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Abstract
Data leakage is a common issue that can lead to misleading generalisation error estimation and incorrect hyperparameter 
tuning. However, its mechanisms are not always well understood. In this work, we consider the case of clustered data and 
investigate the distribution of the number of elements in leakage when the data set is uniformly split. For both the valida-
tion and test sets, the first and second moments of the number of elements in leakage are derived analytically. Modelling 
consequences are investigated and exemplified on simulated data. In addition, the case of an actual agronomic feasibility 
study is presented. We demonstrate how data leakage can distort model performance estimation when an inadequate data 
splitting strategy is used. We provide an understanding of data leakage in the context of clustered data by quantifying its 
role in predictive modelling. This sheds light on related challenges that may impact the practice in agronomy and beyond.

Keywords Group leakage · Clustered data · Dependent data · Predictive modelling · Prediction error estimation · 
Generalisation error estimation

1 Introduction

Model selection and assessment through validation pro-
cedures are crucial in statistical modelling and machine 
learning. Estimating a given algorithm’s generalisation 
performance helps to select the learning method, choose 
its right flexibility level, and quantify its predictive qual-
ity (Hastie et al. 2009). However, in situations where the 
data are structured in groups or clusters, baseline validation 
procedures may lead to misleading estimations of the gen-
eralization error. Clustered/grouped data are ubiquitous in 
agronomy and beyond, where they can for instance stand for 

observations at a neighbouring time, at neighbouring loca-
tions, when using the same crop variety, or in longitudinal 
studies where several observations are made on the same 
individual (e.g., in health sciences). Depending on how the 
clusters are shared between the validation/testing set and the 
learning set, they can foster undesired information exchange 
between the different subsets, a phenomenon known as 
data leakage (Kaufman et al. 2012; Kapoor and Narayanan 
2023). Therefore, the algorithm visiting a cluster during the 
learning phase takes advantage of this knowledge when it 
is used on data kept for the generalization error estimation 
that belong to the same cluster. This may lead to the selec-
tion of inadequate models and hyper-parameters, notably 
when using distance methods such as nearest neighbours 
prediction.

To illustrate this phenomenon, let us consider the fol-
lowing practical situation, which is one of the cases that 
will be presented, motivated and discussed in detail in Sec-
tion 4. An applied scientist or an analytics consultant is 
commissioned to conduct a feasibility study in the field of 
agricultural sciences. The aim of the considered study is 
to determine whether the yield of winter wheat can be pre-
dicted based on the wheat variety and its environment given 
a specific region. The yield of six winter wheat varieties is 
measured in three replicates under 23 different environmen-
tal conditions, totalling 414 observations. The analyst uses a 
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k-nearest neighbours (KNN) algorithm to predict the respec-
tive yields that would be with obtained with each variety 
in some unobserved environmental condition. The optimal 
number of neighbours is selected with a 5-fold cross-vali-
dation procedure, which provides k = 1 . To assess the final 
model, and in accordance with the predictive goal, the same 
experimental design at 6 unobserved environmental condi-
tions was kept apart as a test set. The mean squared errors 
are reported in Table 1. As a matter of fact, the test error of 
the model is far worse than if the analyst used the average 
response calculated from the learning set. This clear case of 
overfitting is caused by the clustered nature of the observa-
tions, which allows information leakage when the data are 
not adequately split during the model selection.

In predictive modelling, leakage in a broad sense has been 
known for a long time (Nisbet et al. 2009; Kuhn and John-
son 2019), and a formal definition was proposed (Kaufman 
et al. 2012). Data leakage was recently recognized as an 
important and frequent factor of irreproducibility in machine 
learning based science (Kapoor and Narayanan 2023). Nev-
ertheless, the mechanisms of data leakage remain formally 
under-investigated. A common source of data leakage comes 
from not taking into account the dependencies between the 
split data sets while these dependencies underlie the predic-
tive goal (Roberts et al. 2017). Indeed, data splitting aims 
to mimic the relationship between the available data and 
the set to be generalized. If there is a mismatch between 
the learning situations encountered within the learning set 
(by cross-validation) and the out-of-sample prediction situ-
ations, then this can lead to unsuitable predictions and quan-
tifications of prediction uncertainty (Kapoor and Narayanan 
2023). Several specific cases of data leakage can be seen as 
special cases of leakage induced by clustered data, such as, 
from general to particular:

• Leakage induced by hierarchical data (e.g., blocked or 
nested experimental design), (Roberts et al. 2017);

• Group-structured data, sometimes referred to as group 
leakage (Ayotte 2021; Ayotte et al. 2021; Meghnoudj 
et al. 2023). In this case, samples come from the same 
unit, block, individual, or group;

• Experiment replicates. In various fields, measurements 
from replicated experiments can be considered a particu-
lar case of clustered data, as our agronomical case study 

illustrates. Let us remark that the response differs for two 
replicates, while experimental conditions are the same;

• Duplicates in the data set. In this extreme case, some 
input/outputs pairs are (unintentionally) copied once or 
several times into the database (Kapoor and Narayanan 
2023).

In the context of multiple-fold cross-validation (Stone 
1974), different solutions have been proposed to account for 
dependencies within splitting, e.g., by defining fold splitting 
schemes that mimic the predictive goal (Rice and Silver-
man 1991) or that are specific to a given problem (Roberts 
et al. 2017; Montesinos López et al. 2022; Buntaran et al. 
2019). Recently, it was proposed to correct the bias of the 
prediction error estimation obtained by multiple fold cross-
validation by taking covariances between the response val-
ues into account (Rabinowicz and Rosset 2020).

In many practical situations, the data set is partitioned 
into three subsets: the learning set on which the model will 
be fitted, the validation set used to optimize hyperparameters 
and select the model, and the testing set used to estimate 
the generalization error and assess the selected model. In 
this framework, little is known about how the clusters are 
distributed across the different data subsets.

