Frenne et al. 2019; 
von Arx et al. 2012; Zellweger et al. 2019). For instance, 
De Frenne et al. (2019) performed a global analysis of the 
thermal buffering capacity of forests and showed that the 
mean and maximum understory temperatures were, on 
average, 1.7 ± 0.3 °C and 4.1 ± 0.5 °C cooler, respectively 
(mean ± s.e.m.), while the minimum understory tempera-
ture was 1.1 ± 0.2 °C warmer compared to the macroclimate 
outside the forest. A significant amount of climatological 
studies have also been conducted in cities. UHI, a common 
phenomenon in which temperatures in urban areas are higher 
than in surrounding rural areas, can be distinguished by a 
several Kelvin degrees warmer air temperature than the rural 
areas. For example, in Warsaw (Poland), the yearly average 
UHI index in 2011–2012 was a little more than 2.0 °C and 
the maximum index values were above 8.0 °C (Kuchcik et al. 
2014; Zhao et al. 2014).

Peatlands are ecosystems with diverse water and nutrient 
supply, ranging from oligotrophic bogs to extremely rich 
fens (Charman 2002; Hajek et al. 2006; Succow 1988). Due 
to their geology, microtopography, water level, and nutrient 
inflow, they are also heterogeneous within a given type. All 
these factors have a significant impact on the composition 
of vegetation in peatlands (Chronakova et al. 2019; Rydin 
and Jeglum 2013). Most peatlands are extremely sensitive 
to interannual changes in meteorological conditions because 
their functioning is dependent on the precipitation-to-evap-
otranspiration ratio (Baldocchi et al. 2018; Samson et al. 
2018; Yu et al. 2011). Studies that have been conducted so 
far on microclimate of peatlands were short term or a part 
of other environmental analyses, such as those focusing on 
greenhouse gas fluxes (Juszczak et al. 2012; Kellner 2001) 
or plant and microbial composition (Robroek et al. 2014). 
Worrall et al. (2019) conducted one of the few studies that 
analyzed the thermal properties of the surface of a reclaimed 
peatland. The authors demonstrated that a lowland peatland 
with a high water level could act as a cool, humid island dur-
ing daytime when the agricultural area was considered on a 
landscape scale. Liao et al. (2013) reported similar findings 
based on a comparison of the microclimatic edge effects 
between wetlands and farmlands in northeastern China.

The object of the present study is the Linje mire, a micro-
refugium. Dwarf birch (Betula nana), which is a glacial rel-
ict, has been documented in a peat core since the period 
of Younger Dryas around 12,000 years ago (Noryśkiewicz 
2005). Considering the knowledge gap in the long-term 
research on peatland microclimate, in this study we aimed to 
(i) analyze the local climate features of the mid-forest Linje 
mire, as an example of this type of ecosystem, in comparison 
to an open site, and determine the seasonal climate differ-
ences between the mid-forest mire and the open site, and 
(ii) examine the differences in microclimates of the micro-
sites on the mire selected based on the diversity of plant 
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communities, shading, and depths of the water table. We 
chose the peatland with one of the longest climate records 
in Poland for this study.

Materials and methods

Study site

The site chosen for this study was the mid-forest Linje 
mire, located in northern Poland (53° 11,015″ N, 18° 
18,034″ E; Fig. 1). The mire is characterized by a temper-
ate climate, which is influenced by both humid air masses 
from the Atlantic Ocean and dry inland masses. Its mean 
annual air temperature is 8.2 °C, and precipitation was 
recorded at 528.4 mm during the years 1951–2015 (sta-
tion index 12250 located about 25 km from the mire, data 
from the Institute of Meteorology and Water Manage-
ment). The mire is a poor fen with ombrotrophic vegeta-
tion that covers approximately 6 ha. It is situated in a ter-
rain depression between a moraine hill and a sandur with 
a dunes system which is reflected by its water conditions 
(Słowińska et al. 2010). The averaged terrain denivelation 
in the mire’s direct catchment area reaches several meters. 

