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Abstract
This study presents a new approach for predicting water levels of the Odra/Oder river using vector autoregressive models
(VAR).We usewater level time series from 27 gauging stations, onwhichwe interpolate no-data gaps using the LinARmethod
and detect outliers with two separate methods: the extreme values (EV) approach and the isolation forest (IFO) algorithm.
Before removing potential outliers, we propose a hydrological evaluation based on multivariate data analysis. Finally, we
consider three separate data scenarios, i.e. LinAR (no outlier rejection), EV, and IFO. VAR models for six prediction gauges
were built in a moving window manner on the most recent 720 hourly water levels prior to each prediction. The analysis
covered the time range from January 2016 to May 2022 and resulted in ≈ 1,000,000 water level forecasts (3 scenarios x 6
gauges x 55,000 hourly time steps) with lead time of 72 h. The analysis of root mean squared error (RMSE) indicates that the
VAR model performs well, especially for 24-hour predictions, with RMSE values ranging from 8 to 28 cm. The model was
also found to have skills in predicting a rising limb of a hydrograph. Our numerical experiments showed the susceptibility of
the VAR predictions to artefacts. The IFO method was found to detect outliers skilfully, which allowed to produce the most
accurate VAR-based predictions.

Keywords Water level · VAR model · Predictions · Outlier detection · Odra River

1 Introduction

Predicting water levels of rivers has been an essential task of
the hydrological community for the last decades. Forecast-
ing river stages helps to issue flood warnings and supports
water resources management. The increasing exposure to
river flooding observed in the recent decades (Kundzewicz
et al. 2013) highlights the need for accurate water level
forecasts. Most models can be classified into two major
categories: the physically-based and data-based methods
(Beven 2012). The first group of models aims to simulate the
nature of physical phenomena. However, they require vari-
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ous types of hydrological and geomorphological data, such as
river cross-sections, basin topography and geology (Fatichi
et al. 2016). They are also computationally expensive, espe-
cially for medium and large river basins. In turn, data-based
approaches aim to discover relationships or hidden informa-
tion in data, primarily by using information available in the
data itself (Phan and Nguyen 2020). These models are useful
for real-time forecasting because they are often faster and
easier to implement than the physically-based methods.

Autoregressive models (AR) are one of the fundamental
data-based prediction methods. They were first introduced
in hydrology by Box and Jenkins (1970). An AR model
expresses a current value as a finite, linear aggregate of pre-
vious values and some random noise. ARmodels, along with
their numerous variations such as ARMA and ARIMA, have
been widely used in hydrological research (e.g. Abudu et al.
2010; Galavi et al. 2013; Nigam et al. 2014; Sun et al. 2019;
Aghelpour and Varshavian 2020; Pan et al. 2020). However,
becauseof thedynamic and complexnature ofwater flowpro-
cesses, the use of multivariate techniques, such as the vector
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autoregressive model (VAR), can be beneficial in accurately
modelling time series. The performance of the VARmodel in
predicting water flows has been demonstrated in numerous
studies. Niedzielski (2007, 2010) conducted studies on the
upper and middle Odra/Oder river in SW Poland, in which
he examined the potentials of multivariate and univariate
autoregressive methods applied to regional scale rainfall-
runoff modelling. More recently, Niedzielski and Miziński
(2017) presented a hydrological ensemble prediction system
based on a combination of the AR and VAR models, which
was implemented on the Nysa Kłodzka river in SW Poland.
Hartini et al. (2015) used the VARmodel to analyse the rela-
tionship between rainfall and river discharge in Central Java.
Zhao et al. (2019) modeled runoff in the Tuwei River basin in
the middle reach of the Yellow River, and the VAR approach
was used to build a relationship between runoff itself and a
few environmental factors.

Tomake full use of the potential ofVARmodels, one has to
conduct a thorough data analysis and preprocessing. Water
level time series often contain no-data gaps, the presence
of which can have a deleterious influence on hydrological
models and the associated predictions (Harvey et al. 2012).
According to Gao et al. (2018), “gap-free time series are
a necessary prerequisite for many statistical and determin-
istic model approaches in hydrology”. The performance of
autoregressive models can also be strongly deteriorated by
the presence of outliers (Chen and Liu 1993; Nduka 2022),
which can cause strong instability of the predictions. How-
ever, outlier detection and removal should be carried out with
caution (McCuen 2003).

Despite the presence of studies on the use of the VAR
model in hydrology, the potential of multiple time series
approaches has not been examined in depth (Fathian et al.
2019). For instance, Fathian (2021) fitted several VAR
models to daily streamflowdata, and various orders of autore-
gression (5, 9, and 12) have been adopted for rivers located
within the same basin, showing how autoregressive order
may be vulnerable to local factors. In contrast, Jiang et al.
(2023) allowed only very small VAR orders (1 and 2) when
investigating the role of land use and climate change in
contributing to water resources. This shows that selecting
optimal VAR order in hydrological applications remains to
be a challenge. Further, scarcity of research on the topic of
the instability of autoregressivemodels in a situation of noisy
data has recently been pointed out by Li et al. (2023).