In the present paper, we analytically investigate the clus-
ter breakdown into the learning, validation and testing sets, 
aiming at quantifying the data leakage between them and 
helping to understand its impact on predictive performance. 
More specifically, the distribution of the number of elements 
in leakage is characterised, and its first and second moments 
are derived analytically for both validation and test sets. The 
impact is illustrated through the analysis of both a synthetic 
dataset and the agronomical research dataset mentioned 
above. Overall, the paper aims to clarify the leakage effect 
of clustered data in practical predictive modelling situations 
and to raise awareness of some related pitfalls. Although an 
agronomic application inspires our investigations, the find-
ings of this study could virtually apply to any application 
domain with clustered data where leakage is likely to occur.

The present article is organized as follows. Starting from 
general assumptions, probabilistic formulae are derived for 
quantifying the cluster breakdown between data subsets 
randomly split in Section 2. In Section 3, the formulae are 
checked by simulation and are put into practice in a synthetic 
predictive experiment. Real-world applications on agricul-
tural data are reported in Section 4, where more details on 
the introductory example are provided and cluster impact 
under different predictive goals is investigated. Section 5 
concludes the paper.

Table 1  Error comparison for the introductory agronomic exam-
ple. The metric used is the mean squared error

Model Val. MSE Test MSE

1-nearest neighbour 89.44 635.54
Avg. of the learning set − 304.07
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2  Probabilistic modelling

In this section, we characterise the distribution of the num-
ber of elements in leakage and derive analytical formulae for 
resulting expectation and variance. The single-split case is first 
discussed, followed by the double-split case. Discussion of 
the obtained formulae give us insight into the data leakage 
phenomenon when the data set is uniformly split into subsets 
of prescribed sizes.

2.1  Single‑split situation

We consider a finite set D , standing for a clustered data set to 
be split into disjoint subsets, respectively devoted to training, 
testing, and also possibly to model validation. We assume fur-
thermore that D can be partitioned in nc ≥ 2 clusters Ci ⊂ D 
(i = 1,… , nc) , i.e. D =

⨆nc
i=1

Ci , where 
⨆

 denotes the disjoint 
union. We denote by ri ≥ 1 the size of the cluster Ci , and by 
n =

∑nc
i=1

ri the cardinality of the data set D.
We first consider the case where D is randomly split into 

learning set L of prescribed size, used for model training 
purpose, and a testing set T = L� , kept to evaluate prediction 
errors. Here, L� denotes the complement of the set L, i.e. the 
set of elements of D not in L.

We say that cluster Ci is in leakage if #(Ci ∩ L)#(Ci ∩ T) > 0 
where # is used as symbol of cardinality, that is, if Ci ∩ L ≠ ∅ 
and Ci ∩ T ≠ ∅.

Let us remark that the partitions of D into training/testing 
subsets and into clusters induce a finer partition as follows:

In particular, each cluster is potentially in leakage depending 
on the split. If it is, information may be shared between the 
training set and the testing set. Figure 1 provides a sketch of 
this situation for nc = 4 clusters.

D = L ⊔ T =

(
nc⨆
i=1

(Ci ∩ L)

)
⊔

(
nc⨆
i=1

(Ci ∩ T)

)
.

For all i = 1, … , nc , we set Xi = #(Ci ∩ T) , which counts 
the number of elements of a given cluster within the testing 
set, and denote X = (X1,… ,Xnc

)T . One important note for 
the following is that Ci is in leakage if and only if 0 < Xi < ri . 
When a cluster is in leakage, its elements that belong to T will 
be called leakage elements, or simply leakages. We define

where 1 is the indicator function. For any i = 1, … , nc , the 
random variable Ni counts the number of leakage elements 
of cluster Ci . We are interested in counting the total number 
of leakages, that is

As an example, for Fig. 1, we have X = (0, 5, 1, 5)T  and 
N = 6 , where the leakages are symbolized by red crosses.

We will now investigate the distribution of N when 
the testing set is uniformly drawn from {T ⊂ D ∣ #T = k} , 
where k < n is a prescribed testing set size. First we give 
the distribution of X.

Theorem 1 If T is uniformly distributed among subsets of 
k elements of D , then the random vector X is multivariate 
hypergeometric distributed with parameters (k;r1, r2 … , rnc ).

Proof The proof consists in identifying the data splitting to a 
sampling without replacement of k marbles from an urn contain-
ing n marbles, of which r1 are of colour C1 , r2 are of colour C2 , 

..., and rnc are of colour Cnc
 . There are 

(
n

k

)
 possibilities of draw-

ing the marbles, among which 
∏nc

i=1

�
ri
xi

�
 contain x1 marbles 

of colour C1 , x2 marbles of colour C2 , ..., xnc marbles of colour 
Cnc

 . Hence, the probability mass function of X = (X1,… ,Xnc
) 

is

N
i
∶= X

i
1{0<X

i
<r

i
} = X

i
1{0≤X

i
<r

i
},

N ∶=

nc∑
i=1

Ni.

Fig. 1  Sketch of a clustered 
data set in a single-split situ-
ation. Clusters 2 and 3 are in 
leakage, while clusters 1 and 4 
are not. Red crosses represent 
leakage elements, while black 
points represent the remain-
ing elements
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with x = (x1,… , xnc )
T  such that  xi ∈ {0, 1,… , ri} , 

i = 1, 2,… , nc and 
∑nc

i=1
xi = k .   ◻

While the multinomial distribution is obtained by sampling 
with replacement a population with nc ≥ 2 categories (bino-
mial distribution in case nc = 2 ), the multivariate hypergeo-
metric distribution describe its without replacement counter-
part, and there is a similar relationship between these two 
distributions as between the binomial and hypergeometric 
distributions (Johnson et al. 1997). For convenience, we will 
denote X ∼ Mult.Hypg.(k;r1, r2,… , rnc ) when the random 
vector X follows a multivariate hypergeometric distribution 
with parameters (k;r1, r2,… , rnc ) . For nc = 2 , the multivari-
ate hypergeometric distribution reduces to the hypergeometric 
distribution, that will be denoted Hypg.(k;r, n) . Various prop-
erties of the multivariate hypergeometric distribution can be 
found in Johnson et al. (1997); some that will be useful to us 
are listed here.

