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Abstract The debate on emission targets of greenhouse
gasses designed to limit global climate change has to take
into account the ecological consequences. One of the
clearest ecological consequences is shifts in phenology.
Linking these shifts to changes in population viability under
various greenhouse gasses emission scenarios requires a
unifying framework. We propose a box-in-a-box modeling
approach that couples population models to phenological
change. This approach unifies population modeling with
both ecological responses to climate change as well as
evolutionary processes. We advocate a mechanistic embed-
ded correlative approach, where the link from genes to
population is established using a periodic matrix population
model. This periodic model has several major advantages:
(1) it can include complex seasonal behaviors allowing an
easy link with phenological shifts; (2) it provides the
structure of the population at each phase, including the
distribution of genotypes and phenotypes, allowing a link
with evolutionary processes; and (3) it can incorporate the

S. Jenouvrier (D<)

Woods Hole Oceanographic Institution,
Woods Hole 02540, MA, USA

e-mail: sjenouvrier@whoi.edu

S. Jenouvrier

Cooperative Institute for Research in Environmental Sciences,
216 University of Colorado,

Boulder, CO 80309-0216, USA

S. Jenouvrier
CNRS CEBC,
79170 Villiers en Bois, France

M. E. Visser

Netherlands Institute of Ecology (NIOO-KNAW),
P.O. Box 50, 6700 AB Wageningen, The Netherlands
e-mail: m.visser@nioo.knaw.nl

effect of climate at different time periods. We believe that
the way climatologists have approached the problem, using
atmosphere—ocean coupled circulation models in which
components are gradually included and linked to each
other, can provide a valuable example to ecologists. We
hope that ecologists will take up this challenge and that our
preliminary modeling framework will stimulate research
toward a unifying predictive model of the ecological
consequences of climate change.
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Introduction

Climate change affects the phenology of both animals
and plants (Parmesan and Yohe 2003; Root et al. 2003;
Thackeray et al. 2010). Phenology is linked to nearly all
levels of biological organization, from individual to
ecosystem, through interspecific relationships (Forrest
and Miller-Rushing 2010). For example, vegetation phe-
nology has advanced with warmer spring temperatures
over the past decades (Walther et al. 2002), with a
concomitant advancement in the reproduction of many
animals, such as birds (Dunn 2004). However, often the
rate of these shifts in phenology differs between predators
and their prey or between herbivores and their host plants,
leading to a phenological mismatch between the peak of
food abundance and the needs of offspring. These
differential shifts in phenology are caused by differential
changes in environmental cues used to start reproduction
and the phenology of the environment experienced during
reproduction (Visser et al. 1998). This phenological
mismatch is likely to influence the breeding performance
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and survival of individuals, which may have important
population consequences (Miller-Rushing et al. 2010;
Forrest and Miller-Rushing 2010).

The mismatch caused by climate change will lead to
selection acting on phenology. Organisms may adapt to
climate change via different forms of plasticity (pheno-
typic plasticity, maternal effects, etc.) or by micro-
evolution. For example, over the past two decades, the
hatching date of the winter moth (Operophtera brumata)
has advanced more than the bud burst date of their host
plant, the pedunculate oak (Quercus robur). To predict the
micro-evolutionary change in winter moth hatching date in
response to temperature change, van Asch et al. (2007)
combined the temperature projection from an Intergovern-
mental Panel on Climate Change (IPCC) climate model
with (1) genetic variation in egg hatching, and (2) the
fitness consequences of mismatched egg hatching. They
predicted a rapid response to selection, leading to a
restoration of the phenological match of winter moth
hatching date with pedunculate oak bud opening. This
response to selection will reduce any population conse-
quences of climate change. Therefore, models that do not
account for micro-evolution or plastic responses may
predict a severe decline in population numbers, whereas
an adapting or plastic population may be much less
strongly affected (Berteaux et al. 2004; Charmantier et
al. 2008; Reed et al. 2010).

In the face of the discussion on greenhouse gasses
emission targets to reduce global climate change, there is a
growing demand for accurate forecasts of the environmen-
tal, ecological and societal impacts of climate change (e.g.,
IPCC 2007). If we are to set climate targets we need to
include the ecological consequences of socio-economic
development (Visser 2008). Furthermore, predicting popu-

lation viability with future climate change may guide
conservation and management programs. For example, the
polar bear was recently listed on the US Endangered
Species Act because its population is endangered by future
sea ice change (Hunter et al. 2010). Current predictive
models linking climate to populations largely ignore
phenological changes and other ecological responses to
climate change and evolutionary mechanisms, which may
radically change their predictions.

The development of a unified framework to predict
ecological consequences of climate change will help to
coordinate the activities of different research disciplines,
from climatology to ecology and evolution (Williams et al.
2008). Here, we propose a modeling approach that couples
climate models to population models including ecological
and evolutionary processes. It involves connecting different
research fields into a more holistic framework, which
enables the development of a multi-disciplinary, multi-
scale, multi-taxon research effort.