In this study, we present the performance of the VAR
model on themiddleOdra/Oder river,with the following nov-
elties: (1) we apply a newly-developed and publishedmethod
for data interpolation (Niedzielski and Halicki 2023), (2) we
investigate two different methods for outlier detection and
introduce a hydrological criterion for outlier evaluation, (3)

we propose an approach to select a fixed VAR order on a
basis of a probability distribution of the orders, and (4) we
conduct an experiment to study the influence of outliers on
the stability of VAR models and, as a consequence, on the
accuracy of water level predictions.

2 Study area and data

The Odra/Oder river basin occupies an area of almost
120,000 km2, 90% of which is located in Poland. In this
study, we consider the upper Odra/Oder and parts of the
middle Odra/Oder basin, with the most downstream outlet
in Słubice (Fig. 1). The Odra/Oder river, as well as most
of its left tributaries, originates in the Sudetes mountains,
with elevations up to 1603 m a.s.l. The flow regime of the
mountain rivers is nival-pluvial, with a significant supply
of meltwater from the snow thawing, while the right trib-
utaries, located mainly on lowlands, are characterized by a
pluvial flow regime, with water supply mainly from rainfall
(Wrzesiński 2017). Hydraulic structures are maintained on
most of the rivers, including the Odra/Oder river upstream
the village ofMalczyce. However, dams, which allow human
controlled interventions to influence flow, are located pre-
dominantly in the upstream part of the basin.

The Odra/Oder river is an important river for the Central
Europe. The basin is the third largest in the Baltic Sea catch-
ment area and is home to over 16 million people (Helcom
2018). Further, it is a transboundary river, having its roots
in Czech Republic and flowing mainly through Poland and
along the Polish-German border. Its modelling is therefore
important not only for Polish citizens. The basin has experi-
enced several floods, including a catastrophic flood in 1997
(Dubicki et al. 1999, 2005) followed by another major flood
in 2010.

In this study, we use hourly water levels from 27 gauges
owned and maintained by the Institute for Meteorology and
Water Management — State Research Institute (IMGW-
PIB). The time span of gauge measurements ranges from
January 2016 to May 2022. Water levels used in this study
are values in centimeters above gauge zeros, which are ref-
erenced to the Kronsztadt’86 vertical datum. Water level
predictions are calculated for six gauges (red triangles on
Fig. 1), located on the middle Odra/Oder river between
Ścinawa and Słubice gauging stations. This river section
is characterized by absence of man-made structures and by
water surface slopes ranging from0.24 to 0.30m/km (Halicki
et al. 2023). Following the approach presented by Niedziel-
ski and Miziński (2017), a corresponding sub-basin (i.e. a
list of contributing gauges) was selected for each prediction
gauge. Considering the most upstream prediction gauge (6),
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Fig. 1 Middle Odra/Oder river
basin. The location of hydraulic
structures is obtained from
Polish Topographic Objects
Database BDOT10k (2024)

there are 15 gauges available in its sub-basin. This number
increases in the downstream direction, with 17, 18, 19, 26,
and 27 gauges available for 5, 4, 3, 2, and 1 prediction gauges,
respectively.

The names of the gauges and rivers, as well as basic water
levels characteristics, are juxtaposed in Table 1. Standard
deviation of water levels on the Odra/Oder river (ranging
from 0.50 to 1.02 m) is significantly higher than the standard
deviation of water level on the tributaries (ranging from 0.12
to 0.48 m). This is probably related to the absolute water
level variation, which ranges from 1.25 m (Jugowice gauge
on the Bystrzyca river) to 6.36 m (Racibórz-Miedonia gauge
on the Odra/Oder river) and, in general, is much higher on
the Odra/Oder gauges.

3 Preprocessing

Three data preprocessing scenarios were proposed in this
study, namely: LinAR, EV, and IFO. The first scenario
refers to the raw data interpolated with the LinAR method

(Section 3.1), while the second and third scenarios refer to
the datasets interpolated with LinAR and analysed for out-
liers with two separate methods (Section 3.2).

3.1 Interpolation

The water level time series used in this paper contain no-
data gaps. Furthermore, the outlier detection described in the
next section results in the removal of some additional water
level measurements. Therefore, we use the LinAR interpo-
lation method (https://github.com/MichalHalicki4/LinAR-
interpolation accessed on 24thMarch 2024) to fill the no-data
gaps. The method combines autoregressive models with lin-
ear interpolation. The main advantage of LinAR is its ability
to reproduce the recent variability of the hydrograph through
AR, while still maintaining the gap trend by incorporating
the linear interpolation. In terms of accuracy LinAR outper-
forms the purely linear method for gaps with lengths up to 12
steps (Niedzielski and Halicki 2023). Following this recom-
mendation, short data gaps (0–12 h) were interpolated using
LinAR, while medium data gaps (13–72 h) were interpolated
using the linear method. Longer gaps were not interpolated.
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Table 1 Characteristics of the
water level gauging stations in
the middle Odra/Oder river
basin

Gauge ID Gauge name River name Water level [m]
min max mean std.