Selected properties of the hypergeometric distribution Let 
X = (X1,… ,Xnc

) ∼ Mult.Hypg.(k;r1, r2,… , rnc ) . Then the 
following holds: 

1. The marginal distributions are hypergeometric, that is, 
Xi ∼ Hypg.(k;ri, n) , for i = 1, 2,… , nc . In particular, 

 and 

 for i = 1, 2,… , nc.
2. The covariance between two components Xi and Xj is 

given by 

 for i, j = 1, 2,… , nc where i ≠ j.
3. For s ∈ {2,… , nc − 1} , the joint distribution of the ran-

dom vector (Xi1
,Xi2

,… ,Xis
, k −

∑s

j=1
Xij

)T is 

ℙ[X = x] =

∏nc
i=1

�
ri
xi

�

�
n

k

� ,

�[Xi] =
k

n
ri,

Var[Xi] =
k(n − k)

n2(n − 1)
ri(n − ri),

Cov[Xi,Xj] = −
k(n − k)

n2(n − 1)
rirj,

Mult.Hypg.

(
k;ri1 , ri2 ,… , ris , n −

s∑
j=1

ris

)
.

The total number of leakages N is a function of X. As a 
consequence of Theorem 1 and the properties above, we now 
derive several results regarding on the distribution of N. The 
first one concerns the expectation of N.

Corollary 1 The expected number of leakage elements is 
given by

Proof  We  f i r s t  r emark  t ha t  fo r  i = 1,… , nc  , 
X
i
= N

i
+ X

i
1{X

i
=r

i
} . Summing over all clusters, we get

from which, by taking expectations, one obtains 
𝔼[N] = k −

∑nc
i=1

ri ℙ[Xi = ri]. One concludes by evaluating 
the ℙ[Xi = ri] terms using the first of the basic properties of 
the multivariate hypergeometric distribution listed above and 
remarking that this probability is null when ri > k .   ◻

Remark By expanding the definition of the binomial coeffi-
cient, Eq. 1 can be reformulated in a somehow more straight-
forward way to make it easier to implement. More precisely, 

by defining 
(
n

k

)
= 0 for any integer n ≥ 0 and any integer k 

such that k < 0 or k > n , Eq. 1 can be rewritten as

where the summation index run from 1 to nc . For the sake of 
readability, we keep this convention in most of the remainder 
of the paper.

Let us stress that the second factor of Eq. 3 represents the 
expected proportion of leakage elements. For n = 126 , this 
expected proportion of leakage elements in the testing set is 
represented in Fig. 2 (various line types, in black) against the 
split proportion of testing data, k/n, assuming clusters of homo-
geneous sizes r = 2, 3, 4, 5, 10, 30 . For a given split proportion, 
the case r = 2 shows the least expected proportion of leakages. 
The more the cluster size increases, the more the curve bends 
to the top right corner. For a common splitting proportion of 
k∕n = 20% (vertical dotted line), most of the testing set con-
tains data for which the corresponding cluster has been visited 
during the learning phase, even with clusters of small size. 

(1)�[N] = k ⋅

⎛
⎜⎜⎜⎜⎝
1 −

1

n

�
i∶ri≤k

ri

�
n − ri
n − k

�

�
n − 1

n − k

�
⎞⎟⎟⎟⎟⎠
.

(2)N = k −

n
c∑

i=1

X
i
1{X

i
=r

i
},

(3)�[N] = k ⋅

⎛
⎜⎜⎜⎜⎝
1 −

1

n

nc�
i=1

ri

�
n − ri
n − k

�

�
n − 1

n − k

�
⎞⎟⎟⎟⎟⎠
,
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In red (dash-dash-dotted line), �[N∕k] is shown when clus-
ter size varies within D , with r1 = ⋯ = r6 = 1, r7 = ⋯ = r26

= 2, r27 = r28 = 5, r29 = 10, r30 = r31 = 30 , which correspond 
to a data set of size n = 126 with 2 clusters of size 30, 1 cluster 
of size 10, 2 clusters of size 5, 20 pairs and 6 single individuals. 
Let us remark that the 6 single individuals have the effect of 
making the red curve start at �[N∕k] = 120

126
=

20

21
= 0.952 , for 

k = 1 . The elbow at k∕n = 0.9 originates from the 2 clusters of 
size 30, representing almost half of the data.

The next Corollary tells us about the fluctuations of N 
around its expectation.
Corollary 2 

Proof Taking the variance of Eq. 2, one has

(4)
Var[N] =

k

n

⎛⎜⎜⎜⎜⎝

nc�
i=1

r2
i

�
n − ri
n − k

�

�
n − 1

n − k

� +
�
i≠j

ri rj

�
n − ri − rj
n − k

�

�
n − 1

n − k

�
⎞⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎝

k

n

nc�
i=1

ri

�
n − ri
n − k

�

�
n − 1

n − k

�
⎞⎟⎟⎟⎟⎠

2

.

Var[N] =

n
c∑

i=1

n
c∑

j=1

Cov

[
X
i
1{X

i
=r

i
},Xj

1{X
j
=r

j
}

]

=

n
c∑

i=1

n
c∑

j=1

r
i
r
j
(ℙ[X

i
= r

i
, X

j
= r

j
] − ℙ[X

i
= r

i
]ℙ[X

j
= r

j
])

=

n
c∑

i=1

r
2

i
ℙ[X

i
= r

i
] +

∑
i≠j

r
i
r
j
ℙ[X

i
= r

i
, X

j
= r

j
]

−

(
n
c∑

i=1

r
i
ℙ[X

i
= r

i
]

)2

.

The result is obtained by applying the first and third of the 
properties listed for the multivariate hypergeometric distri-
bution, and by rearranging binomial coefficients.  ◻ 

Finally, we can get insight into the probability of not 
observing any leakage between the learning and testing sets.