Figure 1 illustrates a general frame-work in which
changes in phenotypes, such as phenological shifts, affect
the population dynamic and are themselves determined by
underlying physiological processes and the genetic make-
up of individuals (white boxes). Climate could affect these
organizational levels directly, e.g., a physiological effect of
temperature on ectotherms (van Asch and Visser 2007)
(gray underlying arrow), or the effect of climate could be
mediated by both ecological and evolutionary processes
(gray boxes). Processes contained by the various boxes are
interdependent and interconnected. We named this approach
“a box-in-a-box approach” as, for example, the general
ecological processes box contains two boxes describing (1)
inter-specific processes, and (2) intra-specific processes. The
box of the inter-specific processes in turn contains underlying

Fig. 1 The box-in-a-box

. POPULATION
approach links Intergovernmen-
tal Panel on Climate Change
(IPCC) climate projections to
population dynamics and allows
the integration of eco- Phenotype
evolutionary mechanisms Intra-
(see main text for legends) ecific
Evolutionary Physiology Ecological
processes processes
Inter-
specific
Gene
CLIMATE CHANGE
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boxes, which may describe the population dynamics of (1) a
prey, (2) a competitor, (3) a parasite, etc.

To address the cross-scale and multi-component aspect
of the ecological responses to climate change, we do not
advocate a mechanistic approach or a correlative approach,
but instead an approach coupling the two. This is known as
a strategic cyclical scaling (SCS) approach (Root and
Schneider 1995; Root et al. 2003). The correlative approach
is embedded in the mechanistic approach and there is
continuous exchange between the two. It is not realistic to
aim for an understanding of all causal relationships
underlying eco-evolutionary processes and to translate them
into a set of equations. Hence, models will include
correlations, which may help to fill black boxes and
identify important causal relationships to direct future
mechanistic studies.

We want to stress that, while this cyclic process does
not have a clear end point, the model can already make
predictions using only limited information such as simple
correlative relationships. As data become available and
our knowledge on the processes increases, the boxes are
filled and the model will become more representative of
the real eco-evolutionary mechanisms. But it is by no
means necessary to complete all boxes before the model
provides predictions. At each step, the robustness of the
prediction should be thoroughly evaluated and uncertain-
ties included.

In the following sections we give a brief overview of
the (1) ecological and (2) evolutionary processes affect-
ing population viability included in a unifying frame-
work. Then we describe (3) how to obtain climate
forecasts from climate models included in the IPCC
assessment report to (4) adopt a stochastic modeling
approach. Finally (5), we demonstrate a theoretical eco-
evolutionary approach to predict population viability
with future climate change.

Ecological processes

Density dependence (intra-specific competition) as well as
the densities of prey, inter-specific competitors or predators/
parasites may all change due to changing climatic con-
ditions. These processes are included in the ecological
component of the model.

Intra-specific competition plays a major role in popula-
tion dynamics (Saether et al. 2000; Coulson et al. 2001;
Brook and Bradshaw 2006). As density increases popula-
tion growth rate often decreases, because density negatively
affects the reproductive output or survival of individuals
through competition for resources or breeding sites. For
instance, the decline in reproductive success of birds with
increasing density can be due to smaller clutches under

higher densities as individuals are less able to rear a large
number of offspring with stronger competition (Both et al.
2000). At very low densities, a positive effect of increasing
density on vital rates, the Allee effect (Allee 1931) may
occur because there are some benefits of higher densities,
such as improving mate finding and anti-predator strategies
(Courchamp et al. 2009). Population density may also
affect the timing of breeding (Votier et al. 2009; Ahola et al.
2009). For example, for the common guillemot Uria aalge,
the timing of breeding is earlier in years with high breeding
density (Votier et al. 2009).

Inter-specific effects are widespread in any kind of
organism. Climate change may affect the various species
interacting with an organism, whether it is a predator,
parasite, prey or asymbiont (Forchhammer et al. 2008;
Bretagnolle and Hanneke 2010), through phenological
changes as well as range shifts (Parmesan 2006). For
example, phenological mismatches may occur when organ-
isms are no longer interacting at the same time, or
conversely, new phenological matches can be beneficial
(e.g., exploitation of new resources; Miller-Rushing et al.
2010). Synchrony in phenological events can have a critical
effect on vital rates and populations. For example, the
growing season of spruce trees has been synchronized with
the life cycle of the spruce budworm under climate change,
causing devastating effects for spruce forests in the Pacific
Northwest of North America (Chen et al. 2003; Chen et al.
2001).

Evolutionary processes

The strength and direction of selection on phenotypes
depends on the environment that individuals live in. If this
environment changes, due to climate change, other pheno-
types may be selected for. Adaptation to a changing
environment may take place (1) by micro-evolution, i.e.
genotypes that have a higher fitness increase in frequency
in the population, or/and (2) via different forms of plasticity
(such as phenotypic plasticity, maternal effects, etc.) (Visser
2008). The rate at which this adaptation occurs is vital
because if the rate of adaptation is too slow to match
environmental change this may have serious population
consequences (Nussey et al. 2005; Both et al. 2006; Reed et
al. 2010). It is therefore important to include evolutionary
changes into the population model.

Micro-evolution
A population at any given time consists of a distribution of
genotypes. These genotypes, interacting with the environ-

mental conditions (phenotypic plasticity), give rise to a
distribution of phenotypes. These phenotypes vary in their
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reproductive success and survival and selection operates on
this distribution. One of the major challenges in evolution-
ary ecology of climate change is to forecast the strength of
this selection, the heritability of the underlying life-history
traits, and from these estimate the resulting micro-
evolutionary change (the response to selection).

The micro-evolution ‘box’ includes quantitative genet-
ics, which describes the heritability of, for instance,
phenological traits. It is linked to the ecological box for
the strength and direction of selection and the resulting
response to selection, which leads to a new set of
genotypes. Interestingly, the abiotic environment can affect
both selection and heritability. This effect can have
contrasting directions (low heritability in years with strong
selection, e.g.. Soay sheep; Wilson et al. 2006) or it can
lead to a more rapid response to selection (high heritability
in years with strong selection, e.g., great tits; Husby et al.
2011). Such correlations may speed up or diminish the rate
of adaptation to climate change. A key question is how fast
natural selection operates, especially compared to the rate
of climate change (Visser 2008).

