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Abstract
We introduce the modified planar rotator method (MPRS), a physically inspired machine learning method for spatial/temporal 
regression. MPRS is a non-parametric model which incorporates spatial or temporal correlations via short-range, distance-
dependent “interactions” without assuming a specific form for the underlying probability distribution. Predictions are obtained 
by means of a fully autonomous learning algorithm which employs equilibrium conditional Monte Carlo simulations. MPRS 
is able to handle scattered data and arbitrary spatial dimensions. We report tests on various synthetic and real-word data in 
one, two and three dimensions which demonstrate that the MPRS prediction performance (without hyperparameter tuning) 
is competitive with standard interpolation methods such as ordinary kriging and inverse distance weighting. MPRS is a par-
ticularly effective gap-filling method for rough and non-Gaussian data (e.g., daily precipitation time series). MPRS shows 
superior computational efficiency and scalability for large samples. Massive datasets involving millions of nodes can be 
processed in a few seconds on a standard personal computer. We also present evidence that MPRS, by avoiding the Gaussian 
assumption, provides more reliable prediction intervals than kriging for highly skewed distributions.

Keywords Machine learning · Interpolation · Time series · Scattered data · Non-Gaussian model · Precipitation · 
Autonomous algorithm

1 Introduction

The spatial prediction (interpolation) problem arises in vari-
ous fields of science and engineering that study spatially 
distributed variables. In the case of scattered data, filling 
gaps facilitates understanding of the spatial features, visu-
alization of the observed process, and it is also necessary to 
obtain fully populated grids of spatially dependent param-
eters used in partial differential equations. Spatial prediction 
is highly relevant to many disciplines, such as environmental 

mapping, risk assessment (Christakos 2012) and environ-
mental health studies (Christakos and Hristopulos 2013), 
subsurface hydrology (Kitanidis 1997; Rubin 2003), min-
ing (Goovaerts 1997), and oil reserves estimation  (Hohn 
1988; Hamzehpour and Sahimi 2006). In addition, remote 
sensing images often include gaps with missing data (e.g., 
clouds, snow, heavy precipitation, ground vegetation cover-
age, etc.) that need to be filled (Rossi et al. 1994). Spatial 
prediction is also useful in image analysis (Winkler 2003; 
Gui and Wei 2004) and signal processing (Unser and Blu 
2005; Ramani and Unser 2006) including medical applica-
tions (Parrott et al. 1993; Cao and Worsley 2001).

Spatial interpolation methods in the literature include 
simple deterministic approaches, such as inverse dis-
tance weighting  (Shepard 1968) and minimum curva-
ture (Sandwell 1987), as well as the widely-used family of 
kriging estimators (Cressie 1990). The latter are stochastic 
methods, with their popularity being due to favorable sta-
tistical properties (optimality, linearity, and unbiasedness 
under ideal conditions). Thus, kriging usually outperforms 
other interpolation methods in prediction accuracy. How-
ever, the computational complexity of kriging increases 
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cubically with the sample size and thus becomes impractical 
or infeasible for large datasets. On the other hand, massive 
data are now ubiquitous due to modern sensing technologies 
such as radars, satellites, and lidar.

To improve computational efficiency, traditional meth-
ods can be modified leading to tolerable loss of prediction 
performance (Cressie and Johannesson 2018; Furrer et al. 
2006; Ingram et al. 2008; Kaufman et al. 2008; Marcotte and 
Allard 2018; Zhong et al. 2016). With new developments 
in hardware architecture, another possibility is provided by 
parallel implementations using already rather affordable 
multi-core CPU and GPU hardware architectures (Cheng 
2013; de Ravé et al. 2014; Hu and Shu 2015; Pesquer et al. 
2011). A third option is to propose new prediction methods 
that are inherently computationally efficient.

One such approach employs Boltzmann-Gibbs random 
fields to model spatial correlations by means of short-range 
“interactions” instead of the empirical variogram (or covari-
ance) function used in geostatistics (Hristopulos 2003; Hris-
topulos and Elogne 2007; Hristopulos 2015). This approach 
was later extended to non-Gaussian gridded data by using 
classical spin models (Žukovič and Hristopulos 2009a, b, 
2013, 2018; Žukovič et al. 2020). The latter were shown 
to be computationally efficient and competitive in terms of 
prediction performance with respect to several other inter-
polation methods. Moreover, their ability to operate without 
user intervention makes them ideal candidates for automated 
processing of large datasets on regular spatial grids, typical 
in remote sensing. Furthermore, the short-range (nearest-
neighbor) interactions between the variables allows paral-
lelization and thus further increase in computational effi-
ciency. For example, a GPU implementation of the modified 
planar rotator (MPR) model led to impressive speed-ups (up 
to almost 500 times on large grids), compared to single CPU 
calculations (Žukovič et al. 2020).

The MPR method is limited to 2D grids, and its exten-
sion to scattered data is not straightforward. In the present 
paper we propose the modified planar rotator for scattered 
data (MPRS). The MPRS method is non-parametric in the 
sense that it does not require any assumption for the under-
lying probability distribution. This new machine learning 
method can be used for scattered or gridded data in spaces 
with different dimensions. MPRS achieves even higher com-
putational efficiency than MPR due to full vectorization of 
the algorithm. This new approach does not rely on a par-
ticular structure or dimension of the data location grid; it 
only needs the distances between each prediction point and 
a predefined number of samples in its neighborhood. This 
feature makes MPRS applicable to scattered data in arbitrary 
dimensions.

2  The MPRS Model

The MPRS model exploits an idea initially used in the modi-
fied planar rotator (MPR) model (Žukovič and Hristopu-
los 2018). The latter was introduced for filling data gaps 
of continuously-valued variables distributed on 2D rectan-
gular grids. The key idea is to map the data to continuous 
“spins” (i.e., variables defined in the interval [−1, 1] ), and 
then construct a model of spatial dependence by imposing 
interactions between spins. MPRS models such interactions 
even between scattered data and is thus applicable to both 
structured and unstructured (scattered) data over domains 
D ⊂ ℝ

d where d is any integer.