Corollary 3 The probability that there is no leakage at all 
has the following upper bound :

Proof No leakage is observed if and only if for all 
i = 1,… , nc , Xi ∈ {0, ri} such that 

∑nc
i=1

Xi = k . Hence, the 
probability of having no leakage is

The proof is concluded by noting that there are 2nc terms in 
the last sum.   ◻  

Remark The probability of no leakage is zero if and only if the 
testing set size cannot be expressed as a sum of the cluster 
cardinalities. To prove it, one direction is immediate: from the 
proof of Corollary 3, if k is not equal to any sum of ri , then 
P[N = 0] = 0 . Conversely, assume without loss of generality 
that there exists  an integer   q ∈ {1,… , nc} such that 

k =
∑q

i=1
ri . If T =

⨆q

i=1
Ci is drawn from among the 

(
n

k

)
 

possible draws, then there is no leakage. Hence,

2.2  Double‑split situation

In practice, it is common to split D into three non-empty dis-
joint subsets: a learning set L, a validation set V, and a testing 
set T. At first, the model is trained on L, and V is used as an 
intermediate test set for model selection. Next, the training 
is performed on L ∪ V  , and T = (L ∪ V)� is used for test-
ing. Thus, all the quantities defined and the results proved in 

ℙ[N = 0] ≤
2nc(
n

k

) .

�
xi∈{0,ri} ∶

∑nc
i=1

xi=k

ℙ[X = x] ≤
�

xi∈{0,ri}

ℙ[X = x] ≤
�

xi∈{0,ri}

1�
n

k

� .

ℙ[N = 0] ≥ ℙ

[
T =

q⨆
i=1

Ci

]
=

1(
n

k

) > 0.

Fig. 2  Expected proportion of leakage elements included in T . 
In black, �[N∕k] for constant cluster size r = 2, 3, 4, 5, 10, 30 . In red 
(dash-dash-dotted line) , �[N∕k] for 6 single individuals, 20 clusters 
of size 2, 2 clusters of size 5, 1 cluster of size 10 and 2 clusters of size 
30



 Stochastic Environmental Research and Risk Assessment

Subsection 2.1 remain valid for T, because they are not influ-
enced by the fact that the model will be trained on L ∪ V once 
the model selection has been made. Figure 3 shows an analo-
gous sketch as Fig. 1. The same data set is considered, but it is 
split into three parts this time.

We are now interested in the leakage between the validation 
set and the learning set. The i-th cluster is in validation leakage 
if Ci ∩ L ≠ ∅ and Ci ∩ V ≠ ∅ . We define the random variable 
that counts the number of elements belonging to the validation 
set for a given cluster, Yi = #(Ci ∩ V) , and the random vector 
Y = (Y1,… , Ync )

T . Describing the number of elements belong-
ing to the learning set for a given cluster will be helpful, so we 
also define Z = (Z1,… , Znc )

T with Zi = #(Ci ∩ L) . Note that

If a cluster is in validation leakage, its elements that belong 
in V are called validation leakages. It is easy to check that 
Ci is in validation leakage if and only if 0 < Zi < ri and 
0 < Yi < ri . Therefore, a natural definition for counting the 
number of validation leakages of cluster Ci is

and the total number of validation leakages is

As an example, validation leakages are reported in Fig. 3. To 
avoid confusion, instead of talking about leakage as defined 

Xi + Yi + Zi = ri, i = 1,… , nc.

M
i
∶ = Y

i
1{0<Y

i
<r

i
}∩{0<Z

i
<r

i
}

= Y
i
1{0<Y

i
≤r

i
} 1{0<Z

i
≤r

i
}

= Y
i
1{0<Z

i
≤r

i
}

M ∶=

nc∑
i=1

Mi.

in Subsection 2.1, we will speak of testing leakage when 
considering a leakage between L ∪ V  and T.

Theorem 2 Assume that (T, V, L) is uniformly distributed 
among partitions of D such that T, V, L have k,�,m ele-
ments, respectively (with k + � + m = n ). Then, X, Y, Z and 
each of these random vectors conditioned by another are 
multivariate hypergeometric distributed. In particular,

 for  z = (z1,… , znc )
T  such that  zi ∈ {0, 1,… , ri} , 

i = 1, 2,… , nc and 
∑nc

i=1
zi = m.

Proof The fact that the three vectors X, Y, Z considered 
separately are multivariate hypergeometric distributed can 
be seen as a consequence of Theorem 1 given that T, V, L 
considered separately are uniformly distributed among sub-
sets of D with respective cardinalities k,�,m . One can in fact 
check that constructing (T, V, L) iteratively by drawing each 
subset uniformly (among subsets of relevant cardinalities) 
in the complement of the set of elements drawn so far, the 
triplet follows indeed the targeted uniform distribution. The 
statement about conditional distributions (say of Y ∣ Z = z ) 
follows from a related argument. In fact, knowing that Z = z 
informs us in two respects. First, it tells us what L is (and 
does not inform us further on how L� is partitioned into T 
and V), so we are back to the settings of Theorem 1 when 
it comes to the conditional distribution of V given L. Sec-
ond, knowing Z = z updates the number of V elements that 
can be sampled from Ci from ri to ri − zi ( i = 1,… .nc ) so 

Z ∼ Mult.Hypg.(m;r1, r2,… , rnc ), and

Y ∣ Z = z ∼ Mult.Hypg.(�;r1 − z1, r2 − z2,… , rnc − znc),

Fig. 3  Sketch of a clustered data set in a double-split situation. 
Cluster 3 is in validation leakage, while clusters 1, 2 and 4 are not. 
Red crosses represent validation leakage elements, while black points 
represent cluster elements that are not. Clusters 2 and 3 are in testing 

leakage, while clusters 1 and 4 are not. Although other configurations 
are possible (clusters shared between L and V but not T, or shared 
between T and V but not L), the figure represents only two kinds of 
overlap among the four possible for the sake of readability.
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that, overall, the distribution of Y knowing Z = z is indeed 
Mult.Hypg.(�;r1 − z1, r2 − z2,… , rnc − znc) .   ◻

Corollary 4 The expected number of validation leakages is

Proof As in the single-split case, one has Yi = Mi + Yi 1{Zi=0}
 . 

