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Abstract In order to better manage the limited water
resources in arid regions, accurate determination of plant
water requirements is necessary. For that, the evaluation of
reference evapotranspiration (ET0)—a basic component of
the hydrological cycle—is essential. In this context, the
Penman Monteith equation, known for its accuracy, requires
a high number of climatic parameters that are not always
fully available from most meteorological stations. Our
study examines the effectiveness of the use of artificial
neural networks (ANN) for the evaluation of ET0 using
incomplete meteorological parameters. These neural net-
works use daily climatic data (temperature, relative humid-
ity, wind speed and the insolation duration) as inputs, and
ET0 values estimated by the Penman-Monteith formula as
outputs. The results show that the proper choice of neural
network architecture allows not only error minimization but
also maximizes the relationship between the dependent
variable and the independent variables. In fact, with a
network of two hidden layers and eight neurons per layer,
we obtained, during the test phase, values of 1, 1 and 0.01
for the determination coefficient, the criterion of Nash and

the mean square error, respectively. Comparing results
between multiple linear regression and the neural method
revealed the good modeling quality and high performance
of the latter, due to the possibility of improving perfor-
mance criteria. In this work, we considered correlations
between input variables that improve the accuracy of the
model and do not pose problems of multi-collinearity.
Furthermore, we succeeded in avoiding overfitting and
could generalize the model for other similar areas.
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Introduction

Water resources are, for most countries, a key factor in their
economic and social development (Sebei et al. 2004). A great
challenge for the coming decades will be the task of
increasing food production to ensure food security for the
steadily growing population. However, the dependency on
water for food production has become a critical constraint for
increasing food production in many regions that face serious
water deficiency (Zhao et al. 2005; Chuanyan et al. 2005;
Clemmens and Molden 2007). Hence, according to Naeem
and Rai (2005), water shortage requires that new technolo-
gies and methods of irrigation be developed that could help
in the effective utilization of this precious input. In addition,
there is also a need to carry out practices of irrigation water
management to achieve high water use efficiency, increase
the productivity of existing water resources, and produce
more food with less water (Bharat 2006). This necessitates
innovative and sustainable research, as well as appropriate
transfer of technologies (Pereira et al. 2002).
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It should be noted that, in many regions of the world,
climate change will increase the average reference evapo-
transpiration by 2% (De Silva et al. 2007), which will thus
increasingly affect cultivation water requirements (Doria et
al. 2006).

Further, in Mediterranean regions, irrigation is the only
means of producing both high and stable crop yields
(Katerji and Rana 2006) and reference evapotranspiration
(ET0) is an important quantity for computing the irrigation
demands of various crops (Chowdhary and Shrivastava
2010; Dinpashoh 2006). Current irrigation scheduling is
based on a well–established crop coefficient and on ET0
procedures to estimate daily crop evapotranspiration
(Hunsaker et al. 2007); thus, poor ET calculation appears
to be associated with poor estimations of ET0 (Shujiang et
al. 2009).

Thus, in order to estimate ET0, much research has been
carried out across the world, and a significant number of
formulae have been highlighted, but comparison of their
results reveals a wide divergence that can reach up to 50% of
assessment during the same decade (Smadhi 2000; Lu et al.
2005).

The FAO has recommended the Penman-Monteith
method (Allen et al. 1998) because it yields more realistic
results (Saidati and Samuel 2006; Hazrat and Lee 2006);
yet, this approach has been highly criticized due to its
requirement for a high number of meteorological parame-
ters that are usually not available in most meteorological
stations.

Given the above facts, we decided to use neural
networks to model ET0, based on a daily time step.
Using neural networks allows us to use a reduced

number of meteorological quantities compared to previ-
ous approaches.

State of the art in evapotranspiration modeling

One widely used predictive modeling technique is the
multiple regression model (Delacostea et al. 1995). This
technique describes the correlation between a dependent
variable and a set of explanatory variables, and is based on
a statistical analysis in a multidimensional space (Holder,
1985 cited in Riad 2003). However, results obtained by this
method have often been unsatisfactory (negative value
prediction, residue dependence…).

Artificial neural network (ANN) modeling (Eslamian et
al. 2008) is a nonlinear statistical technique that can be used
to solve problems that are not amenable to conventional,
statistical or mathematical methods. Furthermore, the
application of up-to-date NN technology allows modeling
by black-box NN tools (Aytek et al. 2009).