2.1  Model definition

Let s denote a spatial location inside the domain of interest. 
A random field Z(s;�) ∶ ℝ

d × Ω → ℝ is defined over a com-
plete probability space (Ω,F,P) , where Ω is the sample 
space, F  is the event space (i.e., space of events comprising 
set of states in Ω ), and P is the probability function which 
assigns a number between 0 and 1 to each event in F  . 
Finally, the state index � selects a specific state from Ω . 
Assume that the data are sampled at points Gs = {si ∈ ℝ

d}N
i=1

 
from the field Z(s;�) . The dataset is denoted by 
Zs = {zi ∈ ℝ}N

i=1
 , and the set of prediction points by 

Gp = {sp ∈ ℝ
d}P

p=1
 so that Gs ∪ Gp = G , Gs ∩ Gp = � (i.e., 

the sampling and prediction sets are disjoint), and 
P + N = NG . The random field values at the prediction sites 
will be denoted by the set Zp.

A Boltzmann-Gibbs probability density function (PDF) 
can be defined for the configuration z(s) sampled over 
Gs ⊂ ℝ

d . The PDF is governed by the Hamiltonian (energy 
functional) H(zGs

) and is given by the exponential form

where zGs
≜ {z(s) ∶ s ∈ Gs} is the set of data values at the 

sampling points, and Z is a normalizing constant (known as 
the partition function). In statistical physics, T is the ther-
modynamic temperature and kB is the Boltzmann constant. 
In the case of the MPRS model, the product kBT  represents 
a model parameter that controls the variance of the field.

A local-interaction Hamiltonian can in general be 
expressed as

where Ji,j is a location-dependent pair-coupling function 
and Φ(zi, zj) is a nonlinear function of the interacting values 
zi, zj . The notation ⟨⋅⟩ implies a spatial averages defined by 
means of

(1)fZ(zGs
) = Z

−1 exp{−H(zGs
)∕kBT},

(2)H = − ⟨Ji,j Φ(zi, zj)⟩,
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where Ai,j is a two-point function, and neighb(i) denotes all 
nb sampling points in the interaction neighborhood of the 
i-th point.

To define the local interactions in the MPRS model, 
the original data zi are mapped to continuously-valued 
“spin” variables represented by angles �i using the linear 
transformation

where zs,min = mini∈{1,2,…,N} Zs , zs,max = maxi∈{1,2,…,N} Zs , 
and �i ∈ [0, 2�] , for i = 1,… ,N  . The MPRS pairwise 
energy is given by the equation

In order to fully determine interactions between scattered 
data, the coupling function Ji,j needs to be defined. It is 
reasonable to assume that the strength of the interactions 
diminishes with increasing distance. Hence, we adopt an 
exponential decay of the interactions between two points i 
and j, i.e.,

In the coupling function (6), the constant J0 defines the 
maximum intensity of the interactions, ri,j = ‖si − sj‖ is the 

(3)⟨Ai,j⟩ ≜
�

i

�

j∈neighb(i)

Ai,j

(4)zi ↦ �i =
2�(zi − zs,min)

zs,max − zs,min

, for zi ∈ Zs,

(5)Φi,j = cos�i,j, where �i,j = (�i − �j)∕2.

(6)Ji,j = J0 exp(−ri,j∕bi).

pair distance, and the locally adaptive bandwidth param-
eter bi is specific to each prediction point and reflects the 
sampling configuration in the neighborhood of the point si . 
Note that although the coupling function decays smoothly, 
the energy (2) embodies interactions only between points 
that are inside the specified neighborhood of each point si.

The interactions in the MPRS model are schematically 
illustrated and compared with the MPR interactions in 
Fig. 1. The diagram clarifies how the MPRS method extends 
the coupling to scattered datasets.

In MPRS, regression is accomplished by means of a con-
ditional simulation approach which is described below. To 
predict the value of the field at the points in Gp , the energy 
function (2) is extended to include the prediction points, i.e., 
we use H(zG) = H(zGs

∪ zGp
) . In H(zG) we restrict interac-

tions between each prediction point and its sample neighbors 
(i.e., we neglect interactions between prediction points) in 
order to allow vectorization of the algorithm which enhances 
computational performance. In practice, omitting prediction-
point interactions does not impact significantly the predic-
tion.1 Then, the Hamiltonian comprises two parts: one that 
involves only sample-to-sample interactions and one that 
involves interactions of the prediction points with the 
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Fig. 1  Schematic illustration of the interactions of ith prediction 
point with a its four nearest neighbors (including sampling and pre-
diction points) via the constant interaction parameter J in MPR and 
b its nb = 8 nearest neighbor (only sampling) points via the mutual 

distance-dependent interaction parameter Ji,j in MPRS. Blue open and 
red filled circles denote sampling and prediction points, respectively, 
and the solid lines represent the bonds

1 This observation is based on the comparison with the prediction 
performance of the original MRR method (Žukovič and Hristopulos 
2018), which is designed to operate on gridded data and which con-
siders both prediction-sample and prediction-prediction point interac-
tions. Our tests on gridded data indicated that the prediction perfor-
mance of the two methods are comparable.
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samples in their respective neighborhood. Since the sample 
values are fixed, the first part contributes an additive con-
stant, while the important (for predictive purposes) contribu-
tion comes from the second part of the the energy. The latter 
represents a summation of the contributions from all P pre-
diction points.

The optimal values of the spin angles �p at sp ∈ Gp can 
then be determined by finding the configurations which max-
imize the Boltzmann-Gibbs PDF (1), where the energy is 
now replaced with H(zG) . If T = 0 , the PDF is maximized by 
the configuration which minimizes the total energy H(zG) , 
i.e.,

However, for T ≠ 0 , there can exist many configurations 
{�p}

P
p=1

 that lead to the same energy H(zG) = E . Assuming 
that Ω(E) is the total number of configurations with energy 
E ,  the  probabi l i ty  P (E )  of  obser ving E  i s 
P(E) ∝ Ω(E) exp

[
−H(zG)∕kBT

]
 . Equivalently, we can write 

this as follows

Taking into account that S(E) = kB logΩ(E) is the 
entropy that corresponds to the energy E, the expo-
nent of  (8) becomes proportional to the free energy: 
F(E) = H(zG) − T S(E) . Thus, for T ≠ 0 an “optimal con-
figuration” is obtained by means of

The minimum free energy corresponds to the thermal equi-
librium state. In practice, the latter can be achieved in the 
long-time limit by constructing a sequence (Markov chain) 
of states using one of the legitimate updating rules, such as 
the Metropolis algorithm (Metropolis et al. 1953), as shown 
in Sect. 2.3.