Summing over clusters and taking expectations as in the 
proof of Corollary 1, one finds

Using Theorem  2 and our first property of mul-
tivariate hypergeometric distr ibutions, one gets 
Yi ∣ Zi = 0 ∼ Hypg.(�;ri, n − m) and Zi ∼ Hypg.(m;ri, n) . 
One concludes by expressing and rearranging the summands 
above.   ◻  

From the comparison of Eqs. 3 and 5, let us remark how 
similar both considered expected proportions of leakage ele-
ments appear. Actually, in the single-split situation, n − k is 
the size of the learning set, while m plays this role for the 
double-split situation. However, to evaluate the expected 
number of testing leakages in a double-split situation, we 
use Eq. 3, in which case the size of the learning set becomes 
m + � . In particular, we obtain the following Corollary, 
which states that, under certain conditions, there is no way 
to achieve the same expected proportion of testing leakages 
whatever the size of the validation set. In other words, there 
is no hope of fully compensating for the impact of leakage 
induced by clusters by playing on proportions between learn-
ing, validation, and test sets.

Corollary 5 (Curse of data leakage) If there is at least 
one cluster cardinality satisfying 2 ≤ ri ≤ k + � , then the 
expected proportion of validation leakages is strictly smaller 
than the expected proportion of testing leakages.

Proof As V is non-empty, � > 0 , and therefore,

for all clusters such that 1 ≤ ri ≤ k , with equality if ri = 1 
and strict inequality otherwise. Two cases are distinguished. 
The first one is when there is at least one cluster cardinality 
satisfying 2 ≤ ri ≤ k . From Eq. 6, one has
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,

For the second case, assume that there is at least one cluster 
cardinality such that k < ri ≤ k + � . Then, from Eq. 6,

In both cases, this is equivalent to

 which conclude the proof.   ◻

Remark Equality between the expected proportions of vali-
dation and testing leakages is reached when all clusters are 
either single individuals ( ri = 1 ) or sufficiently large relative 
to the prescribed validation and testing set sizes ( ri > k + �).

3  Synthetic experiments

In this section, simulated numerical experiments are per-
formed, and theoretical results of Section 2 are used to 
interpret the results. After some combinatorial simulations, 
a regression setup is studied for two different splitting strate-
gies. The sizes and parameters used for datasets generation 
were chosen to be close to those of the agronomic case study 
that will be treated in Section 4.

3.1  Combinatorial simulations

Figure 4 shows the graph of the expected number of testing 
leakages depending on k with results of 1′000 draws of N. 
Each simulation emulates the random split of a hypotheti-
cal data set consisting of nc = 174 clusters of constant size 
r = 3 and computes the number of leakage elements in the 
test set. The average of the 1′000 simulations plus or minus 
twice the corresponding standard error are reported in green 
in Fig. 4, with the corresponding theoretic values based on 
Corollaries 1 and 2 in black. In the same Figure, the theo-
retical values based on Corollaries 4 and 6 (see appendix) 
depending on � are represented via black dashed lines. The 
latter concern validation leakages after a test split of k = 104 
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(corresponding to roughly 20% of the data set). The aver-
age of the 1′000 simulations of M plus or minus twice the 
corresponding standard error are also reported in red. Note 
that for each simulation of the validation split, a new test set 
is also drawn.

Other simulations were conducted in the case of hetero-
geneous cluster sizes (not shown). In all performed simula-
tions, the results are in complete agreement with the theo-
retical formulae derived in the previous section.

3.2  Friedman data set with uniform test split

In this subsection, we consider a regression setup where the 
testing set will be split uniformly among the subsets of k ele-
ments of the data set. For a clustered data set, one can think 
about this setup in at least two predictive situations. The first 
one is when the predictive goal is to predict a new response 
for a cluster we already observed, in which case random 
splitting could be appropriate considering Fig. 2. The sec-
ond situation is when the aim is to predict a new response 
for a new (unseen) cluster. In that case, random splitting is 
not appropriate and the test set is no longer representative 
given the aim to be achieved. Hence, the following example 
can be considered an example of both situations, each with 
a distinct predictive goal.

The data considered here is a clustered version of the syn-
thetic data set described by Friedman (1991). Specifically, 
n = 504 five-dimensional input data are drawn indepen-
dently from a mixture of Gaussian distribution with nc = 168 
component means generated uniformly in the hypercube 
[−10, 10]5 and covariance matrix �2I for all components, 

with � = 0.1 . All clusters have a constant size r = 3 . The 
input data are then normalized within the hypercube [0, 1]5 , 
and the output data are obtained by the noisy evaluations of 
the function

where x = (x1, x2, x3, x4, x5) are the input variables, and the 
noise is independent and Gaussian with mean 0 and variance 
1 . The top left panel of Fig. 5 displays the first two input 
variables x1 and x2.

A test set of k = 101 elements is kept apart by random 
splitting, corresponding to about 20% of the data set. Then, 
the KNN algorithm is trained on the remainder of the data. 
The number of neighbours is selected via a 10 times repeated 
random validation procedure. The random validation split 
proportion is varying from about q = 5% to q = 50% , with 
5% steps ( � = 21, 41, 61, 81, 101, 121, 142, 162, 182 and 
202). The whole test and validation splitting procedure is 
repeated 50 times. Averages with two standard errors for 
the validation and testing MSE are reported in the top right 
panel of Fig. 5. Firstly, we observe that the test error aver-
age is systematically lower than the validation error aver-
age. This could be explained by Corollary 5. Indeed, the 
expected proportion of testing leakages is 96% , while the 
expected proportion of validation leakages ranges from 94% 
when q = 5% to 64% when q = 50% . Secondly, the valida-
tion error increases with q. Although this may be due to the 
reduction of expected leakages when q increases causing the 
validation error inflation, there may be other reasons for this 
behaviour (Cawley and Talbot 2010). In particular, we will 
see in Subsection  3.3 that this behaviour still occurs even 
when no cluster is in validation leakage.

