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Abstract
Changes in frequency and severity of heat waves due to climate change pose a considerable challenge to livestock 
production systems. Although it is well known that heat stress reduces feed intake in cattle, effects of heat stress 
vary between animal genotypes and climatic conditions and are context specific. To derive a generic global predic-
tion that accounts for the effects of heat stress across genotypes, management and environments, we conducted a 
systematic literature review and a meta-analysis to assess the relationship between dry matter intake (DMI) and the 
temperature-humidity index (THI), two reliable variables for the measurement of feed intake and heat stress in cattle, 
respectively. We analysed this relationship accounting for covariation in countries, breeds, lactation stage and parity, 
as well as the efficacy of various physical cooling interventions. Our findings show a significant negative correlation 
(r =  − 0.82) between THI and DMI, with DMI reduced by 0.45 kg/day for every unit increase in THI. Although dif-
ferences in the DMI-THI relationship between lactating and non-lactating cows were not significant, effects of THI 
on DMI varied between lactation stages. Physical cooling interventions (e.g. provision of animal shade or shelter) 
significantly alleviated heat stress and became increasingly important after THI 68, suggesting that this THI value 
could be viewed as a threshold for which cooling should be provided. Passive cooling (shading) was more effective 
at alleviating heat stress compared with active cooling interventions (sprinklers). Our results provide a high-level 
global equation for THI-DMI across studies, allowing next-users to predict effects of heat stress across environments 
and animal genotypes.
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Introduction

Excessive heat stress in cattle (subfamily Bovinae) has 
been associated with reduced productivity and profitability 
(Chang-Fung-Martel et al. 2017; Harrison et al. 2017), with 
heat events in the USA associated with losses of over one 
billion dollars in 2006 (Collier and Burgos-Zimbelmanm 
2007). Cattle heat stress can result in factors including (i) 
reduced feed intake leading to impaired body weight gains 
and milk production, (ii) reduced fertility rates and repro-
ductive performance, (iii) increased production costs asso-
ciated with cooling and other heat mitigation strategies and 
(iv) increased mortalities. Physical responses to heat in 
cattle include increased body temperature and respiratory 
rate, panting, increased water intake and reduced dry matter 
intake (DMI) (Magdub et al. 1982; Wise et al. 1988). These 
responses trigger physiological mechanisms to increase heat 
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evaporation, dissipate internal heat load and therefore cool 
down. However, failure to effectively dissipate heat results 
in an accumulation of internal heat load that compromises 
homeostasis and increase maintenance requirements by up to 
32% (Eastridge et al. 1998; Fox and Tylutki 1998; National 
Research Council 1981).

Reduced DMI caused by heat stress on the one hand 
decreases energy and nutrient intake, but on the other hand 
increases energy demand. Together, these factors reduce 
productivity. Lower DMI may be attributed to (1) behav-
ioural adaptations to ameliorate internal heat load due to 
feed fermentation (Ominski et al. 2002a) and (2) changes 
in blood distribution away from the gut, uterus, udder and 
internal organs to favour peripheral circulation that facili-
tates heat exchange with the environment (Garner, 2017). 
This results in depressed rumination and longer time for 
feed to be digested. Independent of nutrient intake, energy 
requirements are reprioritised (Baumgard and Rhoads 2012), 
resulting in shifted patterns of carbohydrate, protein and fat 
metabolism characterised by increased insulin levels and 
reduced lipolytic activation (Baumgard and Rhoads 2012). 
As such, the ability of heat-stressed dairy cows to mobi-
lise adipose tissue is impaired, leaving less energy for milk 
production (Baumgard and Rhoads 2012; Rhoads, 2009; 
Wheelock et al. 2010a). While reduced milk production dur-
ing warmer conditions cannot be fully attributed to reduced 
DMI alone (Gao et al., 2017), reduced DMI is a good indica-
tor of heat stress onset and is known to have direct impact 
on productivity.

The temperature-humidity index (THI), a function of ambi-
ent temperature and relative humidity, is considered the most 
widely used climatic indicator of heat stress in dairy cattle 
(Chang-Fung-Martel et al. 2017; Polsky and Keyserlingk, 
2017). THI is strongly correlated with increased heart rate, 
respiratory rate and rectal and vaginal temperature in ani-
mals exposed to hot environmental conditions. While there 
have been many studies on the relationship between THI 
and DMI in cattle (e.g. Ammer et al. 2018; Allen et al. 
2015; Bouraoui et al. 2002; Holter et al. 1997; Holter et al. 