Finally, the MPRS prediction at the sites sp ∈ Gp is for-
mulated by inverting the linear transform (4), i.e.,

The MPRS model is fully defined in terms of the 
equations (1)–(10).

2.2  Setting the MPRS Model Parameters 
and Hyperparameters

The MPRS learning process involves the model param-
eters and a number of hyperparameters which control 
the approach of the model to an equilibrium probability 

(7)�̂�p = argmin
𝜙p

H(zG), p = 1,… ,P.

(8)P(E) ∝ e
−

1

kBT
[H(zG)−kBT logΩ(E)]

.

(9)�̂�p = argmin
𝜙p

[
H(zG) − T S(E)

]
, p = 1,… ,P.

(10)ẑp =
(
zs,max − zs,min

) �̂�p

2𝜋
+ zs,min, for p = 1,… ,P.

distribution. The model parameters include the number of 
interacting neighbors per point, nb , the decay rate vector 
b = (b1,… , bP)

⊤ used in the exponential coupling func-
tion (6), the prefactor J0 , and the simulation temperature T; 
the ratio of the latter two sets the interaction scale via the 
reduced coupling parameter J0∕kBT  . Thus, in the following 
we refer to the “simulation temperature” (T) as shorthand for 
the dimensionless ratio kBT∕J0 . In addition, henceforward 
energy functions H are calculated with J0 = 1.

Model parameters are typically updated during the train-
ing process. However, in order to optimize computational 
performance, after experimentation with various datasets, 
we set the model parameters to reasonable default values, 
i.e., nb = 8 (for all prediction points) and T = 10−3 ; the decay 
rates {bp}Pp=1 are estimated as the median distance between 
the p-th prediction point and its four nearest sample neigh-
bors. These choices are supported by (i) the expectation of 
increased spatial continuity for low T and (ii) experience 
with the MPR method. In particular, MPR tends to perform 
better at very low T (i.e., for T ≈ 10−3 ). In addition, using 
higher-order neighbor interactions ( nb = 8 neighbors, i.e., 
nearest- and second-nearest neighbors on the square grid) 
improves the smoothness of the regression surface. The defi-
nition of the decay rate vector b enables it to adapt to poten-
tially uneven spatial distribution of samples around predic-
tion points.

Our exploratory tests showed that the prediction perfor-
mance is not very sensitive to the default values defined 
above (see Sect. 5). For example, setting nb = 4 or increasing 
(decreasing) T by one order of magnitude, we obtained simi-
lar results as for the default parameter choices. Nevertheless, 
we tested the default settings on various datasets and verified 
that even if they are not optimal, they still provide competi-
tive performance.

The MPRS hyperparameters are used to control the 
learning process. The static hyperparameters are listed 
in Section 1.3.1 of Algorithm 1. Below, we discuss their 
definition, impact on prediction performance, and setting 
of default values. The number of equilibrium configura-
tions, M, is arbitrarily set to 100. Smaller (larger) values 
would increase (decrease) computational performance and 
decrease (increase) prediction accuracy and precision. The 
frequency of equilibrium state verification is controlled by 
nf  which is set to 5. Lower nf  increases the frequency and 
thus slightly decreases the simulation speed but it can lead 
to earlier detection of the equilibrium state. In order to test 
for equilibrium conditions, we need to check the slope of 
the energy evolution curve: in the equilibrium regime the 
curve is flat, while it has an overall negative slope in the 
relaxation (non-equilibrium) regime. However, the fluctua-
tions present in equilibrium at T ≠ 0 imply that the calcu-
lated slope will always quiver around zero. To compensate 



Stochastic Environmental Research and Risk Assessment 

for the fluctuations, we fit the energy evolution curve with 
a Savitzky-Golay polynomial filter of degree equal to one 
using a window that contains nfit = 20 points. This produces 
a smoothed curve and a more robust estimate of the slope. 
Larger values of nfit are likely to cause undesired mixing of 
the relaxation and the equilibrium regimes.

Algorithm  1  MPRS learning procedure. The algo-
rithm involves the Update function which is described in 
Algorithm 2. �s is the vector of known spin values at the 

sample sites. �̂ represents the vector of estimated spin 
values at the prediction sites. G(⋅) is the transformation 
from the original field to the spin field and G−1(⋅) is its 
inverse. Ẑ(j) , j = 1,… ,M is the j-th realization of the origi-
nal field. U(0, 2�) denotes a vector of random numbers from 
the uniform probability distribution in [0, 2�] . SG stands for 
Savitzky-Golay filter.

Algorithm 2  Restricted Metropolis updating algorithm 
(non-vectorized version). �̂old is the initial spin state, and 
�̂

new is the new spin state. �̂old
−p

 is the initial spin state 

excluding the point labeled by p. U(0, 1) denotes the 
uniform probability distribution in [0, 1]. The hyperpa-
rameter � is the spin perturbation control factor; T is the 
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simulation temperature; P is the number of prediction 
sites; H(⋅) is the energy for a given spin configuration.

Table 1  Parameters and hyperparameters of the MPRS method with default values, short descriptions and recommended setting

Default value Description Setting method and range

Model parameters nb = 8 Number of interacting neighbors per point A relatively small number to secure efficient 
simulation of a fairly smooth regression sur-
face; nb ∈ [4, 16]

b = (b1,… , bP)
⊤ Decay rate vector Median distance between the p-th prediction 

point and its ns nearest sample neighbors; 
ns ∈ [4, 8]

kBT∕J0 ≡ T = 10−3 Simulation temperature that controls the vari-
ance of the field

Based on MPR tests set to a sufficiently small 
value to achieve some spatial continuity; 
T ∈ [10−5, 10−2]

Hyperparameters M = 100 Number of equilibrium configurations used for 
collecting statistics

Arbitrarily set to balance precision and computa-
tional time; M ∈ [50, 1000]

nf = 5 Frequency of verifying equilibrium conditions 
(slope of the energy evolution curve ≈ 0)