1 Słubice Odra 0.64 4.47 1.85 0.64

2 Biała Góra Odra 0.69 4.38 1.89 0.65

3 Cigacice Odra 0.83 5.13 1.98 0.67

4 Nowa Sól Odra 0.74 5.26 1.95 0.70

5 Głogów Odra 1.21 5.58 2.53 0.71

6 Ścinawa Odra 0.06 5.31 1.48 0.78

7 Jelenia Góra Bóbr 0.63 2.67 0.94 0.16

8 Dobroszów Wielki Bóbr 0.89 3.28 1.71 0.39

9 Osetno Barycz 1.12 3.56 1.87 0.46

10 Jugowice Bystrzyca 0.10 1.35 0.28 0.12

11 Jarnołtów Bystrzyca 0.78 2.89 1.11 0.25

12 Dunino Kaczawa 0.74 3.55 1.04 0.15

13 Mirsk Kwisa 3.22 5.21 3.47 0.16

14 Białobrzezie Ślȩza 0.24 2.92 0.49 0.14

15 Bardo Śla̧skie Nysa Kłodzka 0.40 2.97 0.86 0.22

16 Skorogoszcz Nysa Kłodzka 0.05 3.70 0.68 0.48

17 Przewóz Nysa Łużycka 0.56 2.84 1.07 0.28

18 Chałupki Odra 0.60 5.53 1.26 0.50

19 Racibórz Miedonia Odra 0.78 7.14 1.67 0.76

20 Oława Odra 1.14 7.06 2.30 0.72

21 Brzeg Dolny Odra 0.26 7.24 2.22 1.02

22* Połȩcko Odra 0.12 4.33 1.36 0.69

23* Nietków Odra 0.91 5.16 2.11 0.68

24* Zborowice Oława 1.17 3.28 1.53 0.18

25* Cieszyn Olza 0.01 3.28 0.33 0.23

26* Karłowice (Wapienniki) Stobrawa 1.29 3.10 1.67 0.24

27* Zbytowa Widawa 2.05 3.91 2.58 0.30

* In the article by Niedzielski and Halicki (2023), these gauges were numbered 23, 24, 25, 26, 27 and 28,
since that study also included the Kostrzyn nad Odra̧ gauge (22), which lies outside the basin studied here

3.2 Outlier rejection

Water levels measured by IMGW-PIB are provided in near-
real time on https://danepubliczne.imgw.pl/ accessed on 24th
March 2024. However, these datasets are not preprocessed
and checked for outliers by the data provider (personal com-
munication with IMGW-PIB). There are numerous statistical
methods for detecting outliers in time series, butmost of them
require normal, lognormal or Pearson Type III distribution
(McCuen 2003). According to Sen and Niedzielski (2010),
the empirical distributions of water flow time series in the
Odra/Oder river basin are found to be non-Gaussian.We also
examined the presence of a Pearson Type III distribution in
our dataset, which was found for only a few per cent of the
time series. Therefore, the use of statistical outlier detection
methods does not seem justified for the analysed gauges.

3.2.1 Extreme values

A solution to the problem of data distribution can be found
in the Extreme Values (EV) method (http://www.github.
com/markvanderloo/extremevalues accessed on 24th March
2024) developed by van der Loo (2010). One of the parame-
ters required by EV is the underlying distribution, which can
be chosen among the following options: normal, lognormal,
exponential, Pareto, or Weibull. Next, a data is marked as an
outlier when it is unlikely to be drawn from the estimated
distribution (Method II, see van der Loo 2010 for method
description).We set the the confidence limit (alpha) to 0.001,
and the Flim values (quantile limits indicating which data
should be used to fit the model distribution) to 0.005–0.995.
Finally, only outliers detected in a time series with a R-
squared value of the fit higher than 0.95 are considered. Such
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an approach is applied in a moving window of 240 h. This
size has been calibrated on the basis of the percentage of time
series that have distribution required by the EV method.

3.2.2 Isolation forest

After applying the EV method we noticed that there exist
hydrograph time series, the distributions of which cannot be
approximated by one of the EV-required probability laws.
The IFO method, for which data do not need to follow a spe-
cific distribution, is therefore proposed as a second approach
to detect outliers. IFO is an algorithm based on ensemble
learning, which is made up of a large number of trees that are
called isolation trees (iTree) (Liu et al. 2008). The good per-
formance of this method in detecting outliers in hydrological
data has already been presented by Qin and Lou (2019). One
of disadvantages of the IFO method is that it needs the con-
tamination parameter to be set manually, which determines
the number of outliers detected. In our study, the contamina-
tion parameter is of 0.001.