1996; Rodriquez et al., 1985), such studies have often been 
conducted under site-specific conditions. This diversity of 
experimental treatments as well as a lack of standardisa-
tion of feed and heat stress metrics makes comparisons of 
results, metrics and general principles across studies dif-
ficult. Despite known relationships between THI and DMI, 
many modelling approaches of future climate impacts on 
livestock systems ostensibly have not accounted for direct 
effects of heat stress on animals (e.g. Harrison et al. 2016; 
Pembleton et al. 2016). In this study, we aimed to develop a 
more general relationship between THI and DMI that could 
be used to predict dry matter intake reduction across envi-
ronments, management and animal genotypes and that could 
be used as basis to improve future modelling approaches. We 
conducted a systematic literature review and meta-analysis 
to analyse how heat stress impacted on DMI, allowing a 
standardised heat stress comparison across regions. Such 
comparison is important in global studies comparing the 
effects of climate change on animal production systems. As 
part of our review, we identified subclasses that may be rela-
tively more impacted by heat stress and assessed the efficacy 
of various adaptations to promote cooling.

Materials and methods

Literature search and study inclusion criteria

A systematic literature review was conducted using ISI 
Web of Science (Clarivate Analytics, Pennsylvania, USA; 
https:// apps. webof knowl edge. com/) and Scopus (Elsevier, 
Amsterdam, Netherlands; https:// www. scopus. com). We 
used the PIC (Population, Intervention, Comparator) trun-
cated version framework (Eriksen and Frandsen 2018) of 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis (PRISMA) statement (Moher et al. 2009) 
to identify published studies. Combinations (n = 140) of 
the PIC search terms shown in Table 1 were used in each 
online database and results were recorded in a spreadsheet, 

Table 1  PRISMA-PIC truncated framework including the number (n) of search terms used to identify scientific publications for the meta-analy-
sis, including seven inclusion criteria in relation to the search terms

Category n Search terms Inclusion criteria
English language

P (population) 4 Beef, cattle, cow, dairy Bos taurus species (i.e. dairy or beef cattle)
I (intervention) 7 Climate, heat, heat stress, temperature AND relative humidity, 

temperature humidity index, temperature-humidity index, 
THI

Temperature humidity index
and/or
Ambient temperature AND relative humidity

C (comparator) 5 DMI, dry matter intake, dry-matter-intake, feed efficiency, feed 
intake

Dry matter intake

Total 140 All possible combinations of search terms above Experimental trials (not predictive modelling)
Paired observations between climate and intake variables
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including the number of records retrieved. The review 
focussed on publications in English and was limited to stud-
ies that reported experimental paired observations of DMI 
and THI. Experiments that reported climatic variables other 
than THI or feed intake measurements other than DMI were 
discarded unless the variables allowed calculation of THI 
and DMI, as demonstrated by the inclusion criteria used 
in the meta-analysis. Studies that reported DMI predictive 
equations or those determined through modelling experi-
ments were also excluded. All search results were imported 
to an Endnote library (Endnote X9, Clarivate Analytics, 
CA). Animal cooling strategies were grouped as either pas-
sive (no use of external energy) and active (use of external 
energy to enable) or none.

Data extraction and statistical analysis

Data observations for studies included in the meta-analysis 
were collected into individual Excel spreadsheets. Where 
possible, data recorded also included milk production, 
body temperature, breed, parity, stage of lactation, cooling 
strategies and country of origin. In cases where data were 
not tabulated, graph points were extracted using a digitiser 
(WebPlotDigitizer, https:// autom eris. io/ WebPl otDig itizer/) 
(Drevon et al. 2017).