Empirically set to detect onset of equilibrium 
regime with moderate checking frequency; 
nf ∈ [2, 10]

nfit = 20 Number of points used for fitting the energy 
evolution function

Empirically set to a sufficiently large value that 
ensures accurate estimate of the energy evolu-
tion function and its slope; nfit ∈ [10, 50]

imax = 500 (optional) Maximum number of Monte Carlo sweeps Used to prevent potentially very long equilibra-
tion times, if the convergence is very slow

Atarg = 0.3 Target acceptance ratio of restricted Metropolis 
algorithm

Controls the computational efficiency (at low 
temperatures) by generating perturbations 
that satisfy the desired acceptance rate Atarg ; 
Atarg ∈ [0.2, 0.7]

a = 1 + t∕ka (adjustable) Perturbation control factor Adaptively reset as a linearly increasing function 
of the simulation time t to achieve proposal 
of gradually smaller (more easily acceptable) 
perturbations

ka = 3 Characteristic time controlling the variation 
of a

Arbitrarily set to obtain desirable computational 
efficiency; ka ∈ [2, 4]

Initial state = “paramag-
netic” (hot start)

Initial spin angle state at t = 0 Other initializations give similar results; Initial 
state ∈ {“paramagnetic”,“ferromagnetic”, 
“nearest-neighbor”}
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The maximum number of Monte Carlo sweeps, imax , 
is optional and can be set to prevent very long equilibra-
tion times, lest the convergence is very slow. Due to the 
efficient hybrid algorithm employed its practical impact is 
minimal. The target acceptance ratio of Metropolis update, 
Atarg , and the variation rate of perturbation control factor, 
ka , are set to Atarg = 0.3 and ka = 3 . Their role is to prevent 
the Metropolis acceptance rate (particularly at low T) to 
drop to very low values, which would lead to computa-
tional inefficiency. Finally, the simulation starts from some 
initially selected state of the spin angle configuration. Our 
tests showed that different choices, such as uniform (“fer-
romagnetic”) or random (“paramagnetic”) initialization 
produced similar results. Therefore, we use as default the 
random state comprising spin angles drawn from the uni-
form distribution in [0, 2�] . While it is in principle pos-
sible to tune the hyperparameters for optimal prediction 
performance, using default values enables the autonomous 
operation of the algorithm and controls the computational 
efficiency. The adaptive hyperparameters, listed in Sec-
tion 1.3.2 of Algorithm 1, increase the flexibility of the 
algorithm by automatically adapting to the current stage of 
the simulation process. A brief summary of all the param-
eters and the hyperparameters and their proposed values 
and recommended ranges is provided in Table 1.

2.3  Learning “Data Gaps” by Means of Restricted 
Metropolis Monte Carlo

MPRS predictions of the values {ẑp}Pp=1 are based on con-
ditional Monte Carlo simulation. Starting with initial 
guesses for the unknown values, the algorithm updates 
them continuously aiming to approach an equilibrium state 
which minimizes the free energy (see Eq. 9). The key to 
the computational efficiency of the MPRS algorithm is fast 
relaxation to equilibrium. This is achieved using the 
restricted Metropolis algorithm, which is particularly effi-
cient at very low temperatures, such as the presently con-
sidered T ≈ 10−3 , where the standard Metropolis updating 
is inefficient (Loison et al. 2004).

The classical Metropolis algorithm  (Metropolis 
et al. 1953; Robert et al. 1999; Hristopulos 2020) pro-
poses random changes of the spin angles at the pre-
diction sites (starting from an arbitrary initial state). 
The proposals are accepted if they lower the energy 
H(zG;curr) , while otherwise they are accepted with prob-
abi l i ty  p = exp[−H(zG;prop)∕T +H(zG;curr)∕T] ,  where 
zG;curr is the current and zG;prop the proposed states. The 
restricted Metropolis scheme generates a proposal spin-
angle state according to �prop = �curr + �(r − 0.5) , where 
r is a uniformly distributed random number r ∈ [0, 1) 
and � = 2�∕a ∈ (0, 2�) . The hyperparameter a ∈ [1,∞) 
controls the spin-angle perturbations. The value of a is 
dynamically tuned during the equilibration process to 
maintain the acceptance rate close to the target set by the 
acceptance rate hyperparameter Atarg . Values of a ≈ 1 
allow bigger perturbations of the current state, while a ≫ 1 
leads to proposals closer to the current state.

To achieve vectorization of the algorithm and high com-
putational efficiency, we assume that interactions occur 
between prediction and sampling points in the vicinity of 
the former but not among prediction points. Moreover, 
perturbations can be performed simultaneously by means 
of a single sweep for all the prediction points, which 
increases computational efficiency (e.g., in the case of the 
MPR method two sweeps are required).

The learning procedure begins at an initial state ascribed 
to the prediction points, while the sampling points retain 
their values throughout the simulation.2 The prediction 
points can be initially assigned random values drawn from 
the uniform distribution. It is also possible to assign values 
based on neighborhood relations, e.g., by means of nearest 
neighbor interpolation.
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Fig. 2  Energy evolution curves starting from random (red dashed 
curve) and nearest-neighbor interpolation (blue solid curve) 
states. The simulations are performed on Gaussian synthetic data 
with m = 150 , � = 25 and Whittle-Matérn covariance model 
WM(� = 0.2, � = 0.5 ), sampled at 346, 030 and predicted at 702, 546 
scattered points (non-coinciding with the sampling points) inside a 
square domain of length L = 1, 024 . The inset shows a detailed view 
focusing on the nonequilibrium (relaxation) regime

2 If a prediction point coincides with a sample location, the MPRS 
algorithm allows the user to choose whether the sample value will be 
respected or updated. Thus, in the former (latter) case MPRS is an 
exact (inexact) interpolator.
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Our tests showed that the initialization has marginal 
impact on prediction performance but opting for the lat-
ter option tends to shorten the relaxation process and 
thus increases computational efficiency. In Fig. 2 we 
illustrate the evolution of the energy (Hamiltonian) 
H(zG) towards equilibrium using random and nearest-
neighbor initial states. The curves represent interpola-
tion on Gaussian synthetic data with Whittle-Matérn 
covariance (as described in Sect. 4.1). The initial energy 
under random initial conditions differs significantly from 
the equilibrium value; thus the relaxation time (meas-
ured in MC sweeps), during which the energy exhibits a 
decreasing trend, is somewhat longer ( ≈ 60 MCS) than 
for the nearest-neighbor initial conditions ( ≈ 40 MCS). 
Nevertheless, the curves eventually merge and level off 
at the same equilibrium value. In order to automatically 
detect the crossover to equilibrium, i.e. the flat regime 
of the energy curve, the energy is periodically tested 
every nf  MC sweeps, and the variable-degree polyno-
mial Savitzky-Golay (SG) filter is applied  (Savitzky 
and Golay 1964). In particular, after each nf  MC sweeps 
the last nfit points of the energy curve are fitted to test 
whether the slope (decreasing trend) has disappeared.