3.2.3 Hydrological evaluation

In order to reduce the number of false outlier detections,
we propose a hydrological evaluation criterion. It states that
an outlier can only be discarded from the dataset if it has
not occurred in any other upstream gauge in the contribut-
ing sub-basin within a certain time range. In order to apply
the proposed criterion correctly, the following calculations
must be carried out. Firstly, the contributing sub-basin for
each gauge must be defined. Secondly, the along-river dis-
tances between hydrologically connected gauges must be
calculated. Finally, the range of water velocities must be esti-
mated. Herein, we use the method for calculating time lag
between gauges presented by Halicki and Niedzielski (2022)
which, together with distances between the gauges, allows
us to obtain flow velocity. Based on these values, we can
calculate the time interval for each pair using the following
equation:

Tmin = D/Vmax ,

Tmax = D/Vmin,
(1)

where Tmin and Tmax denote the minimum and maximum
time shift values [h], Vmin and Vmax represent the minimum
and maximum water velocities [km/h], and D refers to the
distance between two gauges [km]. Consider an artefact At0
detected at gauge 6 (Głogów) at a given time t0. Assuming a
flow velocity ranging from 1.5 km/h to 3 km/h and a distance
between gauge 6 and the neighbouring gauge 21 (Ścinawa) of
46.5 km, the artefact At0 can be discarded (i.e. no longer con-
sidered an artefact), if an outlier at gauge 21 has been detected

within the time range [t0 − 31h, t0 − 15.5h]. Such outliers
are not treated as artefacts, as these values are hydrologically
connected. This validation is calculated for each gauge-pair
within a sub-basin.

4 VARmodel

For each prediction gauge gp, a multivariate time series of
water levels from contributing gauges gc (see Section 2) is
prepared. Next, each of the time series is differenced and
tested for stationarity (Section 4.1). Later, the gc time series
are tested for cross-correlation with the gp water levels (Sec-
tion 4.2). Only stationary and cross-correlated time series
remain in the dataset that is later used to build theVARmodel
of order p (VAR(p)), which is mathematically described by
the equation:

Yt = a1Yt−1 + · · · + apYt−p + Zt , (2)

where Yt is a random vector at the fixed time t , a j , j =
1, . . . , p denotes the autoregressive coefficient matrices, and
Zt is the multivariate white noise vector with mean m and
covariance matrix C.

The estimation of the optimal length of the time series is
presented in Section 4.3, while the process of determining the
VAR order (p) and checking for the autoregressive structure
is presented in Section 4.4. Conditions under which the VAR
model was fit are juxtaposed in Table 2. Finally, the statistical
measures used to assess the quality of water level predictions
are described in Section 4.5. All calculations were conducted
utilizing Python programming language, with the use of the
statsmodels library implementation of the VAR model.

4.1 Stationarity

To build a VAR model, the input dataset must be station-
ary. This implies that the mean, variance and autocorrelation
structure remain constant over time. Initially, we apply the
first-order differencing to each input time series xt in order
to produce residuals yt , where yt = xt − xt−1. Next,
we apply two tests to check the stationarity of yt , namely
the augmented Dickey-Fuller test (ADF, Dickey and Fuller

Table 2 Characteristics of VAR model estimation

Parameter Value

ADF test significance 0.1

F-test test significance 0.01

Cross-correlation test significance 0.1

Train data size 720 h

VAR order (p) 8
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1979) for stationarity and the F-test for the equality of vari-
ances. These two tests were selected because the ADF test
alone may not always detect non-stationarity, as observed by
Niedzielski and Halicki (2023). The significance level
assumed for the ADF test was of 0.1, while for the F-test
it was 0.01.

4.2 Reduction of the dimension of the VARmodel

Decreasing dimension of the VAR model is advisable
because it reduces noise in data (signal which does not con-
vey meaningful information produces noise) and to make
the computations more efficient (dimension of autoregres-
sive matrix should be as small as possible to facilitate matrix
inversion). For instance, Davis et al. (2016) claim that not
only large but even moderate model dimensions can lead to
noisy estimates and unstable predictions. Also, Wang et al.
(2022) accentuate that if a number of univarite time series in
mutivariate data as well as lag order are moderately large, the
model has too many parameters. In addition, solving multi-
variate regression models often employs inverting matrices
(Kastner and Huber 2020), and thus when the model dimen-
sion is large it brings computational burden.

To reduce model dimension, m − 1 (where m is an initial
model dimension) pairs of time series corresponding to two
gauges are analysed using cross-correlation. We build m − 1
pairs, each between a given prediction gauge and a contribut-
ing gauge (out of m − 1 contributing gauges). For lags up
to ±14, cross-correlations are computed for every pair, and
5% confidence intervals are calculated. Subsequently, if at
least one cross-correlation value falls outside the confidence
bands, there exists a statistically significant dependency
between the two datasets, and therefore model dimension
remains unchanged (the contributing gauge remains present
in a multivariate time series). In contrast, a given univari-
ate time series corresponding to a contributing gauge can be
excluded (decreasing dimension of input multivariate time
series by 1) if cross-correlation values for the given pair fall
into the corresponding confidence intervals.

4.3 Selecting the optimal moving window size for
the VARmodel training

To build VARmodels for forecasting, there exist two general
approaches. The first one involves dividing the dataset into
training and test datasets (e.g. Phan and Nguyen 2020), often
with 80% for training and 20% for testing. This means that
the model is created once on a large amount of data and then
applied to a given prediction scenario. The second approach
involves constructing a separate model for each prediction
(e.g. Alberg and Last 2018; Niedzielski 2007; Niedzielski

and Miziński 2017). The model is built on a time series
extracted utilizing amovingwindow, using a specific number
of recent observations. Thus, the model can infer the most
up-to-date variability of the time series.