All data analysis was conducted using R (R Core Team 
2013). Heterogeneity between studies was quantified using 
Higgins  I2. A random effects model was applied to award 
relative weights to each study in the meta-analysis. Pear-
son correlations (r) between DMI and measurements com-
monly used to quantify heat stress in cattle (daily mean THI, 
THImin and THImax, respiratory rate (RT), vaginal tempera-
ture (VT) and respiratory rate (RR)) were assessed using 
Cohen’s standard where associations were represented as 
weak (0.10–0.29), moderate (0.30–0.49) or strong (0.50 or 
greater) (Cohen 1988). Multiple lines of best fit regressions 
were used to assess the relationship between DMI and THI 
within subgroups including origin of study, breed, parity, 
stage of lactation and when cooling strategies were used to 
mitigate heat stress in dairy cows. In this study, all calcu-
lations were carried out with mean daily THI. Differences 
between subgroups were assessed using ANOVA and Tuk-
ey’s test, deemed significant at the 0.05 level. Adjusted  R2 
values are shown throughout.

Results

Systematic literature review

The literature search revealed 19,830 records and 2,098 
unique studies. The screening process and eligibility 
assessment shown in Fig. 1 yielded 36 articles that met the 

inclusion criteria and the data extraction process yielded 
676 paired observations between THI (mean 71.8 ± 10.4) 
and DMI (mean 15.5 ± 6.2 kg/day). Data points were derived 
from experiments from 15 different countries. Variables 
assessed included cattle breed, parity, production stage, 
stage of lactation, rectal temperature, respiratory rate and 
vaginal temperature (Table 2).

Dry matter intake

Relationships between DMI with THI, minimum daily 
THI (THImin), maximum daily THI (THImax), respiratory 
rate (RT), vaginal temperature (VT) and respiratory rate 
(RR) are shown in Fig. 2. A strong negative correlation 
of r =  − 0.82 was found between DMI and THI. DMI was 
also strongly negatively correlated with THI and THImin 
and moderately correlated with THImax. Conversely, DMI 
was negatively correlated with THI, VT, RT and RR. 
The strongest relationships were between VT and THImax 
or THImin. RR was poorly correlated with DMI, sug-
gesting that feed intake does not relate well with basal 
respiration (Fig. 2).

We observed significant heterogeneity  (I2 = 66.4%) 
between studies and applied a random effects model to 
assess the relationship between THI and DMI. Symbol sizes 
in Fig. 3 are proportional to weighting given to each study in 
the meta-analysis. Differences in slopes between THI, THImin 
and THImax were not significant (data not shown). For every 
unit increase in THI, DMI was reduced by 0.45 kg DMI/day 
across all datasets (THI = 48.29 − 0.45DMI; R2 = 0.68).

For each unit increase in THI, we found a reduction 
of 0.57 kg DMI/day for Asia, 0.51 kg DMI/day for South 
America, 0.48 kg DMI/day for Oceania, 0.42 kg DMI/day 
for Europe and 0.29 kg DMI/day for North America. Data 
points from Africa were removed from this analysis because 
the sample size was too small (one study and five paired 
observations). Changes in DMI at increasing THIs in the 
North American group (n = 73) were significantly different 
to that from all other continents. North American studies, 
encompassing data from the USA and Canada, showed the 
least reduction in DMI and Asian studies showed the largest 
decline in DMI as THI increased  (R2 0.67). The relationship 
between THI, DMI and milk production was not assessed 
due to lack of data.

Relationships between THI and DMI 
within subgroups

There were large differences in the relationships between 
THI and DMI across subgroups. In beef cattle, THI (mean 
77 ± 7.2) was significantly higher than in which dairy cat-
tle were exposed (mean 72.1 ± 11.0) while beef DMI (mean 
6.0 kg/day ± 1.7) was significantly lower than dairy DMI 
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(mean 15.9 kg/day ± 6.0). Beef and dairy subgroups were 
statistically different with dairy (THI = 48.14 − 0.45DMI) 

being more impacted by heat stress than beef cattle 
(THI = 13.88 − 0.10DMI). Most breeds (94.5%) were 

Fig. 1  Adjusted PRISMA flow diagram describing the process undertaken to identify, screen and assess the eligibility of studies included in the 
meta-analysis. The number of studies (n) in each stage of the process outlined above is shown between parentheses

Table 2  Continuous (A) and discrete (B) variables included in the meta-analysis. Continuous variables show the average value and standard 
deviation in parenthesis