The MPRS predictions on Gp sites are based on mean 
values obtained from M states that are generated via 
restricted Metropolis updating in the equilibrium regime. 
The hyperparameter M thus controls the length of the 
averaging sequence. The default value used herein is 
M = 100 . Alternatively, the M values can be used to 
derive the predictive distribution at each point on Gp . 
The entire MPRS prediction method is summarized in 
Algorithms 1 and 2.

3  Study Design for Validation of MPRS 
Learning Method

The prediction performance of the MPRS learning algorithm 
is tested on various 1D, 2D, and 3D datasets. In 2D we use 
synthetic and real spatial data (gamma dose rates in Ger-
many, heavy metal topsoil concentrations in the Swiss Jura 
mountains, Walker lake pollution, and atmospheric latent 
heat data over the Pacific ocean). For 1D data we use time 
series of temperature and precipitation. Finally, in 3D we use 
soil data. The MPRS performance in 1D and 2D is compared 
with ordinary kriging (OK) which under suitable conditions 
is an optimal spatial linear predictor (Kitanidis 1997; Cressie 
1990; Wackernagel 2003). For better comparison (especially 
in terms of computational efficiency), in addition to the OK 
method with unrestricted neighborhood (OK-U) that uses 
the entire training set, we also included OK with a restricted 
neighborhood (OK-R) which involves the same number of 
neighbors as MPRS, i.e., nb = 8 . In 3D the MPRS method 
was compared with inverse distance weighting (IDW) which 
uses an unrestricted search neighborhood.

We compare prediction performance using different vali-
dation measures (see Table 2). The complete datasets are 
randomly split into disjoint training and validation subsets. 
In most cases, we generate V = 100 different training-valida-
tion splits. Let z(sp) denote the true value and ẑ(v)(sp) its esti-
mate at sp for the configuration v = 1,… ,V  . The prediction 
error 𝜖(v)(sp) = z(sp) − ẑ(v)(sp) is used to define validation 
measures over all the training-validation splits as described 
in Table 2.

To assess the computational efficiency of the methods 
tested we record the CPU time, tcpu for each split. The mean 
computation time ⟨tcpu⟩ over all training-validation splits is 
then calculated. The MPRS interpolation method is imple-
mented in Matlab® R2018a running on a desktop computer 
with 32.0 GB RAM and Intel®Core™2 i9-11900 CPU pro-
cessor with a 3.50 GHz clock.

Table 2  Validation measures used to assess the prediction perfor-
mance of MPRS and other methods. The measures are defined as 
double averages: the first average is over the sites of the validation 
set while the second average is over all V training-validation splits. 
The zp and �z;p are the mean and standard deviation of the validation 
values; ⟨ẑ(v)

p
⟩ and 𝜎(v)

ẑ;p
 are, respectively, the mean and standard devia-

tion of the predictions for the v-th split. If V = 1 the initial “M” in the 
validation measures can be dropped
Validation measure Definition

Mean absolute error MAE =
1

V

∑V

v=1
1

P

∑
sp∈Gp

� �(v)(sp) �
Mean absolute relative 

error
MARE =

1

V

∑V

v=1
1

P

∑
sp∈Gp

� �(v)(sp)�
z(sp)

Mean root square error
MRSE =

1

V

∑V

v=1

�
1

P

∑
sp∈Gp

�
�(v)(sp)

�2

Mean Pearson correlation 
coefficient MR =

1

V

∑V

v=1

∑P

p=1 (z(sp)−zp)
�
ẑ(v)(sp)−⟨ẑ

(v)
p ⟩

�

𝜎z;p 𝜎
(v)

ẑ;p

Table 3  Cross-validation measures for MPRS, OK-U and OK-R 
based on 100 realizations of a Gaussian random field with mean 
m = 150 , standard deviation � = 25 and covariance model 
WM(� = 0.2, � = 0.5 ), sampled at 1,  000 scattered points inside 
a square of length L = 50 . 100 points are randomly selected as the 
training set ( tr = 0.10 ) and the values at the remaining 900 points are 
predicted

Method MAE MARE (%) RMSE MR (%) ⟨t
cpu

⟩ (s)

MPRS 14.65 10.22 18.64 63.53 0.02
OK-U 14.28 9.94 18.19 65.63 0.01
OK-R 14.24 9.89 18.16 66.12 0.06
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4  Results

4.1  Synthetic 2D data

Synthetic data are generated from Gaussian, i.e., 
Z ∝ N(m = 150, � = 25)  ,  a n d  l o g n o r m a l ,  i . e . , 

lnZ ∝ N(m = 0, �) spatial random fields (SRF) using the 
spectral method for irregular grids (Pardo-Iguzquiza and 
Chica-Olmo 1993). The spatial dependence is imposed by 
means of the Whittle-Matérn (WM) covariance given by
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Fig. 3  Dependence of MPRS, OK-U and OK-R validation measures 
on the ratio of training points tr. The measures are calculated from 
100 realizations of a Gaussian random field with m = 150 , � = 25 

and covariance model WM(� = 0.2, � = 0.5 ); the field is sampled at 
1000 scattered points inside a square domain of length L = 50
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where ‖h‖ is the Euclidean two-point distance, �2 is the vari-
ance, � is the smoothness parameter, � is the inverse autocor-
relation length, and K�(⋅) is the modified Bessel function of 
the second kind of order � . Hereafter, we use the abbrevia-
tion WM(�, �) for such data. We focus on data with � ≤ 0.5 , 
which is appropriate for modeling rough spatial processes 
such as soil data (Minasny and McBratney 2005).