An analogous experiment is conducted by varying the 
cluster size from 2 to 9. We set k = 101 , corresponding to 
20% of the whole data set, and � = 81 , corresponding to 
20% of the remainder. The n = 504 sample is partitioned 
into a varying number of clusters of different sizes accord-
ing to Table 2. Here, the data set differs for each 50 rep-
etition and each cluster size. However, the cluster size is 
constant for each data set, except for the case nc = 100 , 
where 96 clusters have size 5, and 4 clusters have size 6 
to reach the same sample size. Results are reported in the 
bottom left panel of Fig. 5. The average validation error 
is always higher than the average test error, likely for the 
same reason as the previous experience. In a consistent 
manner, and according to expected proportions �[N∕k] , 
�[M∕�] provided in Table 2, the cluster size increasing 
implies a leakage increase, and validation and testing 
average error curves decreases. Note also that as the clus-
ter size increases, the difference in expected proportion 
decreases, and the difference between average validation 
and testing curves tends to decrease.

(7)y(x) = 10 sin(�x1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5,

Fig. 4  Number of leakage elements. In black solid line, �[N] and 
�[N] ± 2 ⋅

√
Var[N] for n = 522 and constant cluster size r = 3 . In 

green, plus/minus twice the standard deviation around the average of 
1’000 simulations of N. In black dashed line, �[M] ± 2 ⋅

√
Var[M] 

for k = 104 surrounded in red by plus/minus twice the standard error 
around the average of 1’000 simulations of M 
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3.3  Friedman data set with a grouped test split

A third experiment is done with the same clustered Fried-
man data set but splitting the test set in a grouped fashion, 
i.e. no cluster is in testing leakage. Hence the test set will 
correctly assess the model by estimating its generalization 

error when the goal is to predict a new response for a new 
unseen cluster.

More specifically, 34 clusters are kept apart for the test 
set, corresponding to k = 102 elements. The remainder of 
the data is used for train and validation, according to 10 
repeated grouped validation procedures. That is, as with the 
test split, all validation splits are performed in such a way 
that each cluster is either in the training or the validation set. 
A random validation split is also performed for compari-
son, following the procedure described in Subsection 3.2. 
The whole experiment is repeated 50 times, and results are 
shown in the bottom right panel of Fig. 5.

The validation error resulting from the randomly split 
validation procedure (in red) exhibits behaviour close to 
that of the experiment when the test was randomly split (see 
top right panel of the same Figure), which is unsurprising. 
The models selected from this procedure produced a cor-
responding test error (in green), which is, on average, 2 to 
5 times greater than the validation error. Note that this situ-
ation — the grouped testing split with random validation 
split — is the analogue of the agricultural one presented 
in the introduction of this paper. One now focuses on the 

Fig. 5  Experiments with the 
Friedman data set. (top left) 
First two input variables of 
the nC = 168 clusters of size 
r = 3 . (top right) Average MSE 
± twice the standard error for 
the validation and testing set, 
depending on the validation 
proportion q, (bottom left) on 
the cluster size, with constant 
sample size. (bottom right) 
Same experiment as in the top 
right panel with grouped split-
ting strategy

Table 2  Varying cluster size with the synthetic data set. The data 
set is drawn with different cluster sizes, corresponding to different 
expected proportions of testing and validation leakages. The differ-
ence of expected proportion is always positive, due to Corollary 5

r �[N∕k] �[M∕�] �[N∕k] − �[M∕�]80.0%

2 252 64.0% 16.0% 96.0%

3 168 87.0% 9.0% 99.2%

4 126 95.3% 3.9% 99.8%

5 100 98.3% 1.5% 100.0%

6 84 99.4% 0.6% 100.0%

7 72 99.8% 0.2% 100.0%

8 63 99.9% 0.1% 100.0%

9 56 100.0% < 0.1% k = 102
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validation error from the grouped validation procedure (in 
black). Although the clusters are no longer in validation 
leakage, the validation error still increases with q, similar 
to the validation error produced by the randomly split valida-
tion procedure. This suggests that this behaviour is not nec-
essarily related to validation leakages, as already mentioned 
in Subsection 3.2. The corresponding test error (in blue) is 
better than the testing error resulting from the randomly split 
validation, indicating better modelling. Although the valida-
tion error with the grouped strategy is higher than the one 
with the random strategy, it is also far more representative 
of the test error. Using the random strategy for validation 
results here in an overfitting situation.

4  Application to agronomical data

This section revisits the specific case of the feasibility study 
of an agronomic recommendation system presented in the 
introduction. The analyst has to find out whether the system 
can be developed on the basis of a given data set. After the 
motivation and presentation of the data set, the data set is 
uniformly split in order to observe the potential leakage and 
compared with the theoretical values. We will then follow 
our analyst through four splitting scenarii in which they will 
use KNN for the modelling. We will see that the output of 
the study can vary depending on the strategy used.

4.1  Motivation and data set

For agronomists and plant breeders, the ability to character-
ize new varieties of crops is important to assess their perfor-
mance under various conditions. Additionally, the ability to 
identify where a new variety of crop may be best suited for 
production based on location characteristics, like weather 
and soil, is important for maximizing yield, quality, and 
economic potential of the crop at the farm level. Statistical 
approaches that identify the relationship between varieties 
and their environment can help agronomists and growers to 
find the most appropriate variety for a particular location.

The data set comes from a wheat variety trial network 
from Agroscope in Switzerland and has been used in Herrera 
et al. (2018). The network includes 10 locations distributed 
across Switzerland’s main wheat production area. At each 
location, 6 winter wheat varieties were chosen. The data set 
contains 3 years of yield measurements (2011, 2012 and 
2013). Each combination of year and location defines an 
environmental condition, and each combination of envi-
ronmental condition and variety is called an experiment. 
Each experiment is done in three replicates. One environ-
mental condition is missing (29 spatio-temporal combina-
tions are available), and one experiment has a missing rep-
licate. Therefore, the data set contains n = 521 observations. 