(A) Continuous variables Mean (± SD)
THI 71.8 (± 10.4)
DMI (kg/d) 15.5 (± 6.17)
Rectal temperature (°C) 39.0 (± 0.8)
Vaginal temperature (°C) 38.96 (± 0.7)
Respiratory rate (breaths/min) 60.4 (± 16.9)

(B) Discrete variables Levels
Country Australia, Brazil, Canada, China, Germany, Ghana, India, Iran, Israel, 

Italy, Japan, South Africa, Thailand, Tunisia, USA
Breed Angus, Bonsmara, Charolais, Holstein–Friesian, Shorthorn, Vrindavan
Parity Primiparous, multiparous
Lactation status Lactating, non-lactating
Stage of lactation Early, mid and dry
Cooling strategies Passive, active, none
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Holstein–Friesian, so differences between breeds were not 
assessed here.

For dairy cows, THI-DMI relationship differences 
between primiparous (n = 21) and multiparous (n = 398) 
cows were not significant. Although differences in the THI-
DMI relationship between lactating (n = 277) and non-lac-
tating cows (n = 161) were not significant (Fig. 4A), rela-
tionships were significantly different across lactation stages. 

Early lactation cows (n = 64) showed the largest reduction 
in DMI (0.56 kg DMI/day) per unit increase of THI with dry 
(n = 161) and mid (n = 152) lactation cows were not statisti-
cally different (Fig. 4B). DMI was also different between lac-
tation stages (early 15.6 kg/day ± 4.7; mid 19.9 kg/day ± 4.2; 
dry 10.3 kg/day ± 4.3).

Effects of animal cooling interventions on DMI

Thirty percent of studies examined cooling strategies. 
Subgroups exposed to cooling (n = 138) had higher 
DMI at the same THI (Fig. 5A) as cattle not exposed to 
cooling (n = 336). Cattle not exposed to cooling had a 
greater reduction in DMI (0.44 vs 0.36 kg DMI/day) per 
unit increase in THI (Fig. 5B). The cooling intervention 
began to take effect at THI 68, after which significant 
differences in DMI were observed between cooled and 
not cooled cattle (Fig. 5C).

When cooling interventions were subdivided into passive 
cooling (e.g. shading) (n = 84), active cooling (e.g. fans or 
sprinklers) (n = 54) and no cooling (n = 336), it was shown 
that passive strategies were most effective at heat mitiga-
tion in DMI alleviation (Fig. 6). DMI of cattle exposed to 
passive strategies declined by 0.04 kg DMI/day per unit 
increase in THI and by 0.2 kg DMI/day when exposed to 
active cooling.

Discussion

Climate change is expected to result in increased frequen-
cies of extreme heat events that will depress crop and pas-
ture production in many areas (Bell et al. 2013; Harrison 
et al., 2014) and increase the incidence of heat-related 
animal productivity losses, compromising animal health 
and welfare (IPCC 2018). While a reduction in DMI sig-
nificantly affects the productivity of cattle during heat 
events, it is also a reliable indicator to determine the onset 
of hyperthermia (Polsky and Keyserlingk, 2017). Com-
parisons of the effects of heat stress across studies have 
generally been hampered by the fact that past studies of 
animal heat stress and DMI relationships have generally 
been context specific (e.g. breed or stage of lactation in a 
dairy cow) and using various heat stress indicators (e.g. 
ambient temperature and animal body temperatures such 
as rectal, vaginal or skin surface temperatures), animal 
respiratory rate and THI. In this study, we used a meta-
analysis to derive a global relationship between THI and 
DMI that accounted for the factors mentioned above. We 
quantified the relationship between DMI and THI using 
only experimental studies, allowing more confidence 
in the conclusions drawn with respect to differences in 
subgroups.