Data are generated at N = 103 random locations within 
a square domain of size L × L , where L = 50 . Assuming 
tr represents the percentage of training points, from each 
realization we remove ⌊trN⌋ points to use as the training set. 
The predictions are cross validated with the actual values at 
the remaining locations. For various tr values we generate 
V = 100 different sampling configurations.

(11)CZ(‖h‖) =
21−� �2

Γ(�)
(� ‖h‖)�K�(� ‖h‖),

The cross-validation measures obtained by MPRS and 
OK for tr = 0.10 are summarized in Table 3. Both OK meth-
ods produce smaller errors and larger MR than MPRS. How-
ever, the relative differences are typically ≲ 4% . The CPU 
times of all the methods are very small, with OK-U being 
the fastest, followed by MPRS and OK-R being the slowest. 
As the analysis below will show, this ranking of methods for 
computational efficiency only applies for relatively small 
datasets. The CPU time scales with data size quite differ-
ently for MPRS and OK, favoring the former for large data 
sizes.

In Fig. 3 we present the evolution of all the measures with 
increasing tr. As expected, for higher tr values all meth-
ods give smaller errors and larger MR. Both OK methods 
give similar results (OK-R performing slightly better), and 
the differences between MPRS and OK persist and seem to 
slightly increase with increasing tr. While the relative pre-
diction performance of MPRS slightly decreases its relative 
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Fig. 4  Dependence of the ratios of a, b MPRS and OK-U and c, d 
MPRS and OK-R validation measures on the smoothness parameter. 
The measures are calculated based on 100 realizations of a Gauss-
ian random field with m = 150 , � = 25 and the covariance model 

WM(� = 0.2, � ), sampled at 1,  000 scattered points inside a square 
domain of length L = 50 . Panels (a,c) and (b,d) show the results for 
tr = 0.33 and 0.66, respectively
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computational efficiency substantially increases. As indi-
cated above for tr = 0.10 , for small tr OK-U is the fastest, 
followed by MPRS and OK-R. However, for tr = 0.8 MPRS 
is already about 16 (7) times faster than OK-U (OK-R). The 
computational complexity of OK-U increases cubically with 
sample size. The CPU time of OK-R tends to increase with 
increasing tr. In contrast, the MPRS computational cost only 
depends on P ( # of prediction points), which decreases with 
increasing tr. The fit in Fig. 3e indicates an approximately 
linear decrease.

Next, we evaluate the relative MPRS prediction per-
formance with increasing data roughness, i.e., gradually 

decreasing � . In Fig. 4 we present the ratios of different 
calculated measures (errors) obtained by (a,b) MPRS 
and OK-U and (c,d) MPRS and OK-R for (a,c) tr = 0.33 
and (b,d) 0.66, respectively. The plots exhibit a consist-
ent decrease (increase) of relative MPRS vs OK-U errors 
(correlation coefficient) with decreasing smoothness from 
� = 0.5 to 0.1. At � ≈ 0.3 the MPRS and OK validation 
measures become approximately identical, and for 𝜈 ≲ 0.3 
MPRS outperforms OK-U. The MPRS vs OK-R errors 
show similar behavior with the cross-over value of � where 
MPRS outperforms OK-R shifting slightly to smaller val-
ues. Thus, MPRS seems to be more appropriate than OK 
for the interpolation of rougher data.

The above cases assume a Gaussian distribution, which 
is not universally observed in real-world data. To assess 
MPRS performance for non-Gaussian (skewed) distribu-
tions, we simulate synthetic data that follow the lognormal 
law, i.e., logZ ∼ N(m = 0, �) with the WM(� = 0.2, � = 0.5 ) 
covariance. The lognormal random field that generates the 
data has median z0.50 = exp(m) = 1 and standard deviation 
�Z =

[
exp(�2) − 1

]1∕2
exp(m + �2∕2) . Thus, � controls the 

data skewness (see the inset of Fig. 5). Figure 5 demon-
strates that MPRS can provide better interpolation perfor-
mance compared to OK-U for non-Gaussian, highly skewed 
data as well. In particular, for 𝜎 ≳ 1 the MAE and MARE 
measures of MPRS become comparable or smaller than 
those obtained with OK. On the other hand, OK-R delivers 
better performance than OK-U, particularly for the highly 
skewed datasets. While one still can observe some relative 
improvement of MPRS vs OK-R performance in terms of 
decreasing MAE and MARE errors with � , OK-R delivers 
superior performance for the entire range of tested � values, 
except for MARE at � = 1.5.
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Fig. 5  Dependence of the ratios of a MPRS and OK-U and b MPRS 
and OK-R validation measures on the random field skewness (con-
trolled by � ). The measures are calculated from 100 realizations 
of a lognormal random field with m = 0 and covariance model 

WM(� = 0.2, � = 0.5 ), sampled at 1000 scattered points inside a 
square domain of length L = 50 , for tr = 0.33 . The inset in (a) shows, 
as an example, the data distribution for � = 1
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Fig. 6  MPRS and OK-R CPU times scaling vs data size N 
based on 100 samples of Gaussian RFs with covariance model 
WM(� = 0.2, � = 0.5 ). Two plots for tr = 0.33 (circles) and tr = 0.66 
(diamonds) are shown. The OK-R results for the two largest N values 
could not be evaluated due to extremely long CPU times. The dashed 
line is a guide to the eye for linear dependence
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Finally, we assess the computational complexity of MPRS 
by measuring the CPU time necessary for interpolation of 
⌈(1 − tr)N⌉ points based on ⌊tr N⌋ samples, for increasing 
N between 210 and 220 . The results presented in Fig. 6 for 
tr = 0.33 and 0.66 confirm approximately linear (sublinear 
for smaller N) dependence, already suggested in Fig. 3e. The 
CPU times obtained for tr = 0.66 , which involve more sam-
ples but fewer prediction points, are systematically smaller. 
For comparison, we also included the corresponding CPU 
times of the OK-R method.3 Even though it considerably 
alleviates the computational cost of OK-U, its scaling with 
data size is inferior to MPRS. This can be ascribed to the 
computationally demanding variogram calculation, which 
shows quadratic scaling with the sample size. Thus, while 
for N ≈ 103 MPRS is faster than OK-R only several times, 
for N ≈ 105 MPRS is faster several hundreds of times. 