Plasticity

Phenotypic plasticity is the ability of a genotype to produce
different phenotypes in response to different environmental
conditions (Pigliucci 2001; Nussey et al. 2007; Reale et al.
2003; Bradshaw 1965). Underlying plasticity is a physio-
logical (endocrine and neurological) mechanism (Wingfield
et al. 2008; Visser et al. 2010). Phenotypic plasticity can
evolve and be adaptive if the change in phenotype increases
the fitness of an individual. A key characteristic of
phenotypic plasticity is that while the phenotype is shaped
by some component of the environment (Eg), selection on
the phenotype can be due to other environmental compo-
nents (Et) (Visser et al. 2004). Thus, for phenotypic
plasticity to be adaptive, Eg and Et should be linked.

Climate change is not affecting the abiotic environment
in a uniform way; different periods within a year can be
affected differently. Hence, climate change may break up
the relationships between Eg and Er, which may lead to
maladaptive phenotypic plasticity (Visser et al. 2004). This
type of disruptive process is well illustrated by the phenology
of great tits in a Dutch population, with its insufficient
response in the timing of breeding to the recent increase in
temperature. Temperatures in the early breeding season, which
affect the laying dates of the birds (Eg), have changed to a
lesser extent than temperatures affecting the peak date of
offspring food availability (Et). This contrasting change has
led to mistimed reproduction, with possibly negative
consequences for the population (Nussey et al. 2005).

The correlation between environmental cue and the
optimum phenotype (cue reliability) associated with a
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plastic response is critical for population viability (Reed et
al. 2010; Chevin and Lande 2010). Reed et al. (2010)
showed that population viability is maintained if the cue
reliability is high, even for low plastic responses in a
fluctuating environment. On the other hand, if the cue
reliability is low and the environmental fluctuation is high,
populations with strong plasticity decline.

Climate

Climate projections affecting ecological and evolutionary
processes should ideally be obtained from atmosphere and
ocean general circulation models (AOGC), which couple
dynamic atmosphere, ocean, land, and sea-ice models
(Beaumont et al. 2008; Stock et al. 2011). AOGC models
incorporate the physical properties of the climate system,
their interactions and feedback processes, and assumptions
about future greenhouse gases (GHG) concentrations. AOGC
models provide monthly, seasonal and inter-annual climate
predictions worldwide. The climate simulations from AOGC
models, which were produced for the IPCC fourth assessment
report (2007), are available from the Program for Climate
Model Diagnosis and Intercomparison (PCMDI) at http:/
www-pcmdi.llnl.gov/ipcc/about_ipce.php.

The spatial scale of AOGC models is coarse compared to
the spatial scale at which many ecological processes occur.
Both models and statistical techniques are available to
downscale the coarse resolution of global climate model
output to higher regional resolution. The regional climate
models (RC) have the most widespread use (Bader et al.
2008). They require lateral boundary conditions, obtained
from observations (for past projections) or simulation from
AOGC models (for future projections). With the statistical
approach, correlations between large- and small-scale
observations are calculated and then applied to AOGC
model output to provide regional future climate forecasts.
There are both strengths and weaknesses in statistical
downscaling and regional modeling, hence these two
approaches should be considered complementary (see
Bader et al. 2008 for a detailed discussion).

Although climate models share a similar structure and
underlying physical processes, they differ in their resolu-
tion, grid design, sub-grid-scale parameterizations and
numerical solution techniques (Stock et al. 2011). There is
no “best” model, and climate models differ in their ability
to reproduce the climate system (Bader et al. 2008;
Beaumont et al. 2008; Stock et al. 2011). Therefore,
different AOGC should be used to project population
responses and some selection procedures can be applied
to them. A common approach is to compare the statistical
properties between past climate projections and observa-
tions (i.e., mean, variance, trend, cyclical patterns; see
Jenouvrier et al. 2009 for an example). Finally, multiple
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IPCC scenarios should be used to project the ecological
consequences of possible socio-economic developments.

Environmental stochasticity

Climate models project change in the mean climate as well
as its variability over time, i.e., the nature of climate change
is non-stationary. It is thus critical to use climate time series
forecasts from AOGCMs to project population numbers.
If it is not possible to obtain the whole time series
forecast, stochastic population growth rates can be
calculated using a specific time window or climate change
scenario where climate is assumed to be stationary (e.g., Wolf
et al. 2010).

Climate models cannot be used to predict what will
happen on any particular day (or year). Climatologists
therefore focus on the statistical variability of climate
(Stock et al. 2011). Thus, to project population responses
from year to year, we need to include stochastic fluctuations
in climate based on its statistical variability.

Environmental stochasticity refers here to the variation
in demographic parameters caused by stochastic fluctua-
tions in climate. There are various ways to construct
population models that include environmental stochasticity
(Lande et al. 2003; Caswell 2001 and references therein),
which depend on the statistical properties of the environ-
ment (e.g., autocorrelation, cylicity). For example, Jenouv-
rier et al. (2009) used a stochastic model with two
environmental states: normal and warm conditions. The
stochasticity arises because at each time step an environ-
ment is selected according to the frequency of warm events.
From AOGCM forecasts, a binary time series of warm and
normal years is obtained and the time series of warm event
frequency is calculated using a nonparametric binary
regression.