Fig. 2  Pearson correlation coefficient matrix of dry matter intake 
(DMI), mean temperature-humidity index (THI), minimum tempera-
ture-humidity index (THImin), maximum temperature-humidity index 
(THImax), rectal temperature (RT), vaginal temperature (VT) and 
respiratory rate (RR). Light and dark shading represent positive and 
negative correlations, respectively

Fig. 3  Relationship between THI and DMI, including line of best fit 
and 95% confidence limits (shaded grey). Rug plots show distribu-
tions of each variable on each axis. Data point sizes are proportional 
to weighting given to each study in the meta-analysis
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Systematic literature review

The PRISMA framework was effective in the identifica-
tion and inclusion of suitable studies for this meta-analysis. 
We obtained a large number of duplicate records (89%; 
17,732/19,830), particularly from ISI Web of Science 
(Fig. 1—Identification). A large proportion of studies were 
also excluded because these did not focus on relation-
ships between environmental conditions and cattle (95%; 
1,676/1,762) (Fig. 1—Screening), which meant that any 
heat-related variables were not collected. A further 35% of 
studies (Fig. 1—Eligibility) were excluded even though they 

investigated heat effects on feed intake in cattle, because of 
(1) the units reported could not be converted into either THI 
or DMI or (2) THI and DMI datasets could not be paired. 
This further reinforces the justification for this study; 
although the literature is rich with data, such information 
cannot be easily contrasted due to lack of standardisation of 
dimensions for both heat stress and feed intake.

Effects of heat stress on DMI

Effects of heat stress have been monitored using many dif-
ferent approaches in the past, from heat chambers to closed 

Fig. 4  Relationships between 
THI and DMI segregated 
according to A lactation status 
(R2 0.76) and B lactation stage 
(R2 0.54)

Fig. 5  Effects of cooling 
interventions on DMI. A Effects 
of cooling interventions on the 
distribution of THI (B) with 
increasing THI (R2 0.66) and C 
DMI distributions partitioned 
according to a THI threshold 
of 68
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barns to modelling. However, few studies differentiate 
between the effects of acute and chronic heat stress expo-
sure. During heat events, cattle are exposed to hot condi-
tions during the day and, when night-time temperatures 
are less than around 25 °C, tend to cool during the night 
by dissipating heat into the environment. However, when 
night-time conditions are above 25 °C, livestock tempera-
tures and respiratory rates become elevated (Garner et al. 
2017). Elevated day-time heat conditions are ameliorated 
when temperatures fall at night thus reducing milk produc-
tion losses (Correa-Calderon et al. 2004; Silanikove et al. 
2009). However, using the THI as a thermal indicator, criti-
cal values for THImin range between 55 (Holter et al. 1997, 
1996) and 64 (Igono et al. 1992) depending on cow breeds 
and regional variability. As such, warm nights contribute to 
chronic exposure of cattle to heat events, and this further 
diminishes their capacity to thermoregulate. For this reason, 
in our study and consistent with previous work from Holter 
et al. (1996), THImin is strongly correlated with heat stress 
(Fig. 2). We found strong negative correlations between THI 
and THImin with DMI (r =  − 0.8), while THImax was less well 
correlated (r =  − 0.6). This is consistent with previous work 
that has highlighted the importance of THImin and night-time 
temperatures in amelioration of heat stress (Correa-Calde-
ron et al. 2004; Silanikove et al. 2009) and the potential of 

using THImin to better assess heat stress in cattle (Holter et al. 
1996). However, at present, while THImin has good potential 
for estimation of chronic heat stress, daily mean THI may 
be the best measurement for the overall assessment of heat 
conditions in cattle (day and night).

Regardless of time of day, cattle with elevated core 
body temperature spend more time standing than lying 
compared with thermoneutral cattle (Allen et al. 2015). 
Cattle also show a preference for eating during cooler peri-
ods or at night when day-time heat conditions are above 
optimal (Mallonee et al. 1985; Schneider et al. 1988). 
These responses are consistent with amelioration of inter-
nal heat load during the hottest part of the day (Aharoni 
et al. 2005; Ominski et al. 2002b). While standing is likely 
to reduce accumulated internal heat load due to increased 
skin surface area, reducing feed intake will reduce core 
body temperature by suppressing heat originating from 
feed fermentation. A significant research gap relates to 
the ability accurately predict voluntary feed intake and 
its potential constraints over a range of scenarios, includ-
ing heat stress. While mechanistic models have investi-
gated the thermal balance of cattle (Thompson et al. 2014, 
2011), no currently available mechanistic animal models 
have the capacity to capture the biological controls of 
feed intake in cattle, let alone incorporating the metabolic 
and physical regulations that occur in heat-stressed cat-
tle. Similarly, while whole farm models such as Dairy-
Mod (Johnson et al. 2008) or APSIM (Holzworth, 2014) 
account for the effects of heat stress on plants, at the time 
of writing they do not account for animal heat stress or 
predict the effects of heat on voluntary feed intake in a 
holistic sense, thereby allowing for interactions between 
plants and animals.