Furthermore, the gap between tr = 0.33 and tr = 0.66 curves 
for OK-R increases with N, thus making OK-R relatively 
inefficient for datasets with a large number of observations.

4.2  Real 2D spatial data

4.2.1  Ambient gamma dose rates

The first two datasets represent radioactivity levels in the 
routine and the simulated emergency scenarios (Dubois 
and Galmarini 2006). In particular, the routine dataset 
represents daily mean gamma dose rates over Germany 
reported by the national automatic monitoring network 
at 1, 008 monitoring locations. In the second dataset an 
accidental release of radioactivity in the environment was 
simulated in the South-Western corner of the monitored 
area. These data were used in Spatial Interpolation Com-
parison (SIC) 2004 exercise to test the prediction perfor-
mance of various methods.

The training set involves daily data from 200 ran-
domly selected stations, while the validation set involves 
the remaining 808 stations. Data summary statistics 
and an extensive discussion of different interpolation 

Table 4  Interpolation validation 
measures (obtained from 
Table 2 for V = 1 ) for the 
MPRS, OK-U and OK-R 
methods applied to the routine 
and emergency SIC2004 
datasets

Data Method AE ARE (%) RSE R (%) t
cpu

 (s)

Routine MPRS 9.22 9.29 12.58 78.07 0.03
OK-U 9.29 9.36 12.84 77.03 0.03
OK-R 9.39 9.45 12.96 76.56 0.05

Emergency MPRS 17.75 11.85 76.76 40.40 0.02
OK-U 22.05 18.74 74.19 47.05 0.02
OK-R 21.52 16.28 78.13 48.24 0.04
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Fig. 7  Values of AE, RSE and R obtained for the routine and emer-
gency datasets by means of 31 interpolation methods reported in the 
SIC2004 exercise (circles, squares and diamonds) and the MPRS 
approach (red crosses). The numbers in parentheses denote the rank-
ing of MPRS performance for the particular validation measure with 
respect to all 32 methods
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Fig. 8  Histogram of cadmium soil contamination concentrations from 
the Jura dataset. The inset shows the measurement locations

3 Due to computational inefficiency and high memory demands we 
did not include the OK-U method.
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approaches are found in Dubois and Galmarini (2006). In 
total, 31 algorithms were applied. Several geostatistical 
techniques failed in the emergency scenario due to insta-
bilities caused by the outliers (simulated release data).

The validation measures from MPRS, OK-U and OK-R 
applied to both the routine and emergency datasets are 
presented in Table 4. Comparing the results for OK and 
MPRS, for the routine dataset MPRS gives slightly better 
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Fig. 9  MPRS, OK-U and OK-R validation measures for the Jura heavy metal contamination dataset. The measures are calculated from 100 ran-
domly chosen training sets of 85 points leaving 174 points in the validation sets
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results than either of the OK approaches. However, for 
the emergency dataset the differences are substantial. 
In particular, AE and ARE errors are much smaller for 
MPRS, while OK methods give superior values for R. 
The RSE error is smallest for OK-U, followed by MPRS 
and OK-R. The CPU time of MPRS and OK-U are almost 
identical, while OK-R is almost two times slower.

In Fig. 7 we compare the MPRS performance with 
the results obtained with the 31 different approaches 
reported in Dubois and Galmarini (2006). This compari-
son shows that MPRS is competitive with geostatistical, 
neural network, support vector machines and splines. In 
particular, for the routine dataset MPRS ranked 6th, 8th 
and 2nd for AE, RSE and R, respectively, and for the 
emergency data 6th, 13th and 11th.

4.2.2  Jura dataset

This dataset comprises topsoil heavy metal concentrations 
(in ppm) in the Jura Mountains (Switzerland) (Atteia et al. 
1994; Goovaerts 1997). In particular, the dataset includes 
concentrations of the following metals: Cd, Co, Cr, Cu, Ni, 
Pb, Zn. The 259 measurement locations and the histogram of 
Cd concentrations, as an example, are shown in Fig. 8. The 
detailed statistical summary of all the datasets can be found 
in Atteia et al. (1994); Goovaerts (1997).

For each dataset we generate V = 100 different training 
sets consisting of 85 randomly selected points. Different 
panels in Fig. 9 compare MPRS, OK-U and OK-R valida-
tion measures for the 7 metal concentrations. In most cases 
the OK methods give slightly smaller (larger) errors (MR) 
than MPRS. However, MPRS gives for Cd and Cr concentra-
tions lower MARE values than OK-U; for Cd concentration 
MAE and RMSE are practically the same for all methods. 
The differences between MPRS and OK errors are on the 
order of a few percent. The largest differences appear for 
mean R: the maximum relative difference, reaching ∼ 30% , 
was recorded for Co. Nevertheless, due to relatively large 
sample-to-sample fluctuations even in such cases, for certain 
splits MPRS shows better performance than OK. Figure 10 
shows the R ratios per split for the MPRS vs OK-U and 
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Fig. 11  Walker lake data a spa-
tial distribution and b histogram
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Table 5  Interpolation validation measures for MPRS and OK. The 
measures are based on 100 randomly chosen training sets that include 
tr N of the N = 40, 000 points (Walker lake dataset)

tr Method MAE RMSE MR (%) ⟨t
cpu

⟩ (s)

0.33 MPRS 166.08 334.81 74.52 0.66
OK-U 167.74 340.42 73.97 666.32
OK-R 163.06 340.43 73.90 13.75

0.66 MPRS 156.03 314.97 77.65 0.71
OK-U 155.49 319.95 77.24 4999.37
OK-R 150.25 318.51 77.36 91.33
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MPRS vs OK-R methods. In 15 (22) instances MPRS gives 
larger values than OK-U (OK-R). The execution times, pre-
sented in Fig. 9e, demonstrate that MPRS is slower than 
OK-U but faster than OK-R (in line with results above for 
relatively small datasets).