ANNs are analogous to biological neural networks in
that they are highly simplified mathematical models of their
biological counterparts. They include the ability to learn
and generalize from examples to produce meaningful
solutions to problems, even when input data contain errors
or are incomplete, to adapt solutions over time to
compensate for changing circumstances, and also to process
information rapidly (Jain et al. 2008).

The basic unit in the ANN is the node. Nodes are
connected to each other by links known as synapses.
Usually, NNs are trained so that a particular set of input
produces, as closely as possible, a specific set of target
outputs (Dechemi et al. 2003). The interest of neurons

Fig. 1 Location of the investigation area in Algeria
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(Dreyfus et al. 2004) lies in the properties resulting from
their association in networks. The combination of non-
linear functions performed by each neuron and their ability
to glean internal information from the data, allows them to
perform elementary calculations and recall the knowledge
acquired at the learning stage to conduct the classification
(Amini 2008).

It should be noted that model result indicate that MLR
(multiple linear regression) was also able to predict at a
desirable level of accuracy (Deswal and Pal 2008), but NNs
are not affected by the multicolinearity problem (Tufféry
2007) that is one of the main problems when developing
MLR models (Paulo et al. 2005).

Finally, it should be noted that the general stop criteria
for ANN is the problem of overfitting or poor generaliza-
tion capability. This problem occurs when we have too little
data and too precise a model (Sterlin 2007). Several
approaches have been suggested in the literature to solve
this problem. The simplest is to have three separate
databases: a learning database, a test database and a
database called "cross validation". Note that this technique
requires sufficient data to establish three bases that are at
once representative and distinctive.

Materials

Our study was carried out in the region of Adrar, located in
the south-west of Algeria. Latitude: 27° 49′ N and
Longitude: 00° 18′ E (Fig. 1). Adrar is characterized by
its extreme meteorological parameters.

Climate characteristics

Adrar’s climate is dry throughout the year as shown in the
ombrothermic diagram in Fig. 2. The climate is characterized
by the extended thermal amplitudes during the year, the
month and even the day. The absolute maximum temperature
reaches 49.5°C in summer (July and August). On the
contrary, ice and frosts are rare in this region. Nevertheless,
icy days can cause catastrophic damage, especially to
traditional farming. Furthermore, the region has recorded:

& negligible pluviometry (<25 mm / year).
& relative humidity often below 50%; dew is very rare.
& a north-east wind blowing almost constantly.
& completely clear skies with intense brightness.

Estimation of reference evapotranspiration

The Penman-Montheith equation used for calculating refer-
ence evapotranspiration was proposed by Allen et al. (1998):

ET0¼
0:408Δ Rn � Gð Þ þ g 900

Tþ273 u2 es � eað Þ
Δþ g 1þ 0:34u2ð Þ ð1Þ

Where ET0 is the reference evapotranspiration (mm day−1),
Rn is the net radiation at the crop surface (MJ m−2 day−1), G
is the soil heat flux density (MJ m−2 day−1), T is the mean of
daily air temperature at 2 m height (°C), u2 is the wind speed
at 2 m height (m s−1), es is the saturation vapor pressure
(kPa), ea is the actual vapor pressure (kPa), es − ea is the
saturation vapor pressure deficit (kPa), Δ is the slope vapor
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pressure curve (kPa °C−1), γ is the psychometric constant
(kPa °C−1).

The parameters air temperature, sunshine duration, wind
speed and relative humidity are taken directly from the
meteorological station and are used to estimate other
parameters. According to Doorenbos and Pruitt (1977),
net radiation and the saturation vapor pressure deficit can
be estimated by air temperature and sunshine duration.

Net radiation is the difference between the net short
wave radiation (Rns), and the outgoing net long wave
radiation (Rnl).

Rn ¼ Rns � Rnl ð2Þ
If

Rns ¼ 1� að Þ 0:25þ 0:50
n

N

� �
Ra ð3Þ

And

Rnl ¼ f tð Þ:f eað Þ:f n=Nð Þ ð4Þ

Rn ¼ 1� að Þ 0:25þ 0:50
n

N

� �
Ra�f tð Þ:f eað Þ:f n=Nð Þ ð5Þ

Where α is the albedo, Ra is the extraterrestrial radiation
expressed in equivalent evaporation (mm/day), f(t) is the
correction for the effect of temperature on Rnl, f(ea) is the
correction for the effect of vapor pressure on Rnl, and f(n/N)
is correction for the effect of the ratio between the actual
number and the astronomical number of possible sunshine
duration on Rnl.