In contrast to ruminants under thermoneutral condi-
tions, dairy cattle already have an elevated heat load due 
to higher productivity (Chebel et al. 2004). Differences 
in heat tolerance exist between cattle breeds, where com-
monly used dairy breeds (e.g. Holstein–Friesian) are found 
to more susceptible than beef breeds (Blackshaw and 
Blackshaw 1994). Here, we did not differentiate between 
breeds as most were Holstein-Friesians (94.5%). As well, 
the majority of studies (95%) did not differentiate between 
crossbreds and purebreds. These findings reveal both the 
relevance of this study for the dairy sector and empha-
sise the need to differentiate between heat stress impacts 
on different breeds. Genetically selecting cows for heat 
tolerance has been shown to significantly improve heat 
tolerance of high-yielding dairy cows. Genetic markers to 
predict heat tolerance in dairy cows were effective at main-
taining DMI under heat exposure as measured by rectal 
and vaginal temperature (Garner, 2016). Genomic selec-
tion for improved heat tolerance is an adaptation strategy 
that would be expected to have large benefits, particularly 

Fig. 6  Changes in DMI under animal passive, active and no cooling 
interventions (R2 0.69)
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in pasture-based grazing systems where animals are often 
exposed to ambient conditions. Such an adaptation strat-
egy to future climates would enable better animal welfare 
outcomes without compromising productivity.

Effects of heat stress during different lactation 
phases

We found larger reductions in DMI for rising THI in early 
lactation cows than the average population. Reduced DMI 
in early lactation is not only likely to reduce productivity 
in the short term but may also have implications in longer 
term if the effect of heat stress is sustained enough to also 
affect the body reserves and body weight of the cow. In a 
normal lactation curve, milk production peaks during early 
lactation by depleting body reserves for milk production 
(Moran 2005). However, heat-stressed cows have lower abil-
ity to mobilise stored peripheral adipose tissue (Baumgard 
and Rhoads 2012), which further reduces milk production. 
Lowered DMI over a longer period causes gradual depletion 
of body reserves. Effects of heat stress on productivity and 
metabolic performance may last beyond the lactation period 
and into subsequent lactation years, and even have effects 
on dairy cow offspring (Ouellet et al. 2020). Heat stress 
exposure in transition cows also reduces milk production 
(Tao et al. 2019) by altering nutrient metabolism and udder 
tissue development, potentially resulting in the reduced per-
formance of both dam and calf (Ouellet et al. 2020).

Effects of animal cooling interventions

Cooling interventions had significant capacity to reduce the 
impacts of heat stress on DMI (Fig. 4), with a divergence 
in DMI between cooled and normal cows observed from a 
THI of 68 onwards. It is already known that the threshold 
for hyperthermia has significant regional variations due to 
differences in the local climate, genetic tolerance of cows 
to heat stress, feed composition and management strategies 
among others (Nidumolu et al. 2010). For example, THI 
thresholds around the world for dairy cattle vary: in Aus-
tralia it is set at THI 72, in the UK at THI 68 and in the USA 
at THI 69. Thus, a global THI threshold of 68 is consistent 
with a potential level at which differences might emerge.

Past work has shown that cooling strategies can offset 
production losses (Armstrong 1994; Valtorta and Gallardo 
2004). In this study, we classified cooling strategies into two 
main categories: active cooling including the use of sprin-
klers and fans, and passive cooling for shading (we also 
categorised a null category as a control treatment). Consist-
ent with previous work, our results showed that both active 
and passive strategies were effective at reducing heat stress 
effects on DMI (Jones and Hennessy 2000; Nidumolu et al. 
2010). However, we found that passive strategies were more 

effective than active strategies, also consistent with previous 
work highlighting shading to be more effective that spray-
ing (Jones and Hennessy 2000). In pasture-based systems, 
shading is also more effective and practical method for cool-
ing cows. Outdoor cattle are more vulnerable to heat stress 
due to their exposure to ambient conditions, but the appli-
cation of active methods for cooling are mostly limited to 
milking times, after which point cattle may have already 
been exposed to hot conditions. The most effective shad-
ing available in outdoor systems is tree shading. Trees also 
provide other benefits, from habitat for biodiversity, to wind 
breaks and woody biomass carbon sequestration. In con-
trast to active cooling methods that require power and water, 
natural forms of shading such as trees are also relatively 
inexpensive.