In this study, the second approach is used. The optimal
number of observations for model estimation was determined
based on the results of the stationarity test and cross-correlation
analysis. Several time series lengths were tested, including
120, 240, 480, and 720 h. Finally, a length of 720 h was
chosen. This provides sufficient information to build theVAR
model and allows for the inclusion of a considerable number
of stationary and cross-correlated time series in the model.

4.4 Check for autoregressive structure andVAR
order selection

The selection of the VAR order p is based on the following
criteria: Akaike Information Criterion (AIC, Akaike 1970),
Bayesian Information Criterion (BIC, Schwarz 1978), Final
Prediction Error (FPE,Akaike 1974), andHannah-Quinn cri-
terion (HQIC,Hannah andQuin 1979). For eachVARmodel,
we determined four orders based on the criteria described
above.We then selected the order chosen by the highest num-
ber of criteria. If there were multiple orders with the same
number of selections, we selected the order based on the AIC
criterion.

Figure 2a shows the distribution of VAR model orders
obtained from the six prediction gauges within the study time
range. The distribution exhibits a clear bimodal pattern, with
modes at p = 4 and p = 8. To determine the optimal value
of p, we analysed the accuracy of two models: VAR(4) and
VAR(8). The quality assessment procedure was performed
on the LinAR time series, following the procedure descrip-
tion presented in Section 4.5. VAR(8) outperformed VAR(4)
on the prediction gauges no. 3, 4, 5, and 6, while VAR(4)
showed better accuracy only on the prediction gauges no. 1
and 2,where the performancewas clearly affected by a highly
deviating prediction (Fig. 2b). Therefore, the VAR order of
8 has been selected and applied in the entire analysis.

To assess the quality of the VAR models, we inspected
autocorrelation function of model residuals (Baran and
Bacanli 2006), i.e. differences between residuals yt and the
VARmodel fitted to yt . Based on models built for each week
and each prediction gauge (≈2000 models) we observe, that
the autocorrelation and cross-correlation of the VAR model
residuals are low and predominantly do not fall outside con-
fidence bands. We can therefore claim that the structure of
the autoregressivemodels is suitable to describe the residuals
yt . The coefficients of the best fitted model are presented in
Table A1 in the Appendix.
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Fig. 2 VAR order selection: (a)
VAR order occurrences, (b)
accuracy comparison between
VAR predictions with order of 4
and 8

4.5 Accuracy assessment statistics

The assessment of the VAR predictions accuracy has been
conducted for water level forecasts of length l, for l =
1, . . . , 72. For each l, a time series of water levels predicted
for the l-th hour is compared to the corresponding observed
values. Each of the time series covers almost the entire time
range of the dataset (January 2016 – May 2022), excluding
the first 30 days used for estimation of the first VAR model.
On average, this gives a total of 55,000 observations for each
prediction gauge. Two groups of measures were used to char-
acterize the hydrograph predictions quantitatively, including
prediction error statistics as well as prediction performance
measures.

The prediction error statistics are calculated to measure
how the VAR predictions depart from observed water levels.
In this study, we use the mean absolute error (MAE), and the
root mean squared error (RMSE), which can be described as:

MAE =
n∑

i=1

|Pt − Ot |
n

, (3)

RMSE =
√√√√

n∑

i=1

(Pt − Ot )2

n
, (4)

where Pt is the VAR prediction at time t , Ot is the observed
water level at time t , and n is the sample size.

The prediction performance measures include the Nash-
Sutcliffe efficiency (NSE, Nash and Sutcliffe 1970), and the
index of agreement (d-index, Willmott 1981). Both statistics
have beenwell-described in the context of hydrologic studies
by Krause et al. (2005). The NSE and d-index are defined by
the following expressions:

NSE = 1 −
∑n

i=1 (Pt − Ot )
2

∑n
i=1 (Ot − Ō)2

, (5)

d-index = 1 −
∑n

i=1 (Pt − Ot )
2

∑n
i=1 (|Pt − Ō| + |Ot − Ō|)2 , (6)

where Ō is the mean observed water level. The NSE val-
ues range between −∞ and 1. If the model-based prediction
and the observed water levels agree in amplitude, phase and
mean, NSE is approximately equal to 1. NSE values of 0
mean that the water level prediction has skills similar to the
extrapolation of average computed from the observed data.
Negative NSE values indicate that averaging data is even a
better approach for predicting water level than employing the
model. The d-index represents the ratio of the mean square
error to the potential error. The values of the d-index range
from 0 (no correlation) to 1 (perfect fit).
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5 Results

5.1 Outlier rejection

The numbers of outliers detected are presented in Fig. 3.
Considering the EV method, the numbers vary from 322
(gauge 8) to 4 (gauges 10, 14, and 27). The strong variability
can be related to the underlying distribution of data which,
especially in mountain rivers, did not follow the distributions
included in the EVmethod. On the contrary, the IFO method
showed a similar number of outliers in each gauge (from51 to
58), which is a result of applying the contamination parame-
ter. Both graphs clearly show that the hydrological evaluation
allowed to reduce the number of outliers, especially at the
Odra/Oder gauging stations with numerous gauges in their
contributing sub-basin. For upstreamgaugeswith fewor even
no gauges in the sub-basins, the impact of evaluating outliers
in hydrologically-related gauges was low (see Section 3.2.3
for method description). However, the most important out-
lier reduction had to be performed on the prediction gauges
(1–6). This is because these values are used for validation of
VAR predictions and their removal could lead to the omis-
sion of real flood signals, which would significantly reduce
the reliability of the obtained accuracy.