The hydrochemistry of peatlands, and thus vegetation, is 
significantly influenced by their geological surroundings 
(Wheeler and Proctor 2000). The Linje mire was drained 
in the second half of the nineteenth century by allowing 
water from the mire to flow out to the south (Słowińska 
et al. 2010). Drainage was stopped later, and the peat-
land is currently protected, but drainage ditches can still 
be seen on the surface (Lamentowicz et al. 2016). This 
study analyzed the microclimatic features of five micro-
sites consisting of different plant communities as follows: 
MS1: Phragmitetea and Scheuchzerio–Caricetea nigrae 
(lawn structure comprising herb and moss layers); MS2 
and MS5: Sphagno squarrosi–Alnetum (hummock–hollow 
structure comprising moss, herb, and low shrub layers); 
MS3: Ledo–Sphagnetum magellanici (hummock–hollow 
structure comprising moss and low shrub layers); and 
MS4: Eriophorum vaginatum–Sphagnum fallax (hum-
mock–hollow structure comprising moss, herb, and low 
shrub layers) (Matuszkiewicz 2001). The vegetation com-
position of each studied microsite is described in Fig. 1. 
Microsites MS2 and MS5 were located close to the edge 
of the mire, and were therefore additionally shaded by tall 
Salix cinerea (MS2), Betula pubescens (MS2), and Alnus 
glutinosa (MS2, MS5).

Fig. 1   A Location of the Linje mire and the studied microsites (MS1–MS5), and B the vegetation composition of each microsite
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Field infrastructure and meteorological 
measurements

In order to determine the local climate features of the mire, 
the air temperature and humidity were recorded in its middle 
part (next to MS3; Fig. 1), and in the open site (reference) 
located 650 m away from the mire in a nearby village. The 
open site was situated on a lawn within the premises of a 
local company (Supplementary Information, Fig. 1). Tem-
perature and relative humidity data loggers (HOBO U23 Pro 
v2; Onset Computer Corporation, USA) were installed at a 
height of 30 and 150 cm, and worked in 10-min intervals. 
The same measurements were taken at the reference site 
as well. Air temperature and humidity monitoring has been 
carried out in the mire and reference site from the year 2009, 
but for this study, we only considered the data for the period 
from April 2, 2012, to December 17, 2015, when all four 
data loggers (two at the mire and two at the reference site) 
were functioning correctly, and no statistical methods were 
needed to fill in data gaps.

As mentioned above, microclimatic studies were car-
ried out in five microsites characterized by different plant 
communities and water conditions (Fig. 1). A data logger 
(EM-50; METER Group, USA), consisting of air tempera-
ture and humidity sensors placed in the radiation shield, 
photosynthetically active radiation (PAR) sensor, and leaf 
wetness (LW) sensor, was installed in each microsite. The 
air temperature, humidity, and PAR sensors were placed at a 
height of 30 cm, while the LW sensor was placed right above 
the surface of mosses. Groundwater wells with HOBO Water 
Level Data Loggers (Onset Computer Corporation, USA) 
were installed next to each micrometeorological station. 
Meteorological parameters were recorded in 10-min inter-
vals, and the data were collected from April 15 to November 
9, 2012, with the exception of the period from June 14 to 
July 8 when the logger failed at one of the plots. The depths 
of the water table were measured at 1-h intervals, and the 
results were averaged for the same period as meteorological 
parameters.

Statistical analysis of meteorological data

The differences in the daily average, minimum and maxi-
mum temperatures, and vapor pressure deficit (VPD) 
between the mire and open (reference) site were used 
to determine the local climate features of the mire. VPD 
was calculated as the difference between the saturated and 
actual vapor pressure of air at each time step (10 min), and 
the results were averaged as other microclimatic variables 
(Allen et al. 1998). To determine the amount of heat in 
the ecosystem, growing degree days (GDD) with base 0° 
were estimated as a sum of all positive daily averages in 
degree Celsius for every year and their average value was 

calculated. The days of ground frost were calculated as days 
when the minimum air temperature at the height of 30 cm 
dropped below 0 °C while a positive maximum temperature 
occurred on a given day.