Another possibility is to include environmental stochas-
ticity in the functional relationship between demographic
rates or phenotypic traits and the environment. Let us
assume that, adult survival s, is a logistic function of the
temperature 7 such as:

LOGIT[s,(f)]=a* T(f)+b, where a and b are coefficients of
the linear logistic regression over the observation period, and
T(7) is the future temperature projected at yearz. Stochastic
forecasts of 7(#) can be obtained from a normal distribution
with mean and variance at year ¢ calculated from AOGCM
climate forecasts (Jenouvrier et al., unpublished).

Theoretical approach

Incorporating ecological and evolutionary processes into
models predicting population viability requires a theoretical

framework. Our goal is to provide stochastic population
projections for each of the IPCC scenarios, using a flexible
approach so that ecological and evolutionary processes can
be easily and successively implemented. We used a periodic
matrix model, which allows a great flexibility for easily
incorporating processes (1) occurring at different biological
levels and (2) linked to climate during different periods of
the year. In the following sections, we first outline the
construction of periodic matrix models and then we
illustrate how the demographic processes, phenotype and
genotype distributions, can be included in these models.

Periodic matrix model

A matrix model assumes that the population is structured
by stages (Caswell 2001). For example, stages could be
age, size, or behavioral categories. Coulson et al. (2006)
used a combination of “genotype—phenotype” stages to link
evolutionary mechanisms to population dynamics. Howev-
er, as such models are very complex, we propose here to
adapt periodic models, which make the model construction
straightforward (Jenouvrier et al. 2010).

A periodic matrix model divides the life cycle into a
series of phases, at which specific intermediate stages may
appear (Caswell 2001, chap. 13). Periodic models have
been used to divide the year into seasonal phases (Smith et
al. 2005), for inter-annual cycles (ENSO; Awkerman et al.
2006), for behavior (e.g., mating behaviors; Jenouvrier et
al. 2010), or for conditional probability calculations (e.g., in
capture-recapture models; Choquet et al. 2009). Intermedi-
ate stages may represent categories of individuals that
appear during a specific phase within the life cycle, e.g.,
small flowering plants of Boltonia decurrens that appear
only in summer (Smith et al. 2005) or individuals available
to mate at the beginning of the breeding season (Jenouvrier
et al. 2010). Another major advantage of this periodic
model approach is that the effect of climate at different time
periods can be easily included. For instance, periodic
models can include environmental variables from different
seasons. Thus, both environmental variables that shape the
phenotype, and the variables that cause the selection on the
phenotype, can be included.

Periodic models are thus very flexible and we use them
to link the processes occurring at different organizational
levels from gene to population (Fig. 2). First, demographic
parameters (breeding success, annual survival, etc.) depend
on the interaction between the environment (Et) and
phenotypic traits (Coulson et al. 2006). A phenotypic trait
is any trait of an organism such as morphological traits,
physiological traits, behavioral traits or timing of pheno-
logical events (e.g., laying date). Second, phenotypes are
shaped by their genotype, the environment (Eg), and the
interaction between them (Coulson et al. 2006). The
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Fig. 2 An annual life cycle with two stages in the population:
juveniles (i.e. immature individuals) and adults (i.e. mature individuals
that can reproduce). See text for further explanation

environment includes abiotic and biotic factors (i.e., intra-
specific and inter-specific interactions), which affect an
individual. The environment may affect different biological
levels at different time and spatial scales.

A matrix population model projects the population from
time ¢ to t+1 according to:

n. = Am

where n is the population vector, which describes the number
of individuals in each stage and A, is the population matrix
that contains the demographic parameters. The initial
population size should be ideally obtained from observations.

The life cycle is decomposed into a series of several phases.
A matrix M; projects the population from phase i to phase i+
1. For a life cycle of period p, M,, projects the population
from phase p back to phase 1. The periodic product of the M;
gives the population dynamic from time ¢ to #+1 as:

n =M, Min,.

Demographic processes

We illustrate the periodic matrix model approach using a
simple life cycle where the population is composed of two
stages: juvenile (immature individuals) and adults. However,
the model is not limited to this case: the life cycle could be
extended to include any stage of interest such as age structure
for animals or class of size for plants (Caswell 2001).

Figure 2 shows the annual life cycle, which includes
maturation, reproduction and survival of individuals. During
the annual life cycle, individuals survive with probability s; for
juveniles and s, for adults; juveniles become adults with
probability ; adults produce offspring with rate (3 and offspring
survive until the next census at year /+1 with probability s,.
The population matrix A corresponding to this life cycle is:

A= J Ad
J |si(-y) 05508
Ad N4 8o

where the stages are specified in bold. J and Ad stands
for juveniles and adults, respectively.

@ Springer

Figure 3 illustrates the periodic model life cycle graph
associated with this annual life cycle. The periodic model
has three phases. During phase 1, juveniles become adults
or not, during phase 2 adults produce offspring, and during
phase 3 individuals survive.

Matrix Y is a transition matrix (i.e., columns sum up to
one) that includes the maturation probability:

I Ad
Y= T |17 0
Adly 1

The production of new individuals appears in Matrix B:

O stands for offspring.
Finally, the mortality process appears in matrix S:

0O J Ad
J so s 0
8= Adlo 0 s
Adult Juvenile
E Y
Adult Juvenile
! B
v v
Adult  Offspring Juvenile
S
Adult Juvenile

Fig. 3 Periodic life cycle graph resulting from the annual life cycle as
shown in Fig. 2. The life-cycle includes three phases: (1) juveniles
mature and become adults, (2) adults reproduce, and (3) individuals
survive. The gray dashed line indicates probability of one. See text for
a description of transitions matrices that appear on the right
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Matrices Y and B contain transition probabilities that are
conditional on survival, which appear in S. The population
matrix A is the periodic product of matrices A=SBY.