5.2 Accuracy of VAR predictions

The accuracy (in terms ofRMSE andNSE) of theVAR-based
water level predictions for selected prognosis lengths is pre-
sented in Table 3. The corresponding values of MAE and
d-index are presented in TableA2 in theAppendix. The accu-
racy statistics obtained following the LinAR, EV and IFO
scenarios reveal very similar skills for most of the gauges.
Considerable discrepancies occur only for gauge 2, where
the accuracy of the LinAR scenario is significantly worse
than the accuracy of the EV and IFO scenarios.

The relationship between the prediction accuracy and the
prognosis length is also shown in Fig. 4. For the sake of
brevity, only LinAR and IFO scenarios are presented, since
EV and IFO reveal very similar skills. As can be seen for each
gauge and each statistical measure, the accuracy decreases
along with the prediction length. When excluding the values
clearly influenced by a highly deviating prognosis (shown
with arrows on Fig. 4), for the 72-hour predictions the RMSE
values range from 19 cm to 43 cm (Fig. 4a), the MAE values
range from 13 cm to 31 cm (Fig. 4b), the d-index values range
from 0.92 to 0.98 (Fig. 4c), and the NSE values range from
0.69 to 0.92 (Fig. 4d).

Fig. 3 Number of outliers detected and rejected hydrologically in water level time series using the (a) Extreme Values and (b) Isolation Forests
method
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Table 3 Accuracy of VAR
water level predictions in terms
of RMSE and NSE for selected
prediction lengths

Gauge Prognosis RMSE [cm] NSE
ID length [h] LinAR EV IFO LinAR EV IFO

1 6 2.09 2.09 2.09 1.00 1.00 1.00

12 4.03 4.02 4.03 1.00 1.00 1.00

24 7.57 7.57 7.57 0.99 0.99 0.99

48 20.73 20.72 20.71 0.90 0.90 0.90

72 91.64 91.25 91.40 -1.02 -1.00 -1.01

2 6 2.51 2.40 2.40 1.00 1.00 1.00

12 5.11 4.96 4.96 0.99 0.99 0.99

24 12.75 8.62 8.63 0.96 0.98 0.98

48 923.36 14.23 14.22 -198.62 0.95 0.95

72 87,855.22 19.15 19.15 -1,806,613.44 0.91 0.91

3 6 1.78 1.78 1.78 1.00 1.00 1.00

12 4.28 4.28 4.28 1.00 1.00 1.00

24 9.87 9.86 9.85 0.98 0.98 0.98

48 18.97 18.97 18.92 0.92 0.92 0.92

72 26.14 26.12 26.05 0.85 0.85 0.85

4 6 2.21 2.21 2.21 1.00 1.00 1.00

12 5.60 5.61 5.61 0.99 0.99 0.99

24 12.84 12.84 12.83 0.97 0.97 0.97

48 22.60 22.59 22.50 0.90 0.90 0.90

72 28.99 28.97 28.83 0.83 0.83 0.83

5 6 3.66 3.66 3.65 1.00 1.00 1.00

12 9.04 9.03 9.02 0.98 0.98 0.98

24 17.55 17.54 17.50 0.94 0.94 0.94

48 25.83 25.81 25.70 0.86 0.86 0.86

72 31.86 31.84 31.74 0.79 0.79 0.79

6 6 9.79 9.73 9.67 0.98 0.98 0.98

12 19.28 19.14 19.09 0.94 0.94 0.94

24 27.97 27.79 27.84 0.87 0.87 0.87

48 36.43 36.27 36.30 0.78 0.78 0.78

72 43.03 42.90 42.89 0.69 0.69 0.69

The underperformance of the LinAR scenario on gauge
2 is due to a single water level forecast with a large devi-
ation, which has a major impact on all the statistics shown
in Fig. 4 and Table 3. It was caused by the presence of an
evident outlier on gauge 2, with one value departing from
the neighbouring water levels by ≈ 0.5 m (Fig 5c). This
unrealistic jump in the hydrograph resulted in an unstable
VAR prediction revealing a harmonic-like regular variabil-
ity, with unrealistic water levels ranging from −200,000 m
to 170,000 m. Both outlier detection methods removed the
evident artefact and prevented the generation of strongly
deviating predictions (Fig. 5a,b).

On gauge 1, a similar case was observed where the accu-
racy was affected by one highly deviating prediction with
future water levels reaching up to 100 m. However, this pre-

diction was not caused by any outlier in the dataset, and
therefore all three scenarios produced similar errors. If this
prediction is excluded from the analysis, the VAR predic-
tions on gauge 1 would outperform the predictions on all
other gauges.