For slope vapor pressure, psychometric constant and soil
heat flux, we used mainly air temperature.

Neural network and model evaluation

The neural network is trained with a series of inputs and
desired outputs from the training data set. The ANN used in
this study is a feed forward network with the back-
propagation training algorithm. It is a supervised learning
technique used for training ANNs. Basically, it is a gradient
descent technique to minimize the squared error between
the calculated and desired outputs. The neural network
structure in this study had a four-layer learning network
consisting of an input layer, two hidden layers and an
output layer (Fig. 3). Adjustable weights are used to
connect the nodes between adjacent layers and optimized
by the training algorithm to obtain the desired results.

IW   1,1 LW   2,1

b 1

LW   3,2

b 2 b 3

Fig. 4 Schema of neural network architecture used in this study. LW
Layer weight, IW input weight, b bias, IW{1,1} weight matrix in the
first hidden layer; b{1} bias vector in the first hidden layer; LW{2,1}

weight matrix in the second hidden layer; b{2} bias vector in the
second hidden layer; LW{3,1} weight matrix in the output layer; b{3}
bias vector in the output layer
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As noted by Parizeau (2004), the backpropagation
algorithm allows training of the multilayer networks. To
be useful, this network must have a non linear transfer
function on hidden layers and the output layer according to
application type—either linear function or non linear
function.

This topology uses two sigmoid functions in hidden layers
and one linear function in output layer as depicted in Fig. 4.

Description of data and availability

In the present investigation, daily data (temperature,
sunshine duration, wind speed and humidity) consist of
a series of daily values registered throughout the period
of 1,272 days. The registration of these meteorological
statements was performed by the meteorological station
within the experimental site and was used for estimation
of ET0.

Using these observed climatic data, daily values of ET0
were computed initially using the Penman-Monteith (Eq. 1).
These computed ET0 values were used to train the ANN
models. The database is divided into three subsets: 70% of
data are used in the training phase, 15% in the testing phase;
the remaining is reserved for validation.

The idea behind this division is to:

(1) Take into consideration any seasonal tendency in the
ANN model

(2) Overcome the overfitting problem.

This also ensures that the statistical properties of the
training and testing data are of similar order. As the climatic

characteristics of arid zones are important in assessing the
applicability of the models in general, the variations in
different meteorological parameters in the study area are
presented in Fig. 5.

It can be noted that the variability range of meteorolog-
ical parameters in the study area was very large. For
instance, the daily values of temperature ranged between
7.5°C and 41.6°C; relative humidity between 13% and
95%; duration of insolation between 0.00 and 12.30 hours/
day; and wind speed was between 0.00 and 5.09 ms−1.
Hence, any model developed on this data set should have a
wide application.

Selection of input variables

A correlation matrix of all input variables is presented in
Table 1. This table shows that the linear correlation between
temperature and ET0 is 0.86. Hence, any model that uses
temperature should be able to estimate the ET0 satisfacto-
rily. The model’s accuracy can be improved by considering
other variables that have aerodynamic effects on ET0, such
as humidity and wind speed. Table 1 also reveals the high
correlation between humidity and ET0.

Temperature and humidity are also highly correlated.
Therefore, a combination of these two factors may provide
a good estimate. Wind speed and insolation are not well
correlated with ET0. Nevertheless, these parameters are
included in our model for better accuracy of ET0
estimation. It should be noted that all these correlations
between variables are of linear type, but the ET0 process is
considered to be highly nonlinear.

Table 1 Correlation matrix
between input and output
variables. ET0 Reference
evapotranspiration

Temperature Humidity Wind speed Insolation ET0

Temperature 1.00 −0.78 0.01 0.16 0.86

Humidity −0.78 1.00 0.07 −0.27 −0.79
Wind speed 0.01 0.07 1.00 0.02 0.31

Insolation 0.16 −0.27 0.02 1.00 0.42

ET0 0.86 −0.79 0.31 0.42 1.00
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Criteria of evaluation

The performances of the ANN and MLR models were
evaluated to compare their predictive accuracies based on
the following statistical criteria:

The Nash-Sutcliffe efficiency (E)—proposed by Nash
and Sutcliffe (1970)—is calculated by formula (6) accord-
ing to Krause et al. (2005), and the square value of the
correlation coefficient (R2), root mean squared error
(RMSE), mean-square error (MSE) and mean absolute
relative error (MARE) were calculated as follows:

E ¼ 1�
Pn

i¼1 Ysimi � Yobsið Þ2Pn
i¼1 Ysimi � Yobs

� �2 ð6Þ

R ¼
Pn

i¼1 Yobsi � Yobs

� �
Ysimi � Y sim

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Yobsi � Yobs

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Ysimi � Y sim

� �q ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Yobsi � Ysimið Þ2
n

s
ð8Þ

MARE ¼ 1

n

Xn

i¼1

Yobsi � Ysimij j
Yobsij j � 100 ð9Þ

Where E is the Nash-Sutcliffe efficiency Yobsi represents
the Penman Monteith observed ET0, Ysimi is the estimated

ET0 for the ith values; , Yobs and Y sim represent the average
values of the corresponding variable; n represents the
number of data considered.

For multiple regression, we added the test of non
colinearity parameters using the matrix of covariance, VIF
(variance inflation factor), the F statistic and T statistic.

We used the neural network toolbox in Matlab (version
7; http://www.mathworks.com), which has all necessary

functions already set, and we programmed all the required
equations.

Results and discussion

In order to highlight the necessity of using a neural
network, it is necessary to first show the results obtained
using MLR.

Multiple regression

It should be noted that the data used in this section are those
of the subset of the test phase. The MLR equation used
according to the regression coefficients obtained is as
follows:

ET0 ¼ 0:17T� 0:06Rhþ 1:31Wsþ 0:26I� 0:05 ð10Þ
Where ET0 is reference evapotranspiration (mm/day), T

is average daily temperature (°C), Rh is relative humidity
(%), Ws is average daily wind speed (m/s) and I sunshine
duration (number of hours/day).

Statistical analysis of the data shows a close relationship
between the observed and the simulated series; the

Fig. 7 Correlation between observed and simulated ET0

Table 2 Performance criteria obtained by multiple linear regression
(MLR) and a network with a single hidden layer containing four
neurons. R2 Determination coefficient, E Nash-Sutcliffe efficiency,
MSE root mean squared error, RMSE root mean squared error

Modeling
method

R2 E MSE
(mm/day)2

RMSE
(mm/day)

MLR 0.97 0.97 0.20 0.45

Neural network 0.99 0.99 0.07 0.27
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Fig. 8 Evolution of R2 and E in terms of network architecture and
number of epochs. R2 Determination coefficient, E Nash-Sutcliffe
efficiency, c number of hidden layers, n number of neurons per each
hidden layer, e number of epochs
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determination coefficient R2 reached 97%. Generally, all the
parameters used in the models contributed significantly to
estimating ET0. The results showed a confidence level of
0.05, which means that the marginal contribution of each
variable is significant. They also showed that the observed
F (1,445.14) was higher than the critical F (3.9).

The T statistic of relative humidity is −11.40, which
reflects an inverse relationship with the evapotranspiration
and water requirements for cultivation. Whereas the effects
of air temperature, wind speed and sunshine hours were
found to be positive.

It is a natural fact that meteorological factors in general
act in concert. Therefore, it is pertinent to take into account
the combined influence of all the meteorological parameters
on evapotranspiration. As far as the significance of
individual meteorological parameters is concerned, this
study revealed that the highest value of correlation
coefficient was obtained for evaporation with air tempera-
ture, followed by wind speed and relative humidity.

Figure 6 indicates that the observed series and the
simulated series have almost the same speed, although they
merge up and down several times. Nevertheless, the two
series diverge occasionally, especially at the peaks of small

values. Therefore, the observed values have more impor-
tance than the simulated values in some cases, and vice-
versa in other cases. The comparison of the ET0 predicted
by MLR and the observed values shows good agreement
with R2=0.97 (Fig. 7).

The efficiency E, R2, RMSE, and MSE statistics of this
model for the dataset of testing phase are given in Table 2.
This result shows that all these performance criteria are
very satisfactory, emphasizes the factors influencing ET0
since the model considered all the variables, and indicates
that the relationship between the two series is very high.

Neural networks

Using a simple neural network architecture, we obtained
some very satisfactory results. Indeed, when we compared
the performance criteria of each modeling phase with those
of MLR, we found that the performance criteria of a single-
hidden-layer architecture with four neurons was more
interesting. All statistical parameters used showed that the
ANN model is better than the MLR model (Table 2).

In this context, Tabari et al. (2010) have also noted from
comparisons of model performances that ANN was more
suitable than MLR. Also, Izadifar (2010) found that, using
a single hidden layer and five neurons, the MLR model is
better than the ANN model.