The relationships between the environment and demo-
graphic parameters can be included in the population
matrix. Such relationships can be very simple (e.g., binary
relationships, Jenouvrier et al. 2009) or complex (e.g.,
nonlinear functions). For example, Igual et al. (2009)
included the effect of the structure of the habitat (abiotic
environment) and the impact of a predator (Rattus rattus)
(biotic environment) on the reproduction parameters of
Cory’s shearwater (Calonectris diomedea) within a matrix
model to ultimately project the population growth rate.

Periodic models also permit including activities during a
specific period of time for which demographic rates may
differ. For example, it may be useful to include specific
demographic parameters for each season (Smith et al. 2005)
because climate may change at different rates in the
different seasons.

Phenotype

Individuals in a population may differ by phenotype, which
lead to different demographic rates (Fig. 1). The phenotypic
traits of interest can be either continuous (e.g., timing of
breeding, physiological traits such as body size, etc.), or
discrete (sex, behavior, color, etc.). To obtain the distribu-
tion of phenotypes, we include phenotypic traits as stages.
For example, Steets et al. (2007) constructed a matrix
model for Impatiens capensis, for which the annual life
cycle graph included the discrete phenotypic traits “cleis-
togamous” flower and ‘“chasmogamous” flower, which
have different germination rates and fecundity. They
showed that population growth is more sensitive to changes
in demographic rates of cleistogamous individuals, which
emphasizes the importance of including the effect of
phenotypic traits on population dynamics.

For continuous traits, high dimension projection matrices
with very small discrete intervals corresponding to the
phenotypic trait in a range [x, x+dx] should be constructed,
an approach known as Integral Projection Models (IPM;
Easterling et al. 2000). IPM are an extension of matrix
models, where the population vector is replaced by a
distribution function n(x, ¢), with x the continuous variable
and ¢ the time. The population matrix A is replaced by a
projection kernel K(y, x), which maps the transition
probabilities from state x to state y. Thus, the population
dynamic is projected using:

n(y,t+1) =[K(y,x)n(x, 1) dx,

where n(x, f)dx represents the number of individuals for
each value of the continuous variable in the range [x, x+dx]

(Elner and Rees 2006). Ozgul et al. (2010) used IPM to link
body size to demography of yellow-bellied marmots. They
estimated the kernel using regression analysis between the
vital rates (e.g., survival) and body size. They showed that
changes in seasonal timing led to a longer growing season
and increasing body weight, which caused a decline in
adult mortality and an abrupt increase in population size.

Here, we incorporate phenotypic traits into the periodic
structure of the model using four phases (Fig. 4). A new
transition matrix P, which contains the frequencies of the
phenotypes within the population p, is included. In our
simple example we used two phenotypes. For continuous
phenotypic traits, P, B, and S, are high dimensional
transition matrices. B, and S, contain demographic param-
eters such as breeding success and survival, which are
projected from functional relationships between the pheno-
typic trait and those parameters for each range [x, x+dx].

During phase 1, juveniles mature and become adults as
described by matrix Y. During phase 2, individuals are
classified into phenotypic stages.

J Ad
P= J Pel ps 0
JPe2 |ps O

Ad Pel |0 ps

Ad Pe2 | 0 ps

In the description of the stages, Pei stands for
phenotype i. Matrix P includes the frequencies of
phenotype 1 and 2 among juveniles (p; and p,), and
among adults (ps and pg). Once the initial frequencies are
established from observations, the model calculates them
at each time 7+ / from the distribution of phenotypes
projected at the end of phase 3 at time ¢ as:

(p3paps p6)T,+1 = H, (p1 p2p3 papsps) 1

where H, is a matrix describing the survival and
maturation of individuals of phenotype 1 or 2, and p,
and p, the frequencies of phenotype 1 and 2 among
offspring at time z.

(I=yp)s1 O (I=y)s3 O 0 0
H— 0 (I=yy)s2 O (I=yy)s4 0 0
Y151 0 Y153 0 S5 0
0 Y252 0 Y254 0 56

where 7, and v, are the maturation probabilities for
phenotype 1 and 2; s; and s, s3 and s4, s5 and s, are
the survivals of phenotype | and 2 for offspring, juveniles,
and adults, respectively.
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Fig. 4 Periodic life cycle graph
including the relationships be-
tween phenotypic traits and de-
mographic rates. There are four
phases with phase 1 is identical
to the one shown in Fig. 2.
Individuals are classified into
phenotypic stages during phase
2 and produce new phenotypes
during phase 3. During phase 4,
individuals survive and are
classified as adults or juveniles

Adult

Adult

Adult

phenotype phenotype
2

1

v
Adult
phenotype
1

Adult

The model is thus nonlinear because frequencies
calculated at time ¢ are included in P at ¢+1.

For two phenotypes, there are four stages at the
beginning of phase 3 (Fig. 4) during which adults produce
new phenotypes. B, is a transition matrix that contains the
rate (; that an adult of phenotype 1 or 2 produces offspring
of phenotype 1 or 2.