The microclimatic conditions of each microsite were 
characterized by determining the following indicators related 
to air temperature (T), relative humidity (RH), and VPD: 
averaged daily mean (Tmean, RHmean, VPDmean), minimum 
(Tmin, RHmin, VPDmin) and maximum values (Tmax, RHmax, 
VPDmax), and absolute minimum and maximum values (only 
for temperature: TminAbs, TmaxAbs). The diurnal temperature 
range (DTR) was calculated as the difference between the 
daily maximum and minimum values. The sum of PAR was 
calculated for the investigated period to compare the amount 
of solar energy reaching the ground at each microsite. GDD 
with base 0° were calculated as described above. Data 
obtained from the LW sensors were used to estimate the sum 
of hours with the presence of free water resulting from dew, 
fog, or rainfall close to the surface of mosses. This infor-
mation indicates the microsite where the surface of mosses 
was most often wet. The course of temperature and VPD in 
July 2012 was also analyzed, based on hourly averages, to 
identify the differences in microclimates between the studied 
microsites during extremely hot days. Data on water table 
depths (WTDs) were used to determine the water conditions 
at each microsite. The groundwater level was recorded at 1-h 
intervals, and the results were averaged to the daily value 
and then to the investigated period.

The distribution of the differences was illustrated in box-
plot charts, and the significance of differences was analyzed 
using the Kruskal–Wallis test. Calculations were made for 
the seasons (spring, summer, autumn, and winter), growing 
season, and year to determine the local climate features of 
the mire. Microclimates were characterized based on the 
entire investigation period. Statistical analyses were car-
ried out in R program using “stats” (R Core Team 2020) 
and “ggplot2” (Wickham 2016) packages. The results were 
visualized using the Grapher application (Golden Software, 
LLC).

Results

Differences in air temperature and humidity 
between the mire and the open site

The years 2012–2015 were found to be warmer than the 
average of 1967–2015 (Bartczak et al. 2019). We observed 
a significant microclimatic separation between the mire 
and the reference site in the open area. Although the daily 
course of air temperature and humidity in the mire and the 
open site showed the same trends, the values were different. 
The mire was significantly cooler than the open site due to 
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a higher decline in nighttime air temperatures. The differ-
ences in the air temperatures were more pronounced near the 
ground (30 cm) compared to that at the height of 150 cm, 
and were influenced by seasonal patterns and weather con-
ditions. Among the temperature parameters, the largest dif-
ferences were found in the values of minimal temperature 
(Tmin). The median difference in Tmin was 3.9 °C near the 
ground and 1.4 °C at the height of 150 cm for a year, with 
the maximum temperature difference in summer reaching 
9.8 °C in June (Fig. 2A, Table 1). In winter, the values of 
Tmin were mostly higher in the mire than in the reference site, 
owing to snow cover. The mean air temperature at the mire 
was also lower by 0.81 °C near the ground and by 0.54 °C 
at the height of 150 cm for a year. In summer, the mire was 
cooler by 1.18 °C at 30 cm and by 0.92 °C at 150 cm, which 
was typical of Tmean. The maximum temperature of the mire 
recorded near the ground was higher by 1.9 °C, while no 
significant difference was noted in the temperature recorded 
at the height of 150 cm (Table 1).

The mean VPD value (VPDmean) was lower at the mire 
compared to the open site in averaged differences. The aver-
age annual difference of VPDmean was 0.32 hPa at the height 
of 30 cm and 0.54 hPa at 150 cm, and the largest differ-
ences occurred during the summer season, with 0.89 hPa 
at 30 cm and 1.29 hPa at 150 cm (Fig. 2B). The maximum 
VPD (VPDmax), which occurred during the warmest time 
of a day, showed variation in differences. At the height of 
150 cm, VPDmax was lower at the mire compared to the open 
site, but at 30 cm the value was higher. The average annual 
difference of VPDmax at 30 cm was 2.05 hPa, and 3.36 hPa 
in the growing season, while in July the difference reached 
almost 15.0 hPa (Fig. 2B). At 150 cm, VPDmax was lower by 
0.49 hPa averaged in a year and 1.44 hPa in summer.