To study the VAR prediction performance during various
water levels, we divided the dataset into high (water level >
gauge mean + gauge std.), low (water level < gauge mean
− gauge std.), and mean water level (between high and low).
For the sake of brevity we consider only the IFO scenario
and present such analysis for 12-hour and 24-hour predic-
tions (Table 4). The VAR predictions for upstream gauges
were more accurate during high water (gauge 5, 6), while
for downstream gauges, lower errors were observed at low
water (gauge 1, 2, 3). However, the differences were small
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Fig. 4 Accuracy of VAR predictions for the IFO and LinAR scenarios

and did not exceed 4 cm. Notably, the worst performance
during mean water levels was observed in 8 out of 12 cases
(Table 4).

5.3 Prediction of rising limb

To assess the performance of the VAR model during peak
flow, we selected a period for each prediction gauge that had
the largest daily mean difference between consecutive mea-
surements (Fig. 6). Since the prediction error increases for
longer forecasts, here we show only the 12-hour and 24-hour
predictions. In general, a much better performance can be
observed on the downstream gauges, especially for gauge 1
and 2 (Fig. 6a,b). The upstream gauges, in turn, revealed the
poorest accuracy and agreement with the observed water lev-
els (Fig. 6e,f). For all gauges, the VARmodel underestimated
the forthcoming water levels at the beginning of the rising
limb, while near the crest, most water levels were overesti-
mated, particularly on gauges 2, 3, and 6 (Fig. 6b,c,f). In all
cases the RMSE of the 12-hour predictions was significantly
lower than that of the 24-hour predictions. This was particu-
larly evident for gauges 1-4, where the RMSE did not exceed

10 cm and was 2-3 times smaller than the RMSE of the 24-
hour predictions. In certain cases the VAR model showed
significant instability in consecutive predictions, both during
the rising limb (Fig. 6b) and during the falling limb (Fig.
6e,f).

5.4 Outlier experiment

The VAR model has proven to be prone to evident outliers,
which can lead to the generation of highly deviating pre-
dictions (gauge 2, Fig. 5). To analyse this problem on the
remaining prediction gauges,we conducted an experiment, in
which we inserted an artificial outlier into the gauge dataset.
After randomly selecting a date for all prediction gauges,
we increased one water level by the value of one standard
deviation (Table 1). We then applied the EV and IFO outlier
detection method and calculated water level predictions for
the EV, IFO and LinAR datasets.

Water levels predicted without outlier detection (LinAR)
did not fit into the observed data. For four of the five gauges
studied, the prediction revealed a harmonic-like nature with
increasing amplitudes, leading to deviations of 5, 10, 20, and
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Fig. 5 The impact of an outlier on the VAR predictions

even 10,000 m (Fig. 7a,e,g,i). Also the prediction at gauge 3,
although not of harmonic nature, deviated strongly from the
observed data with an error of ≈ 3 m (Fig. 7c).

In most cases, both the IFO and EV methods successfully
detected the artificial outliers, resulting in good forecasts
in the aftermath of outlier removal, especially for the first
hours into the future (Fig. 7b,d,f,h). An interesting situation
occurred on gauge 6, where the outlier was only detected by
the IFO method (Fig. 7j). The EV method failed to detect
the artefact, because the time series did not follow any of
the distributions available in EV. Therefore, the water level

prediction in this scenario was the same as in the LinAR sce-
nario and differed from the observed water levels by more
than 10,000 m.

6 Discussion

The results presented inFig. 2 showsuperiority of theVAR(8)
model over the VAR(4) model for the gauges studied. The
river regime is nival-pluvial with a strong snowmelt supply
to the baseflow, which can be well modelled by the Mov-

Table 4 Accuracy of VAR
water level predictions for high,
mean and low water levels

Gauge 12-hour prediction RMSE [cm] 24-hour prediction RMSE [cm]
high water mean water low water high water mean water low water

1 3.83 4.19 3.62 9.42 7.36 6.12

2 5.10 5.20 3.88 8.94 9.01 6.81

3 4.17 4.40 3.79 10.40 9.94 8.93

4 4.84 5.83 5.31 12.21 13.22 11.81

5 7.82 9.22 9.18 16.27 17.67 17.78

6 17.22 19.10 20.49 27.55 27.92 27.69
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Fig. 6 12-hour and 24-hour
predictions of rising limb (IFO
scenario)

ing Average process in the VARMA (Vector Autoregressive
Moving Average) models. According to Athanasopoulos and
Vahid (2008), any invertible VARMAprocess can be approx-
imated by a finite long order VAR, therefore our approach
(VAR(8)) can be justified. However, the long-order VAR
model may contain more noise due to the large number
of coefficients. Future studies could consider analysing the
performance of the VARMAmodel for rivers with the nival-
pluvial regime.