J Pel JPe2 Ad Pel AdPe2
B,= OPel 0 0 b Ps
O Pe2 0 0 b N
J Pel 1 0 0 0
J Pe2 0 1 0 0
AdPel |O 0 1 0
AdPe2 |0 0 0 1
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phenotype phenotype
2 1

Juvenile
Y
Juvenile
P
Adult Juvenile Juvenile
phenotype phenotype
1
A A
A \
\\ ‘\
A A
\‘ \\

\\ \\ B2

\\ \\

A \

\‘ \\
\\ Y
\ A
\ \\
\“ \\
¥ v
Adult Offspring Offspring  Juvenile Juvenile

phenotype phenotype phenotype
2 1 2

S,

Juvenile

The above matrix B, includes the probabilities that an
adult of phenotype 1 produces offspring of phenotype 1
and 2 (B; and (3,). The probabilities that an adult of
phenotype 2 produces offspring of phenotype 1 and 2 are
B3 and fy.

The phenotype is shaped by the interaction between the
environment during ontogeny (Eg) and the genes. ; is a
thus combination of (1) the trait heritability and (2) the
selection on the phenotype through the environmental
effect on fertility of that phenotype. The former is
obtained from quantitative genetics and the latter from
a model that describes how the biotic and abiotic
environmental variables affect the association of the
phenotype and fitness (the ‘ecological box’). It is also
possible to quantify heritability using our population
model which includes the distribution of offspring and
parental phenotypes (Coulson et al. 2010).
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During phase 4, individuals survive and are classified as
adults or juveniles.

S, =

O Pel O Pe2 J Pel J Pe2 Ad Pel Ad Pe2
J S S2 $3 Sy 0 0
Ad 0 0 0 0 S5 S

The population is projected from time 7 to #+1 using the
population matrix: A=S, B, P Y.

Phenotypic plasticity

Phenotypic plasticity shapes the relationship between the
environment and individual phenotypes. For a linear reaction
norm (the relationship that describes how the phenotype
depends on the environmental variable), a measure of plasticity
is the slope of the reaction norm. To include individual plastic
response in our model, a high dimensional transition matrix
should be included where each row corresponds to an
individual instead of a category of individuals. Then, the
phenotypic traits for each genotype should be obtained from
individual reaction norms (e.g., Chevin and Lande 2010), and
its effect on demographic rates should be included for each
individual. It is also possible to include different category of
individuals showing various plastic responses.

Genotype

To map genotypes to phenotypes, we include a matrix
containing the frequencies of genotype G among the

different phenotypes. Reproduction generates new geno-
types and may thus modify their frequency. The model
should therefore include a matrix M that contains mating
probabilities, which may be complex depending on the
mating system (such as mate finding, mate choice, mate
availability, etc.). If the mating probabilities depend on
the availability of sexes, the stages of females and males
ready to mate should be included using a transition matrix
that separates adults into females and males (Jenouvrier
et al. 2010).

A periodic model with seven phases is thus
constructed. During phase 1, juveniles mature and
become adults, and during phase 2 individuals are
classified into phenotypic stages. We illustrate the
approach using an over-simplified example. We as-
sume that phenotype 1 is a dominant trait controlled
by a single set of alleles and phenotype 1 is seen in
both the homozygous Gl and heterozygous G2
genotypes, but our approach is not limited to this
case. Thus, during phase 3, individuals are classified
into genotype stages given their phenotypes using the
matrix G which contains the genotype frequencies in
the population.

G- J Pel J Pe2 Ad Pel Ad Pe2
J Gel a1 0 0 0
J Ge2 % 0 0 0
J Ge3 0 1 0 0
Ad Gel 0 0 45 0
Ad Ge2 0 0 G 0
Ad Ge3 0 0 0 1

Gei stands for genotype i. The matrix above includes the
frequencies of genotype 1 and 2 among juveniles (¢; and ¢, )
and among adults (g5 and ¢q4). Initial frequencies should be
obtained ideally from observations or by using genetic
population models. Then, the model calculates the genotype

frequencies at each time ¢ +1 from the genotype frequencies
at the end of phase 5 at time ¢.

During phase 4 individuals form a mating pair with a
specific combination of genotypes. M is a matrix that contains
the mating probabilities u that depend on the mating system
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and the proportion of individuals available to mate. The
mating probabilities matrix can be very complex, and if the

mating probabilities depend on the availability of sexes, M is
frequency dependent (Jenouvrier et al. 2010).

M=

J Gel J Ge2 J Ge3 Ad Gel Ad Ge2 Ad Ge3
J Gel 1 0 0 0 0 0
J Ge2 0 1 0 0 0 0
J Ge3 0 0 1 0 0 0
Pairs Gel — Gel 0 0 0 U 0 0
Pairs Gel — Ge2 0 0 0 Uy Uy 0
Pairs Gel — Ge3 0 0 0 us 0 u;
Pairs Ge2 — Ge2 0 0 0 0 Us 0
Pairs Ge2 — Ge3 0 0 0 0 Ug ug
Pairs Ge3 — Ge3 0 0 0 0 0 Uy
Unmated ad Gel 0 0 0 1-uy-uy-us 0 0
Unmated ad Ge2 0 0 0 0 1-uy-us-ug 0
Unmated ad Ge3 0 0 0 0 0 1-u7-ug-ug

The above matrix includes the mating probabilities of males
of genotypes 1, 2 and 3 with a female of genotype 1 (u; , us,
u3), of genotype 2 (u4 , us, ug,) and of genotype 3 (17 , ug, uo).