At the mire, ground frosts (Tmin < 0.0 °C; Tmax > 0.0 °C) 
at the height of 30 cm were recorded for 42.4% days, while 
at the open site they were recorded for 21.0% days of the 
year (Fig. 3). Ground frosts were observed in every sea-
son, even in summer, at the mire and averaged for 8.0% 
days, whereas at the open site they were not recorded at all. 
Thermal resources defined based on the GDD (Tbase = 0 °C) 
index were lower by 7.0% at the height of 30 cm (range 
7–10%) and by 8% at 150 cm (range 5–9%) at the mire (aver-
age = 3244 GDD30cm and 3247 GDD150cm, respectively) 
compared to the open site.

Diversity of microclimates at the Linje mire

A significant difference in microclimates was observed 
between the studied microsites (MS1–MS5). We found the 
highest sum of incoming PAR for MS1, which was iden-
tified as a site where incoming PAR completely reached 
the ground. Based on this, the relative reduction of incom-
ing solar energy to the ground was calculated in the other 

microsites (18% for MS4, 24% for MS3, 49% for MS2, and 
73% for MS5). The differences in the shading of micro-
sites were reflected by other elements of microclimate. The 
highest daily mean temperature was observed for the most 
open site MS1 and for slightly shaded sites MS3 and MS4 
(Table 2). The value of Tmean was the lowest in the shadiest 
sites MS2 and MS5, but the differences between the sites 
were statistically insignificant. Extreme air temperatures, 
both minimum (Tmin) and maximum (Tmax), showed highly 
significant differences. Average and absolute Tmin were twice 
as low at the most open sites (MS1, MS3, and MS4), where 
the average values ranged from 2.4 to 3.0 °C, while in the 
shaded sites (MS2 and MS5) the values reached 4.3–6.4 °C. 
The highest maximum temperature was noted in the partly 
shaded sites (MS3 and MS4), where the absolute values 
were 39.5–40.0 °C, while in the most shaded sites (MS2 
and MS5) the maximum temperature was 33.7–33.8 °C. 
DTR was found to be the smallest for the sites MS2 and 
MS5. Heat accumulation in microhabitats was determined 
by GDD (Tbase = 0 °C), based on which MS4 was identified 
as the warmest and MS2 as the coldest (Table 2).

Analysis of relative humidity and VPD indicated that 
MS2 and MS5 sites had the highest humidity. The average 
daily relative humidity (RHmean) was 85.5–86.6% and aver-
age VPD (VPDmean) was 2.8–2.9 hPa. The LW duration was 
the longest in MS2 (3327 h), while in MS5 it was 2636 h 
for the investigated period. The driest places were MS1 
and MS3, where the daily average relative humidity was 
78.5–79.6% and VPD was 5.1 hPa. More importantly, the 
95th percentile of the daily average VPD was 15.0 hPa in 
MS1, MS3, and MS4 and only 7.1–8.0 hPa in MS2 and MS5 
(Fig. 4). The LW duration was the shortest in MS4 (2055 h). 
The microsites MS2 and MS5 were also found to be the wet-
test based on the values of WTD. The average groundwater 
level in these sites was 9.1 and 6.0 cm, respectively. MS4 
located by the dune was identified as the driest site with an 
average WTD of 20.6 cm.

The differences in microclimate between the studied 
microsites were especially pronounced on hot and dry days, 
as occurred from July 23 to 28, 2012. The daily time courses 
of air temperature and VPD recorded at each microsite are 
plotted in Fig. 5. The differences in maximum daytime air 
temperatures between the most shaded (MS2 and MS5) 
and more open microsites (MS1, MS3, and MS4) ranged 
from 5.1 to 8.2 °C (an average difference of 6.9 °C). In the 
open microsites, greater heat emission resulted in a higher 
decline in air temperature during the night and early morn-
ing hours, and on July 23, ground frosts occurred at MS1 
and MS3, while Tmin at MS5 was 6.0 °C. Maximal VPD was 
found to be much higher in the open microsites (MS1, MS3, 
and MS4) reaching a value of 46.1 hPa (MH4), while in 
the shaded microsites (MS2 and MS5) it was approximately 
20.0 hPa.
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Discussion