Additionally, 16 environmental limiting indices specifically 
designed for winter wheat yield are provided (Herrera et al. 
2018; Holzkämper et al. 2013). The 6 variety names are 
dummy encoded (Murphy 2012). The 22-dimensional input 
space is composed of variety names and environmental lim-
iting indices. The predictive goal of the study is to predict 
winter wheat yield for an unobserved environmental condi-
tion, given one of the six varieties.

4.2  Data splitting

The nature of the experimental design suggests hierarchical 
clustered structured data. Therefore, there is a high risk of 
data leakage during the splitting of the data set. First, experi-
ment replicates are reduced to a singleton for each experi-
ment, which is a particular case of a cluster. Indeed, repli-
cates are the same points for a given experiment in the input 
space. Second, all experiments conducted within the same 
environmental conditions could induce potential clusters. 
This could be a problem, as the goal is predicting yield for 
an unobserved environmental condition. Incidentally, remark 
that all experiments conducted with the same variety could 
also induce potential clusters. However, as the predictive 
goal here does not include new varieties, this should not be 
an issue.

The data are uniformly split into three subsets, namely 
learning, validation and testing set, to select and assess sev-
eral models in the remainder of the paper. We keep k = 104 
observations for the testing set (i.e. roughly 20% of the data) 
and � = 83 observations for the validation set (i.e. roughly 
20% of the remainder of data, q ≈ 20% ). The number of 
leakage elements N and M are counted for the validation 
and testing sets, respectively, and for all potential cluster 
structures discussed above. The splitting is repeated 10’000 
times.

Figure 6 presents the distribution of N and M when the 
clusters induced by experiment replicates are considered 
( nc = 174 ). For N, two behaviours emerge. This is caused 
by the presence of two distinct cluster sizes. Indeed, since 
k ≤ nc , it is possible to find a split such that the number of 
testing leakages is k by taking the test set such that all its 
element belongs to a different cluster. To obtain the nearest 
smaller realisation of N, all members of one of the smallest 
clusters must be in the test set. As an example, doing this 
reasoning recursively for constant cluster size r and k ≤ nc , 
the number of testing leakages can only take the values 
k, k − r, k − 2r, ... , as the dominant behaviour in Fig. 6 (left). 
The secondary behaviour is caused by the cluster of size 
two and is less noticeable as we have only one cluster of 
size two against 173 clusters of size three. For the valida-
tion set, this multiple behaviour is not perceptible in Fig. 6 
(right), as clusters take on various sizes between 1 and r 
after the first split. The empirical mean and variance of these 
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simulated distributions are in agreement with the theoretical 
values derived in Section 2, as reported in Table 3. Moreo-
ver, remark that by applying Corollary 3, one concludes that 
there is a very high probability of having leakage, which is 
confirmed by the simulated distributions.

The results are not shown graphically for the other poten-
tial cluster structure induced by environmental conditions, 
as the number of elements in the testing leakages (validation 
leakages) almost always equal k (respectively � ). This is in 
agreement with the fact that �[N∕k] (respectively �[M∕�] ) 
is very close to 100%.

4.3  Modelling with KNN

We now consider the regression of the wheat yield on the 
explanatory variables. The KNN algorithm with Euclidean 
distance is chosen to illustrate our purpose.

4.3.1  Modelling scenario 1 ‑ The analyst erroneously draws 
uniformly the testing and validation sets

A test set of k = 104 elements is drawn uniformly among the 
subsets of k elements of the data set. The number of neigh-
bours is chosen with a classical 5−fold cross-validation pro-
cedure where the random splitting is done uniformly, which 
corresponds to � = 83 for three folds and � = 84 for two 
folds ( q ≈ 20% ). The procedure is repeated 50 times. The 
number of neighbours selected is always 1, and the vali-
dation and test errors are shown in Table 4. The test error 
average is lower than the validation error average. This is in 

accordance with what we observed in Subsection 3.2, and 
the fact that �[N∕k] ≈ 96% > 87% ≈ �[M∕�].

The analyst believes that they are achieving good results 
on the test set by splitting the data randomly and comparing 
results to the yield variance (286.85). However, the model 
has been tested/validated on replicated of experiments that 
have already been seen during training. The impact of this 
mistake is evaluated in modelling scenario 3. However, this 
is only a mistake with respect to the predictive goal. Indeed, 
the random split of the data corresponds to the case where 
the analyst’s goal is to predict yield for a variety and environ-
ment already known to the algorithm, although this hypo-
thetical situation is not of practical agronomical interest.

4.3.2  Modelling scenario 2 ‑ The analyst erroneously 
draws the testing and validation sets by grouping 
the replicates

Assume that the analyst is aware that one should not vali-
date/test the model on replicates and makes sure to keep 
measurements from the same experiment grouped together 
during all splittings. This procedure ensures that each clus-
ter induced by replicates belongs to one of the split sub-
set (train, validation or test) and is not in leakage. Among 
the 174 experiments, 35 are used for the test set, and the 
number of neighbours is selected with a 5-fold group cross-
validation. Over 50 repetitions of this procedure, the selected 

Fig. 6  Simulated distribution 
of the number of leakage ele-
ments induced by experiment 
replicates. (left) For testing 
leakages. (right) For validation 
leakages

Table 3  Mean and variance of the number of leakage elements. 
Comparison between theoretical values derived in Section 2 and 
empirical values computed on 10’000 splits of the agronomical data

Testing set Validation set

mean var. mean var.

Empirical 99.921 10.927 72.287 15.072
Theoretical 99.888 11.014 72.344 15.141

Table 4  Error for the different splitting scenarii of the agronomi-
cal data.  Mean squared error average (standard deviation) over 50 
train/test splits ( n = 174 ) and (grouped) 5-fold cross-validation pro-
cedures

Scenario Validation MSE Test MSE

1 108.03 (14.64) 71.06 (21.19)
2 180.45 (9.32) 195.20 (38.32)
3 70.83 (12.71) 525.88 (161.67)
4 251.36 (27.28) 270.80 (100.58)
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number of neighbours ranged from 37 to 49 neighbours. 
Results are shown in Table 4.