Implications of DMI variability on milk production

For situations in which no interventions are taken, milk pro-
duction losses of up to 40% during single heat events are not 
unusual (West 2003). Although not all such losses can be 
attributed to DMI, lower intake is often the primary factor 
responsible for reduced lactation in dairy cows (Gao et al., 
2017; Wheelock et al. 2010b). A combination of compensa-
tory mechanisms to support the return to thermoneutrality, 
including shifts in energy demands and nutrient partitioning, 
is suggested to be responsible for the remaining production 
losses (Cowley et al. 2015; Shwartz et al. 2009). Further 
research is required to better understand these processes and 
quantify their relative contributions to production losses. In 
this study, we did not investigate the link between reduced 
DMI, THI and milk production due to the low number of 
studies reporting these variables, suggesting that there is a 
need for more studies studying the nexus of DMI, THI and 
milk production.

Reduced DMI also reduces milk protein content (Emery 
1978; Knapp and Grummer 1991; Rodriquez et al. 1985). A 
reduction of 29% in DMI due to heat stress was reportedly 
associated with a decline of 33% of milk production and 
7% protein content (Shwartz et al. 2009). Protein content 
in milk is generally the most affected variable during heat 
events (Chang-Fung-Martel et al., in review) due to varying 
levels of major nutrients combined with increased demands 
in extramammary amino acids, resulting in the reprioritisa-
tion of amino acids away from milk protein synthesis (Gao 
et al., 2017). Fat content is affected to a lesser degree and 
is associated with reduced fibre intake and a shift in the 
metabolism of carbohydrates, evidenced by increased insulin 
concentrations and reduced lipolytic stimuli (Baumgard and 
Rhoads 2012). Effects of heat stress on milk composition 
may be reduced when cows are fed a total mixed ration and 
concentrate (Beede and Collier 1986; Bouraoui et al. 2002), 
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highlighting the importance of rationing diets for cows in 
preparation for heat events. Adjusting diet composition is an 
effective strategy to ameliorate the impact of heat stress by 
providing cows with high-quality feeds that deliver appropri-
ate nutrients while reducing heat load from fermentation to 
improve the performance of cattle in varying climates, but 
particularly during hot weather.

Conclusions

This study demonstrated a strong negative correlation 
(r =  − 0.82) between THI and DMI, suggesting that across 
continents and stages of lactation, DMI was reduced by 
0.45 kg/day for every unit in THI unit increase. This result 
allows standardisation of heat stress and feed intake com-
parison across studies and could be simply applied in whole 
of farm systems models to improve simulation of the interac-
tions between plants and animals under extreme heat events. 
Primiparous and multiparous cows did not experience signif-
icant differences in the reduction of DMI at increasing THIs. 
While differences in the THI-DMI relationship between lac-
tating and non-lactating cows were not significant, effects 
of THI on DMI were significantly different across lactation 
stages. Passive cooling (e.g. shading) was more effective 
than active strategies (e.g. fans and sprinklers) at alleviat-
ing the reduction in DMI at high THIs evidenced by lower 
effects of high THI on DMI. A divergence in DMI between 
cooled and normal cows observed from a THI of 68 onwards 
indicates that this value could be viewed as a threshold for 
which cooling interventions could be made.

While reduced DMI alone is not sufficient to determine 
the overall effect in milk production losses in heat-stressed 
dairy cows, a good understanding of the interactions between 
DMI and THI is fundamental to design effective adaptation 
strategies. Based on our analysis, we recommend an animal-
focussed approach that can result in multiple benefits such 
as reducing yield losses and costs, improving animal welfare 
and even add to biodiversity outcomes (e.g. trees as shelters 
from heat stress).
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