Climatic distinctiveness of the mire

According to Dobrowski (2010), refugia are characterized 
by climates that are decoupled from regional averages. In 
this study, we found that the mire was significantly cooler 
than the reference site. Even though the differences in mean 
annual temperatures between the mire and the reference site 
were relatively small (less than 1 °C; Table 1), they resulted 
from large differences in the minimum daily air tempera-
ture, especially during the growing season which is the most 
important for living organisms. The Tmin and Tmax values of 
the reference site and the mire differed by several degrees. 
Other studies conducted in raised bogs revealed that they dif-
fer from the surrounding landscape in both lower and higher 
temperature extremes, and were characterized by a higher 
chance of ground frost in summer nights and a lower mean 
temperature (Eggelsman 1980; Ermich 1972; Peus 1932).

The isothermal map of the mean annual air tempera-
ture of Poland shows that a temperature difference of 1 °C 
reflects a spatial shift to the north or east by about several 
dozen kilometers toward a cooler climate (Climate Maps of 
Poland, Institute of Meteorology and Water Management, 
NRI; https://​klimat.​imgw.​pl/​pl/​clima​te-​maps). Thus, geo-
graphically speaking, the local climate of the mire corre-
sponds to the regional average for cooler areas.

It was observed that the local climate and microclimates 
in the mire were influenced by the synergy of factors, includ-
ing topography, wetness conditions, and vegetation compo-
sition. The location of the mire in a small depression, its 
relatively small area (about 6.0 ha), and the surrounding 
forest favor the formation of a cold air pool (Geiger et al. 
1995; Lundquist 2008), where cooler and heavier air is held 
closer to the ground, with warmer air above.

Many peatlands in Central Europe are at a similar loca-
tion (Tobolski 2000), and thus may be characterized by simi-
lar local climate features.

The composition and properties of vegetation, as well 
as the hydrological conditions which are dependent on the 
annual sum and distribution of precipitation, are undeni-
ably one of the most important factors influencing micro-
climate. Postglacial peatlands in Central Europe are mainly 
dominated by Sphagnum moss. A several-meter layer of such 
sediments can be found in some of these peatlands, as in 
our study site. However, an acrotelm, which is the active 
layer, responds to meteorological changes through chang-
ing groundwater levels (Morris et al. 2011; Tobolski 2000). 

Apart from plant composition, which is influenced by a vari-
ety of factors, water level and surface wetness determine the 
thermal properties of Sphagnum mosses (Ellenberg 1988).

Due to the extremely low heat capacity and thermal 
conductivity of dry Sphagnum, heat is transferred into and 
out of the dry peat surface at a slower rate than wet peat 
(Loranty et al. 2018; Petrone et al. 2004). Furthermore, dry 
peat mosses have a poor capillary uptake capacity and can-
not draw water from deeper layers (Romanov 1968). Thus, 
the surface layer formed by Sphagnum mosses acts as an 
insulating layer filled with air, contributing to an increase 
in albedo (Price 1996). It protects the deeper layers from 
water loss and heating up, thereby preventing heat trans-
fer from these layers to the surface during cooling at night. 
The Linje peatland was drained at the end of the nineteenth 
century (Słowińska et al. 2010). The remains of ditches still 
slightly increase water outflow from the peatland, increasing 
the interannual and seasonal hydrological instability. Even 
short periods of no rainfall in summer cause a significant 
decrease in groundwater level, resulting in drying of the 
surface layer (Samson et al. 2018; Słowińska et al. 2010; 
Słowińska 2016). Therefore, especially in summer, air tem-
perature in the mire fluctuated more than at the reference 
station. The dry surface of Sphagnum moss strongly heated 
during the day, which led to higher daily maximum air tem-
peratures, and the surface cooled down at night, resulting 
in significantly lower daily minimum air temperatures. The 
higher air temperature was responsible for the higher air 
VPD, which in turn determines the moss evaporation rate 
(Heijmans et al. 2004). Heterogeneous vegetation structure 
influences the microtopography of the mire which has a cas-
cading effect on physical parameters as well as microbiol-
ogy (Fournier et al. 2020; Malhotra et al. 2016; Rydin and 
Jeglum 2013).