Unlike modelling scenario 1, the test error average is 
higher than the validation error. At first sight, this could be 
interpreted as a sign that there is no more leakage. Let us 
provide another explanation in the light of the theoretical 
results in Section 2. Under the grouping strategy at the rep-
licate level, the formulae (3) and (4) can be reused to count 
the approximate expected number of experiments in the test-
ing/validation set that has at least one experiment with the 
same environmental conditions by setting n = 174 , r = 6 , 
k = 35 , and � = 28 for four folds, � = 27 for the remaining 
fold. We get �[M∕�] ≈ 99% and �[N∕k] ≈ 100% , indicating 
that most of the time, all groups of replicates in the valida-
tion and testing sets have at least a group in the training set 
that have the same environmental conditions. That is, infor-
mation might still be leaked via potential clusters induced by 
environmental conditions, but �[N∕k] − �[M∕�] is too small 
to allow the validation error to be higher than the test error.

4.3.3  Modelling scenario 3 ‑ The analyst splits the test data 
accordingly to the predictive goal but erroneously 
draws the validation set uniformly

This situation corresponds to simulations of Subsection 3.3 
and to the introductory example. Here, the test set is properly 
split to assess the model according to the predictive goal 
by grouping the data with the same environmental condi-
tions so that the environmental conditions of the test set have 
not been already seen during the training/validation phases. 
However, the analyst selects the number of neighbours, 
always equal to 1, with a classical 5-fold cross-validation 
procedure. We can also think of this situation as a way of 
seeing the impact of data leakage if the model is developed 
with uniformly random splitting by assuming that the test set 
is unknown to the analyst. According to Table 4, the analyst 
receives good results during the model development (valida-
tion error) and might believe the model will do a good job, 
while the model will be completely off once in production 
(test error is almost 2 times the yield variance). This can 
have disastrous practical consequences.

Incidentally, we remark that the validation error is lower 
than for modelling scenario 1, while the same multiple-fold 
cross-validation strategy is used. That might be explained by 
the fact that, considering the clusters induced by replicates, 
modelling scenario 1 is a double split situation requiring for-
mula (5) which gives �[M∕�] ≈ 87% of leakages while mod-
elling scenario 3 is a single split situation requiring formula 
(3) yielding �[N∕k] ≈ 96% . This indicates that there are more 
validation leakages due to replicates in modelling scenario 3, 
which may artificially improve the validation error.

4.3.4  Modelling scenario 4 ‑ The analyst split the test data 
accordingly to the predictive goal and correctly 
do the corresponding validation procedure

Finally, we consider the case of the analyst aware of all the 
pitfalls mentioned so far, avoiding any leakage situation. The 
data with the same environmental conditions are grouped for 
the testing split and the 5-fold cross-validation procedure. 
Therefore, environmental conditions in the test set have not 
been already seen during the training/validation phases and the 
validation procedures mimic this situation. Thus, the number 
of neighbours, ranging from 15 to 216, is properly selected and 
the model is assessed in accordance with the predictive goal. 
This corresponds to simulations of Subsection 3.3. The results 
are reported in Table 4 after 50 repetitions. The validation error 
is representative of the test error. Considering the test error 
variance and comparing the test error with the yield variance, 
the analyst can very likely conclude that there is not enough 
structure in this dataset to achieve the predictive goal. This is a 
very different conclusion from the modelling scenario 1.

5  Conclusion

This paper discusses how and to which extent clustered data 
are allocated after data splitting. Based on this allocation, the 
validation or/and testing set may be easier to predict at, which 
potentially yield overoptimistic results depending on the pre-
dictive goal. This can have an impact on both model selec-
tion and model assessment. The leakage induced by clusters 
between the different subsets has been described by proba-
bilistic modelling. Under the assumption of uniform drawing 
of the subsets, analytical results have been derived supported 
by numerical simulations and empirical findings. While these 
derivations were done in the context of a single validation or 
test set, formulae for the expected number of leakages are still 
valid for multiple-fold cross-validation procedures.

The present agronomic case study demonstrates the impact of 
cluster-induced data leakage in the presence of inadequate split-
ting. In this actual data set, clusters are induced by the experi-
mental design. As a consequence, a naive splitting procedure 
makes it easier for the model to predict the validation and test 
data, misleading the hyper-parameters optimisation process and 
the evaluation of the model’s predictive performance. Depend-
ing on the splitting strategy, the analyst moved from a virtually 
ideal situation (scenarii 1 and 2), to a situation where the initial 
objective should be abandoned if no further data are available 
(scenario 4).

Although this paper clarifies the mechanisms of data 
leakage in the presence of clusters, this is undoubtedly a 
simplified view of the problem. Predicting the outcome of 
a leaking situation is challenging and relies on the specific 
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models and data involved. Investigations on model com-
parisons under data leakage could be the subject of future 
research.

In conclusion, when the data contains a known clus-
ter structure, it is essential to leverage this information to 
ensure the reliability of model selection and evaluation. On 
the other hand, in cases with an unknown or ignored cluster 
structure, the analytical results reveal a high proportion of 
leakage elements in most situations. This yields a higher risk 
of misleading generalization error estimation and inadequate 
hyperparameter tuning.

Appendix A    Variance of the number 
of leakages in the double‑split situation

Corollary 6 
Proof Mimicking proof of Corollary 2, one finds

W e  k n o w  t h a t  Zi ∼ Hypg.(m;ri, n)  , 
Yi ∣ Zi = 0 ∼ Hypg.(�;ri, n − m)  , 
(Zi, Zj,m − Zi − Zj)

T ∼ Mult.Hypg.(m;ri, rj, n − ri − rj) , and 
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)T = (0, 0,m) ∼ Hypg.(�;r

i
, r

j
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i
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) , by 

Theorem 2 and the third of our list of properties on the mul-
tivariate hypergeometric distribution. One obtains the end 
result via the first and second properties from the latter list 
and some elementary algebra.   ◻
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