The results presented above are very satisfactory and we
can stop with this simple architecture. In this context, Tabari et
al. (2009) noted that, among several tested architectures, a
single hidden layer with five neurons was the best
architecture. So we can say that an ANN with only one
hidden layer is enough to represent the nonlinear relationship
between the climatic elements and the corresponding ET0.
But, it should be noted that the advantage of the neural
method lies in the possibility of making improvements in
performance criteria by modifying the network architecture.
Koleyni (2010) believed that the performance of a neural
network is very often related to its architecture. This
performance is usually determined simply through experi-
ments due to lack of theory. The choice of the neural network

Table 3 Comparison of performance criteria obtained by MLR and a neural network model. R2 Determination coefficient, E Nash-Sutcliffe
efficiency, MSE mean-square error, RMSE root mean squared error, MARE is the mean absolute relative error

Performance criteria Multiple linear regression Neural network

Learning phase Test phase Validation phase Learning phase Test phase Validation phase

R2 0.93 0.97 0.95 0.99 1.00 1.00

E 0.93 0.97 0.95 0.98 1.00 0.99

MSE (mm/day)2 0.45 0.20 0.23 0.16 0.01 0.03

RMSE (mm/day) 0.67 0.45 0.49 0.40 0.07 0.17

MARE (%) 7.74 5.19 6.62 4.96 0.18 2.45
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capacity fundamentally reflects its ability to learn and
generalize. If the network model is proportionally too small,
it will be unable to obtain the desired function. However, if it
is too complex, it will be unable to generalize the model.

Throughout the various architectures tested, we sought
to (1) maximize the determination coefficient R2, and (2)
approximate the Nash criterion to 1. In fact, we applied a
trial-and-error technique by increasing the number of
neurons in the first hidden layer until further improvement
ceased, and then added another hidden layer.

In fact, the improvement of model performance by
adding neurons to the single hidden layer was limited to 13
neurons; thereafter it decreased. The values of MSE
obtained in the test phase were 0.029, 0.019 and 0.027
(mm/day)2, respectively, by 12, 13 and 14 neurons. The
best value obtained by the single hidden layer was bigger
than 0.0047 (mm/day)2, which was obtained by the network
architecture chosen in this study.

We found that with one hidden layer, R2 values
fluctuated, and with 2 hidden layers, R2 values progressed
in a quick and monotonous way. Moreover, the values of
the Nash criterion (E) progressed significantly to reach a
value of 1 at the test phase (Fig. 8).

Furthermore, the addition of other nodes may not
improve model performance.

Another parameter that should absolutely be taken into
consideration is the number of epochs. The different
combinations show that 1,000 epochs are enough to obtain
the best results. The addition of more epochs is useless and
may decrease performance.

Decreasing the number of hidden layers will not automat-
ically improve model performance. It may affect all perfor-
mance criteria negatively, like the network architecture (c=2,
n=4), but with the addition of neurons to each hidden layer,
the rate of improvement becomes very fast.

As the two criteria approach 1, the criteria that reflect the
importance of the errors between the observed and
simulated values regress little by little to achieve their
minimal values (Fig. 9).

Extensive test experiments were conducted in order to
select the optimal network architecture. Consequently, these
tests led to a network of two hidden layers, each of eight
neurons.
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Fig. 10 Relationship between observed and simulated ET0 for
various phases

Table 4 Statistical parameters of observed and simulated ET0 series
(mm/day). ET0 Reference evapotranspiration, ET0o observed evapo-
transpiration, ET0s simulated evapotranspiration, STDEV standard
deviation

Modeling
phase

ET0 Min Max Average Median STDEV

Learning ET0o 1.43 13.52 2.36 6.28 2.65

ET0s 1.46 13.51 2.36 2.30 2.65

Test ET0o 2.01 12.55 6.81 6.97 2.55

ET0s 2.25 12.25 6.82 7.08 2.4

Validation ET0o 2.31 12.29 5.95 5.76 2.29

ET0s 2.49 12.96 5.95 5.67 2.18

838 Int J Biometeorol (2012) 56:831–841



We should mention that, as the network architecture
becomes more complex, the learning process becomes more
and more difficult, and the time required to perform this
operation increases progressively. Therefore, modeling can
take a long time and the search for a better architecture
requires considerable processor time. So, the most suitable
architecture in our case is a network of two hidden layers of
eight neurons each.