Microclimatic differences on the peatland—effect 
of shading, vegetation, and wetness

The microsites analyzed in our study represented four dif-
ferent types of vegetation. Two of the studied microsites 
(MS2 and MS5) were shaded from direct sunlight by trees 
with a high groundwater level. The trees and the south and 
west edge of the mire, which was right next to the forest 
line, obscured the horizon, thus directly influencing the 
light conditions compared to the other more open micro-
sites (MS2, MS3, and MS4). The incoming solar energy 
was therefore limited in MS2 and MS5. The reduced 
sky view factor of the sites beneath the canopy reduced 
long-wave radiative losses, and as a result, the daily air 
temperature ranges of the shaded sites were smaller than 
those in the open sites. Additionally, the shaded sites had 
a high groundwater level, with wet mosses having greater 
heat capacity and thermal conductivity than dry ones, 

Fig. 2   Monthly differences in A daily air temperature (mean, mini-
mum, and maximum) and B VPD (mean and maximum) at a height 
of 30 and 150 cm between the mire and the open (reference) site for 
the period from April 2, 2012, to December 17, 2015

◂
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and therefore, the diurnal air temperature fluctuations 
were lower. At the open microsites, higher solar radiation 
contributed to higher air temperature and thus lower air 
humidity during the daytime. At night, temperature and 
humidity were higher in the shaded stands. Wet and shaded 
sites having a high groundwater level had lower amplitudes 
of daily air temperature, owing to the lower maximum 
and higher minimum temperatures. In general, the studied 

sites were cooler during the investigation period. The data 
obtained from the LW sensors indicated that the shaded 
stands were also wetter in terms of air humidity and due 
to the presence of dew deposits. At open microsites, VPD 
was almost twice as high, potentially causing greater eco-
logical stress for microorganisms and plants (Jassey et al. 
2018; Pappas et al. 2020). Moreover, the maximum air 
temperature in these microsites was 4 °C higher compared 
to the shaded sites. Our findings show that the differences 
in microclimate between the sites located close to each 
other may significantly vary, and based on a study by Hei-
jmans et al. (2004), it can be concluded that microclimate 
is the primary factor determining moss evaporation rates.

According to climate change projections, the median 
of climatic water balance (difference in precipitation and 
evaporation) will decrease from − 32 mm (1971–2000) 
to − 50 mm (2061–2090) (Szwed et al., 2010). In the case 
of peatlands fed by rain-derived water (ombrogenic ones) 
and shallow groundwater (topogenic ones), the projected 
climate change will cause a water-level drawdown and the 
entry of shrubs and trees due to succession (Laiho et al., 
2003). This will change a number of relationships, includ-
ing microclimatic conditions, of both ground and near-
ground layer (Heijmans et al. 2013; Laiho et al. 2003). Our 
study showed that the shaded microsites had a completely 
different microclimate. However, it is difficult to determine 
which factor—shade or high groundwater level—was more 
important in keeping them cool.

Fig. 3   Days of ground frost in seasons and years at the Linje mire and 
the open site for the period from April 2, 2012, to December 17, 2015

Table 2   Microclimatic 
characteristics of microsites 
during the period from April 15 
to November 9, 2012 (except 
June 14–July 8)

** Significance: < 0.001; *significance: < 0.05

Microclimate variables Microsites

MS1 MS2 MS3 MS4 MS5

PAR [MJ] sum** 1095.7 554.6 838.1 897.2 294.2
mean 12.6 ± 0.4 11.6 ± 0.4 12.5 ± 0.4 12.3 ± 0.4 12.2 ± 0.4

Tair [°C] minavg
** 2.4 ± 0.4 4.3 ± 0.4 2.5 ± 0.4 3.0 ± 0.4 6.4 ± 0.3

minabs  − 12.6  − 8.2  − 11.3  − 11.0  − 6.2
maxavg

** 22.3 ± 0.5 19.3 ± 0.5 23.2 ± 0.6 23.7 ± 0.6 19.0 ± 0.5
maxabs 38.0 33.7 39.5 40.0 33.8
DRavg 19.8 ± 0.5 15.1 ± 0.4 20.7 ± 0.5 20.7 ± 0.5 12.7 ± 0.4