The accuracy of water level predictions using autoregres-
sive models has been studied on multiple rivers. In a study
by Galavi et al. (2013) on the Klang River in Malaysia, the

ARIMAmodel was employed to obtain a 1-day forecast with
a NSE of 0.906. In our study, the 24-hour predictions also
yielded high NSE values (0.99, 0.98, 0.98, 0.97, 0.94, and
0.87 for gauges 1–6, Table 3). Phan and Nguyen (2020) used
the ARIMA model to predict water levels on the Red River
in Vietnam. The accuracy of the predictions was verified for
different prediction lengths, ranging from 6 hours to 5 days.
The RMSE of the 24-hour predictions ranged from 20 to 31
cm, which is of the same order as the accuracies obtained in
our study (8 to 28 cm, Table 3). Niedzielski (2007) utilised
theVARmodel to predict water levels on theOdra/Oder river.
The study found that the accuracy of forecasts improves as
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Fig. 7 Performance of VAR
model (following the LinAR,
EV, and IFO scenarios) on data
with an evident outlier

the distance from the river headwaters increases. This may
be due to the increasing amount of explanatory information
available in the sub-basin. In our study we observed a sim-
ilar relationship when excluding gauge 1 from the analysis,
the accuracy of which is affected by one strongly deviating
forecast.

The effectiveness of autoregressive models in predicting
the rising limb of a hydrograph is not unequivocal. Accord-
ing to Niedzielski and Miziński (2017), the VAR model is
particularly effective in forecasting a rising limb on the Nysa
Kłodzka river. However, Phan and Nguyen (2020) argue that

the ARIMAmodel “failed to forecast the peak and could not
capture the data trend”. Other studies on the Odra/Oder river
have reported similar findings. Gouweleeuw et al. (2005)
utilised an ensemble prediction system to forecast a flood
event in 1997 and found, that the peak was underestimated,
even after the start of the flood. Niedzielski (2010) found that
theVARmodel enables to compute accurate predictions at the
very beginning phase of peak flows. However, the prediction
of maximum discharge is found to be less accurate, or even
inaccurate at all. In our study, theVARmodel performedwell
for 24-hour predictions of the rising limb, particularly for the
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downstream gauges. However, most predictions underesti-
mated the maximum peak. Only a few predictions calculated
shortly before the peak flow overestimated the highest water
level.

The maximum length of forecasts, for which autoregres-
sive models reveal satisfactory accuracies, is most often
recognised as one day (e.g. Galavi et al. 2013; Nigam et al.
2014). The good performance of single models (including
autoregressive models) for short predictions are also noticed
by Sun et al. (2019). The authors observed, that such mod-
els outperform hybrid models within the first 24 hours. Pan
et al. (2020) claim that predictions longer than 5 days are not
efficient. In our study, a similar relationship between accu-
racy and forecast lengthwas observed.However, the decrease
is more rapid for predictions of upstream gauges than for
downstream gauges (Fig. 4). As a result, the optimum length
threshold for gauge 6 would be significantly lower than that
for gauge 1.

The presence of outliers can strongly affect the accuracy
of autoregressive models (e.g Nigam et al. 2014; Nduka
2022). According to Chen and Liu (1993), outliers occurring
at the forecast origin have the greatest impact on predic-
tions. The same conclusion can be drawn from Fig. 5 – only
the predictions which start just after the outlier occurrence
deviate greatly from the observations. The latter predictions
are in good agreement with the true water levels and do
not seem to be biased by the outlier. The negative impact
of outliers on autoregressive models can also be reduced
by smoothing. Niedzielski (2010) increased the accuracy of
VAR-based predictions of the rising limb by applying a finite
impulse response filter, which removes insignificant irreg-
ularities and emphasizes the flood wave signal. Pan et al.
(2020) also employed smoothing techniques in the prepro-
cessing of hydrograph data to produce water level forecasts.
However, it should be noted that smoothing techniques can-
not entirely solve the problem of outliers, particularly when
they deviate significantly from the neighbouring water lev-
els. Our approach to detecting artefacts and filtering them
hydrologically not only increases prediction accuracy but
also provides a careful procedure for removing such values.
This prevents the omission of real data when building and
validating VAR models in hydrology.

7 Conclusion

Autoregressive models have been widely used in hydrology
over a few past decades. However, the instability of predic-
tions in situations of data contamination remains a challenge.
In this study we produced 72-hour VAR-based predictions of
water levels on 6 gauges located on the middle Odra/Oder

river. We used the newly-published LinAR method for no-
data gap interpolation and, in addition, utilised two separate
methods for outlier detection: EV and IFO. We propose
a hydrological outlier evaluation criterion that reduces the
number of detected outliers by removing (i.e.marking as non-
outliers) those that are hydrologically connected. Finally, we
evaluated the accuracy of VAR-based predictions of differ-
ent lengths, assessed the quality of forecasting the rising
limb, and examined the VAR model performance on data
with artificial outliers. This study provides new data about
the possibilities of predicting water levels in the Odra/Oder,
which is a transboundary, flood-prone river. Further, we have
clearly shown the influence of artificial outliers on the VAR
model and studied two separate methods to handle artifacts.
The following conclusions can be drawn:

• Water level predictions for the downstream gauges reveal
better skills than predictions for upstream gauges.

• Applying outlier rejection improved the accuracy of pre-
dictions, especially for gauges with evident outliers.

• The VAR model showed satisfactory skills in predicting
the rising limb.However, better accuracieswere observed
for downstream gauges.

• Artificial outliers caused instability of VAR-based pre-
dictions.

• IFO method correctly detected all artificial outliers, sig-
nificantly improving the quality of water level forecasts.

• Future studies could consider using the VARMA model
as theMovingAverage componentmay effectivelymodel
the snowmelt-supplied baseflow.
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