Also, neural networks require setting up a learning rate
and number of iterations. After testing different combina-
tions, we chose a learning rate of 0.2 and a number of
iterations of 1,000.

At first glance, MLR showed a remarkably satisfactory
performance. Nevertheless, the neural network model out-
performed MLR overall, as shown in Table 3.

Comparing the performance criteria obtained during
different stages of the neural method model with those
obtained by MLR for the various sets of data shows the
importance of the neural network modeling. The MARE
(%), i.e., the percentage of recorded errors between real and
simulated values of ET0, indicates the higher performance
of the neural networks over MLR.

Table 3 shows the absence of overfitting because the
difference between errors (MSE) at the learning and testing
phases is not significant. These errors increase when
moving from training phase to test phase, and then decrease

at the validation phase. We should note that errors occur
due to the nature of the data. Yet, in the case of MLR, the
rate of errors is higher compared to the neural network
model. The absence of overfitting is due mainly to the
procedure adopted to avoid it and, at the same time,
confirms the correct choice of neural network architecture.

In order to evaluate the correlation between the observed
values of the ET0 and the simulated values, we plotted
them in a graph as shown in Fig. 10. The result shows
scattered points distributed statistically around the line y =
x. This shows a very good resemblance that explains a high
correlation coefficient between the learning, test and
validation phases. We mentioned that most of the values
predicted with ANN lie near the y = x line. Further, this
study concludes that a combination of mean air tempera-
ture, wind speed, sunshine hours and mean relative
humidity provides better performance in predicting ET0.

In addition, the statistical parameters show close
resemblance between the three modeling phases. These
results further confirm the high performance of the
model (Table 4).

The comparison between the observed and simulated
series of ET0 values reveals a high resemblance (Fig. 11).

If we compare the results obtained by ANNs in the
validation phase (ET0a) with those obtained by the multiple
regression method (ET0m) for the same dataset, we can see
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clearly that the neural networks series is a better fit
(Fig. 12). The difference becomes greater at extreme values;
this adds further justification to the choice of neural
networks. In this context, Deswal and Pal (2008) noted
that, of the two regression analysis approaches that have
been used, ANNs provide better results in terms of
predicting evaporation due to a higher correlation coeffi-
cient with a lower RMSE.

Finally, we must confess that the performance of the
models varies according to the number of inputs as well as
the predicted time step. Hence, Wang et al. (2010) noted
that wind velocity and relative humidity were found to
improve temperature-based backpropagation accuracy
when incorporated into the network input sets.

Indeed, this performance will be even better if we were
interested in modeling a more extensive time step. With a
simple architecture, we can obtain a very strong correlation,
i.e., R2 close to 1. Nevertheless, performance decreases
when the number of the inputs is reduced.

Conclusions

The present study discusses the application and usefulness
of the ANN modeling approach in predicting ET0. The
results are quite encouraging and suggest the usefulness of
neural network-based modeling techniques for accurate
prediction of evapotranspiration as an alternative to MLR
approaches, because the advantage of the neural method
lies in the possibility of having improvements in the
performance criteria by modifying the network architecture.

Furthermore, the results obtained confirm that neural
networks have become powerful tools for modeling in
many varied fields of research. They are able to construct,
in a simple and effective manner, models that are precise
and economical in terms of the number of parameters.
Accuracy and the user’s required qualities justify the choice
of these approaches.

Using MLR in the simulation can result in satisfactory
findings if all the conditions required for this approach are
present. However, if some variables are lacking, or in order
to overcome the multi-colinearity problem, the neural
network method justifies its superiority in the power of
prediction.

Indeed, the designed neural network model showed
higher performance than MLR; the simulated series
matches the observed series perfectly. However, in this
research we faced great difficulty in choosing an optimal
architecture. In fact, it took a long time for the trial-and-
error procedure to settle on the perfect architecture.

The method adopted to overcome the overfitting
problem gave satisfactory results, as well as taking account
of the seasonal tendency in the ANN model.

The wide range of conditions in which the input
variables evolve, ensure the applicability of the models
obtained in several different types of climate. The results
obtained clearly justify the approach adopted in this article,
and confirm its utility in a very large region, similar to the
study area; arid regions are becoming larger due to the
phenomenon of desertification. In addition, the Penman
Monteith formula remains, until now, the formula that gives
the most accurate results, and the meteorological parame-
ters required for MLR are unavailable in most weather
stations.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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