During phase 5, mating pairs produce new individu-
als of a specific genotype, applying the Mendelian

ratios for each type of mating, and mating pairs separate
into individuals with probability pm. B; contains the rate
(B’, which combine the Mendelian inheritance and the
fertility of the genotype.

Bs;=
JGel JGe2 JGe3 Pairs Pairs Pairs Pairs Pairs Pairs Un- Un - Un -
Gel Gel Gel Ge2 Ge2 Ge3 mated mated mated
Gel Ge2 Ge3 Ge2 Ge3 Ge3 Gel Ge2 Ge3
O Gel 0 0 0 ] £ 0 ’s 0 0 0 0 0
O Ge2 0 0 0 0 e 4 Bs Ls 0 0 0 0
O Ge3 0 0 0 0 0 0 7 0 L0 0 0 0
J Gel 1 0 0 0 0 0 0 0 0 0 0 0
J Ge2 0 1 0 0 0 0 0 0 0 0 0 0
J Ge3 0 0 1 0 0 0 0 0 0 0 0 0
AdGel |O 0 0 1 pmy pms 0 0 0 1 0 0
Ad Ge2 0 0 0 0 pmy 0 1 pms 0 0 1 0
Ad Ge3 0 0 0 0 0 pmy 0 pmg 1 0 0 1
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The matrix above includes 3, , 8%, 84, 3’s which are the
production of newborns of genotype 1 by pairs Gel-Gel,
Gel-Ge2, Gel-Ge3 and Ge2-Ge2. 35, B, (s are the
production of newborns of genotype 2 by pairs Gel-Ge2 ,
Ge2-Ge2 and Ge2-Ge3. 8’7, B9, (10 are the production
of newborns of genotype 3 by pairs Ge2-Ge2, Ge2-Ge3
and Ge3-Ge3. pm, and pmj are proportions of genotype 1

among the pair Gel-Ge2 and Gel-Ge3. pm, and pmS5 are
proportions of genotype 2 among the pair Gel-Ge2 and
Ge2-Ge3. pmy and pm6 are proportions of genotype 3
among the pair Gel-Ge3 and Ge2-Ge3.

During phase 6, individuals are classified into pheno-
type according to their genotypes, applying the Mendelian
ratios.

Pz =
0G1 0 G2 0G3 JG1 J G2 JG3 AdG1 Ad G2 Ad G3
J Pel 1 1 0 1 1 0 0 0 0
J Pe2 0 0 1 0 0 1 0 0 1
AdPel |O 0 0 0 0 0 1 1 0
AdPe2 |0 0 0 0 0 0 0 0 1
During phase 7, individuals survive and are classified as
either adults or juveniles.
S3 =
J Pel J Pe2 Ad Pel Ad Pe2
J 83 S4 0 0
Ad 0 0 S5 Se

The population matrix is thus A=S; P; B M G P Y
(Fig. 5). This periodic model keeps track of the distribution of
genotypes at the end of phase 5 and the distribution of
phenotypes at the end of phase 6, which gives the frequencies
of phenotypic traits and genotypes that appear, respectively, in
matrices P and G. However, our population model can be
linked easily to more complex genetic models that project
the dynamic of gene frequencies by using their output as
input in matrix G.

In our example, projecting the genotype frequencies is
extremely elementary. To include complex genetic processes,
the transition matrices should be modified (see Coulson et al.
2006 for an example with a pleiotropic trait), or the periodic
matrix model linked to more complex genetic model.

Discussion

The complexity of biological processes and the lack of data
have heretofore hampered an integrated eco-evolutionary

approach to predict population responses to future climate
change. But the earth's climate system is also a complex
system, with many interactions and feedbacks among its
physical organizational levels (i.e., atmosphere, ocean, land
surface, sea ice, etc.). Climatologists have approached
predicting climate change by coupling processes occurring
at different levels and by gradually incorporating more
components of the climate system in global climate models
(AOGC). This coupling is not simple due to the complex
interactions and feedbacks between the physical organiza-
tional levels, to the temporal-spatial discretization of
processes, and to missing data. When Bretherton et al.
(1992) presented their conceptual model of earth system
processes operating on a time scale of decades and
centuries and coupling diverse physical and biogeochemical
processes, scientists did not believe that such level of
complexity and diversity could be achieved to forecast
climate change. Climatologists, however, rose to the
challenge and their AOGC models nowadays include such
complexity and diversity.
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Fig. 5 Periodic life cycle graph Adult
including the relationship be- i
tween genotype and phenotype.
There are seven phases. The two
first phases are identical to the
ones shown in Fig. 3. Individu-
als are classified into genotype
stages during phase 3. For sake
of simplicity, we assume that
phenotype 1 is a dominant trait
controlled by a single set of
alleles. Thus, phenotype 1 is
seen in both the homozygous
G1 and heterozygous G2 geno-
types. During phase 4, adults
can mate forming a mating pair
with a specific combination of
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The ecologist’s challenge

We propose that ecologists, like climatologists, establish
links between their specialized fields, and build a common
framework incorporating the results from various eco-
evolutionary “boxes” to predict population viability under
future climate change.

We illustrated how a matrix periodic population model
could easily and successively include different “boxes”
such as genotype and phenotype (e.g., timing of phenolog-
ical events). Periodic models are very flexible and have
major advantages for adopting an integrated approach. A
periodic model can include complex seasonal behaviors,
allowing an easy link with phenological shifts. In addition,

@ Springer

it provides the structure of the population at each phase,
such as the distribution of genotypes and phenotypes,
making the link with an evolutionary model straightfor-
ward. Finally, it can incorporate the effect of climate at
different time periods and on different processes.