GDD [Tbase = 0°] sum 2276 2173 2359 2456 2340
mean** 78.5 ± 0.7 86.6 ± 0.7 79.6 ± 0.7 80.3 ± 0.6 85.5 ± 0.7

RH [%] minavg** 50.6 ± 1.1 67.5 ± 1.4 50.6 ± 1.3 49.7 ± 1.3 65.3 ± 1.3
maxavg** 96.1 ± 0.1 97.1 ± 0.1 96.9 ± 0.1 96.2 ± 0.1 96.6 ± 0.1
DRavg** 45.5 ± 1.1 29.6 ± 1.3 46.3 ± 1.3 46.6 ± 1.3 31.3 ± 1.2
mean** 5.1 ± 0.3 2.8 ± 0.2 5.1 ± 0.3 4.9 ± 0.3 2.9 ± 0.2

VPD [hPa] minavg** 0.4 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 0.4 ± 0.0
maxavg** 15.4 ± 0.7 9.2 ± 0.6 17.0 ± 0.9 18.0 ± 0.9 9.4 ± 0.6
DRavg** 15.1 ± 0.7 8.9 ± 0.6 16.7 ± 0.9 17.6 ± 0.9 8.9 ± 0.5

LW [h] sum** 2169 3327 2527 2055 2636
WTD [cm] mean 11.9 9.1 18.9 20.6 6.0
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Peatlands as climate refugia

The specific local climate of peatlands is determined by 
various factors—including topography, water conditions, 
vegetation composition, and specific climatic conditions 
associated with them (Eggelsman 1980; Ermich 1972; 
Peus 1932). Due to their unique features, peatlands often 
act as refugia for glacial relicts such as B. nana or Rubus 
chamaemorus as well as insects such as Somatochlora 
alpestris (Głowaciński and Nowacki 2004; Zarzycki and 
Mirek 2006). The species B. nana has been documented 
in the peat core at our site since the period of Younger 
Dryas around 12 thousand years ago (Noryśkiewicz 2005). 

However, a more in-depth investigation is required to 
determine the factors enabling the survival of this species.

Human activities, such as afforestation and peat extraction, 
disrupt the natural functioning of peatlands (Łuców et al. 
2020; Lamentowicz et  al. 2019b). Disturbed peatlands 
are hydrologically unstable and respond more quickly to 
normal seasonal and interannual changes in meteorological 
conditions. Moreover, higher climate fluctuations and frequent 
extreme events, including droughts, will undoubtedly have a 
negative impact on the functioning of peatlands (Gallego-Sala 
et al. 2018; Loisel et al. 2021; Swindles et al. 2019). This 
can result in peatlands overgrowing, and necessitating active 
management for raising the groundwater level or removing 
trees to keep them relatively stable. Maintaining stable water 

Fig. 4   Daily sum of PAR, DTR, VPD, and LW for the period from April 15 to November 9, 2012 (except June 14 to July 8)

Fig. 5   Daily time course of air 
temperature and VPD at the 
microsites MS1–MS5, during 
July 23–28, 2012

International Journal of Biometeorology (2022) 66:817–832826
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conditions in peatlands in this climate zone, however, will 
be a major challenge. Swindles et al. (2019) showed that the 
paleohydrological record from the last 300 years indicates 
a decreasing trend of the groundwater table in European 
peatlands, which is attributed to climate warming and human 
activities. Long-term persistence of a low groundwater level 
results in tree encroachment (Heijmans et al. 2013), which 
drastically alters microclimates and other processes (Davis 
et al. 2019; Limpens et al. 2014; Stralberg et al. 2020; Winter 
2000).