There are, however, important differences between the
tasks of the climatologists and the ecologists. While there is
just a single planet for which a complex climate needs to be
predicted, ecologists face an uncountable number of
species, which may all be affected in different ways, and
not only by climate change.

Climate change will certainly be a major driver of
biodiversity changes, but other direct factors, such as land-
use change (e.g., habitat destruction), management practi-
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ces (e.g., fishery by-catch), and pollution are also drivers of
environmental change (Rosenzweig et al. 2008). Our
modeling approach allows including any factors affecting
the life history of species and their interactions. It does not,
however, include the potential feedback of ecological
processes on climate. For instance, land-use change has
indirect biotic and abiotic effects on ecosystems through its
effects on climate. Rosenzweig et al. (2008) describes how
clearing forests for agriculture has a cooling effect in
temperate regions because it increases the reflection
coefficient during periods of snow cover. The next
generation of climate models has begun to include
ecosystem feedbacks to the climate system by adding
explicit models of the terrestrial and oceanic biosphere to
the atmosphere, ocean, land surface, and sea ice compo-
nents of the physical climate models (Stock et al. 2011).
These earth system models (ESMs) may permit the
evaluation of the interactions between climate and direct
human disturbance on ecosystems. Adopting an integrated
eco-evolutionary approach in ESMs is another endeavor
that can be facilitated using flexible ecological models,
which can be easily linked to models developed by other
fields, such as a periodic model.

Lack of data

We are well aware that the model we present cannot be fully
parameterized for many species, if for any species at all,
simply because the data do not yet exist, or because they are
unobtainable. However, we want to stress that a lack of data
should not hamper initiating the approach, as population
projections can start by using simple correlative relationships.
However, as data and better knowledge become available, it is
important to refine models to update impact assessment
studies (Beaumont et al. 2008), as climatologists do with
the successive assessment reports of the IPCC. In addition,
models can direct data collection and further experimental
studies by identifying the processes that will more likely
affect population responses to climate change. Thus, adopt-
ing a strategic cyclical scaling (SCS) is appropriate, because
mechanistic and correlative approaches are applied back and
forth and strategically designed to address specific questions
(i.e., each successive investigation is built on previous results
obtained from both statistical and mechanistic approaches;
Root and Schneider 1995).

Missing information can be extrapolated from relation-
ships that exist between morphology and demographic and
phenotypic traits within any animal taxon (Peters 1986).
Assumptions based on information from closely related
species may help to calibrate the model. Model calibration
consists of changing values of model input parameters in an
attempt to match observations within some acceptable
criteria, and is widely used in climate models (e.g., with

sea ice albedo; Kim et al. 2006). Then, models should be
thoroughly evaluated, e.g., by comparing model outputs to
observed patterns.

The parameterization of genotype components of our
model is extremely difficult because phenotypic traits are
likely to be affected by large numbers of genes (Lynch and
Walsh 1998). Thus, for most species, our model will be
limited to the phenotype component. However, genetic
processes underlying the phenotype distribution can be
included. Indeed, such genotype—phenotype-by-environ-
ment interactions have long been integrated into evolution-
ary quantitative genetics, which focus on the genetic and
environmental basis of the distribution of phenotypic traits.
Therefore, quantitative genetic models, such as the animal
model (Kruuk 2004), are very useful for estimating the
additive genetic variance and heritability, which can be used in
our model to generate the distribution of phenotypic traits.

Importantly, sensitivity analysis using theoretical models
may permit (1) identifying which ecological-evolutionary
processes will be most affected by climate change, and (2)
which will most affect the dynamics of our focal species.
Therefore, sensitivity analyses may help to direct researcher
efforts to key processes and data collection.

We advocate using these models for some targeted
species for which we have sufficient data, and compare
models with and without ecological and evolutionary
processes. For different life-history strategies and species
groups, this will indicate whether population responses
based on simple approaches are under- or overestimated.
Moreover, it will permit the determination of whether biases
are consistent within life-history strategies or species
groups for which there are no data available. Hence, we
may identify those species for which the simple correlation
models work, and may extrapolate the resulting insights to
other species.

Long term data and model “validation”

Long-term data on populations and on individual-based life
histories are crucial for the predictions of climate change on
population numbers. First, they are needed for the initial
correlative approach by relating population numbers, vital
rates, and phenotypic traits to climatic variables, and using
these to forecast future changes, second to understand the
underlying eco-evolutionary mechanisms (Clutton-Brock and
Sheldon 2010), and finally, to evaluate the adequacy of
models for observed patterns (Stock et al. 2011), commonly
known as “validation” (see review of Rykiel 1996).

To project population responses to different climate
change scenarios, model validation may give us two types
of useful information: (1) whether the model is acceptable
for providing projections into the future, and (2) whether
the real system is well described by the processes modeled
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(i.e., scientific hypothesis testing) (Rykiel 1996). If the
model fails a validation test, calibration can be used to
improve its fit to the data by changing parameter values. This
can be a valuable option when data are missing or when there
are uncertainties in some of the parameters. Another non-
exclusive option is to modify the assumptions and the set of
equations describing the processes in the model.

Concluding remarks

We emphasize that this paper is a starting point and we also
acknowledge that our approach will need to be worked out
and most likely modified. We believe that the way
climatologists have approached the problem, using AOGC
models in which other components are gradually included,
can provide a valuable example to ecologists.
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