Importance of microclimatological research 
for paleoecology

To interpret the findings of paleoecological research, it is 
important to study the ecology of peatlands as well as define 
their resilience to recent climate changes (Hapsari et al. 
2018; Harris et al. 2020; Page and Baird 2016). For exam-
ple, testate amoebae are one of the proxies used in recon-
struction and bioindicators (Mitchell et al. 2007a, 2007b) 
and can be used to reconstruct past hydrological dynamics 
(Lamentowicz and Mitchell 2005; Lamentowicz et al. 2015). 
However, these organisms may respond to meteorological 
factors, including the amount of incoming solar radiation 
(Herbert et al. 2018; Jassey et al. 2015; Lamentowicz et al. 
2020; Marcisz et al. 2014). Only through detailed ecological 
research on the microbial communities of peatland, includ-
ing meteorological measurements in microscale, one can 
answer the question of how their functional traits vary in 
time and space (Marcisz et al. 2020).

In this study, paleoecological results showed that B. nana 
was present in the mire during the Late Glacial period and 
throughout the Holocene (Noryśkiewicz et al. 2005). Despite 
significant climatic changes during that time period, which 
directly as well as indirectly influenced the development and 
transformation of the mire from a rich fen (with a mix of 
Sphagnum and vascular plants) to a poor fen (dominated by 
Sphagnum), B. nana has survived to the present day (Mar-
cisz et al., 2015). The results of our study showed that such 
transformation was possible through a synergy of individual 
terrain elements, and was mediated by physical refugia fea-
tures (e.g., peatland located on the boundaries of two water-
sheds, steep ice melt-out forms) and ecosystem-protected 
mechanism (climatic buffering, light and hydrological com-
petition) (Shur et al. 2007; Stralberg et al. 2020; Waddington 
et al. 2015).

A comprehensive understanding of long-term peatland 
monitoring will allow bridging the gap between ecology and 
paleoecology. This knowledge may help us better interpret 
the reconstructed data from the peat archive. By combining 
reconstruction, observation, and experimentation, we can 
go beyond and determine the tipping points for the ecosys-
tems under study (Lamentowicz et al. 2016, 2019a; Seddon 

et al. 2014). Furthermore, the framework of monitoring and 
the results presented here can be readily extended to pheno-
logical or microbiological biodiversity research. A real data 
example was used to demonstrate our approach to define the 
characteristics and heterogeneity of peatland microclimates 
as well as the inertia/mitigation of climate changes.

Conclusions

Our long-term measurements of meteorological parameters 
on the peatland provided a novel insight into the local cli-
mate features in the context of seasonality of this ecosystem. 
We investigated the unique climate features and microcli-
mate differences in a mid-forest peatland located in north-
ern Poland, in terms of shading due to shrubs and trees and 
wetness effects.

The studied peatland was cooler on average than the open 
reference site, due to higher drops in night air temperature. 
During the growing season, the surface layer of the peat 
often dried out, causing changes in the physical properties 
of mosses and greater fluctuations in diurnal air temperature 
at the ground layer. The site was a drained object that reacted 
quickly to changes in meteorological conditions, especially 
the amount and distribution of precipitation and temperature 
during growing seasons, both of which largely influence the 
evapotranspiration rate. The microclimatic conditions of the 
peatland were significantly affected by WTDs and shade. 
Wet and shaded sites were cooler than those with a lower 
water level and receiving a higher amount of solar radiation, 
and were also less exposed to extreme daily temperatures. 
This is important in the context of climate change, as an 
increase in global air temperature will lead to an increase 
in evapotranspiration rate, and subsequently a decrease in 
the water table in peatlands directly dependent on meteoro-
logical conditions. Overgrowth of trees is a natural effect 
that lowers the groundwater level, resulting in an increase 
in shading and a secondary impact on evapotranspiration 
in the sites. Our research is part of the discussion on the 
importance of microclimatic studies of ecosystems in cli-
mate change. Although the results presented here are spe-
cific to one mire, and were obtained from a case study, they 
can be applied to similar objects on earth in similar physi-
ographic conditions. They can also be used to model species 
distribution.

The trajectory of the earth system is currently changing 
as a result of dramatic human-driven climate changes (Stef-
fen et al. 2018). These climate changes have irreversible 
consequences for the ecosystems, society, and economy. 
Therefore, it is critical to understand under what conditions 
ecosystem function can be corrected by management strate-
gies in the future. The findings presented in this paper make 
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an important contribution to our understanding of the func-
tioning of peatlands in time and space.
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