4.2.3  Walker lake dataset

This dataset demonstrates the ability of MPRS to fill data 
gaps on rectangular grids. The data represent DEM-based 
chemical concentrations with units in parts per million 
(ppm) from the Walker lake area in Nevada (Isaaks and Sriv-
astava 1989). We use a subset of the full grid comprising 
a square of size L × L with L = 200 . The summary statis-
tics are: N = 40, 000 , zmin = 0 , zmax = 8, 054.6 , z̄ = 269.35 , 
z0.50 = 59.45 , �z = 499.43 , skewness ( sz ) and kurtosis ( kz ) 
coefficients sz = 3.59 and kz = 22.12 , respectively. The 
spatial distribution and histogram of the data are shown in 
Fig. 11.

Training sets of size ⌊tr N⌋ are generated by randomly 
removing ⌈(1 − tr)N⌉ points from the full dataset. For 
tr = 0.33 and 0.66 we generate V = 100 different training-
validation splits. The validation measures are listed in 

Table 5. Due to zero values, the relative MARE errors can 
not be evaluated. For this highly skewed dataset, MPRS 
shows slightly better prediction performance than OK-U 
(except MAE for tr = 0.66 ). Using a search neighborhood 
(OK-R) improves the kriging performance leading to supe-
rior MAE but still inferior RMSE and MR compared to 
MPRS. For this relatively large dataset the MPRS approach 
is for tr = 0.33 (0.66) 20 (128) times faster than OK-R and 
more than 1, 000 (7, 040) times faster than OK-U. While 
not immediately apparent (due to the skewed distribution), 
a visual comparison of the reconstructed gaps in Fig. 12, 
shows that the OK generated maps are slightly smoother 
than the MPRS map.

Next, we consider the performance of the methods with 
respect to uncertainty quantification. In the case of krig-
ing this is based on Gaussian prediction intervals, i.e., 
[m̂OK − zc𝜎OK , m̂OK + zc𝜎OK] , where m̂OK is the conditional 
mean at the prediction site, �OK the conditional stand-
ard deviation, and zc the critical value corresponding to a 
selected confidence level. The MPRS predictive distribution 
on the other hand strongly deviates from the Gaussian law 
at many validation points. Therefore, for MPRS it is more 
appropriate to construct prediction intervals [x̂𝛼∕2, x̂1−𝛼∕2] 
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Fig. 12  Visual comparison of interpolated maps for a MPRS, b 
OK-U, and c OK-R and the corresponding prediction interval width 
based on d the difference between the 84% and the 16% percentiles 
of the MPRS predictive distribution, and e, f two kriging standard 

deviations for (OK-U, OK-R) respectively. Results are shown for the 
Walker lake data with tr = 33% . The points with zero width predomi-
nantly coincide with the sample locations
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Fig. 13  Monthly averaged latent 
heat release data measured in 
degrees Celsius per hour; a spa-
tial distribution and b histogram
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Table 6  Interpolation validation 
measures for MPRS, OK-U and 
OK-R based on 100 randomly 
chosen training-validation 
splits; the training set includes 
trN points where N = 2, 500 
(latent heat dataset)

tr Method MAE MARE (%) RMSE MR (%) ⟨t
cpu

⟩ (s)

33% MPRS 0.042 −33.18 0.053 70.83 0.04
OK-U 0.041 −31.48 0.052 72.38 0.19
OK-R 0.041 −31.06 0.052 72.92 0.13

66% MPRS 0.038 −29.50 0.048 77.43 0.03
OK-U 0.036 −27.20 0.046 79.28 0.95
OK-R 0.036 −26.93 0.046 79.79 0.25
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Fig. 14  Visual comparison of a MPRS, b OK-U and c OK-R interpolated maps (latent heat data) and corresponding prediction standard devia-
tions d–f for a tr = 0.33 training-validation split
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based on the percentiles of the predictive distribution that 
correspond to confidence level 100(1 − �)% . In Fig. 12d we 
present the width of the 68% prediction intervals (� = 0.32) , 
based on the 16% and 84% percentiles of the MPRS predic-
tive distribution. The prediction interval width provides the 
measure of uncertainty. The respective OK uncertainty maps 
are shown in Figs. 12e-12f. As evidenced in these plots, 
the MPRS uncertainty exhibits more spatial structure than 
the OK uncertainty maps. Notably, under MPRS large areas 
(predominantly those with zero or near-zero values) are 
assigned much smaller uncertainty in contrast with other 
areas where the MPRS uncertainty is comparable to OK 
values.

It is reasonable to ask how successfully the prediction 
intervals capture the true values at the validation points. 
For this purpose we evaluate the percent interval coverage 
(PIC), i.e., the percentage of validation points for which the 
true value is contained inside the prediction interval. For 
the Walker lake dataset with tr = 33% (presented in Fig. 12) 
we obtain the following average PIC values based on 100 

training-validation splits: 80.31% for MPRS, 71.02% for 
OK-U, and 71.59% for OK-R. We also evaluated the MPRS 
95% prediction intervals (based on the 2.5% and 97.5% per-
centiles) and the [m̂OK − 1.96𝜎OK , m̂OK + 1.96𝜎OK] predic-
tion intervals for OK-U and OK-R. The resulting PIC values 
in this case are as follows: 95.97% for MPRS, 83.57% for 
OK-U, and 83.93% for OK-R. Hence, overall we observe 
that MPRS prediction intervals contain the true values more 
often than the OK respective intervals. We note that this 
behavior is not universal: for more symmetric data distribu-
tions, OK can outperform the MPRS prediction intervals. 
However, the MPRS performance is expected to improve by 
tuning the model, e.g., by increasing the number of realiza-
tions at equilibrium.

4.2.4  Atmospheric latent heat release

This section focuses on monthly (January 2006) means of 
vertically averaged atmospheric latent heat release (meas-
ured in degrees Celsius per hour) measurements (Tao et al. 
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Fig. 15  Time series (a, c) and respective frequency histograms (b, d) of daily temperature (a, b) and precipitation (c, d) at Jökulsa Eystri River 
(Iceland) for the period between January 1, 1972 and December 31, 1974



 Stochastic Environmental Research and Risk Assessment

2006; Anonymous 2011). The L × L data grid ( L = 50 ) 
extends in latitude from 16 S to 8.5N and in longitude 
from 126.5E to 151E with cell size 0.5◦ × 0.5◦ . This area 
is in the Pacific region and extends over the Eastern part 
of the Indonesian archipelago. The data summary statistics 
are as follows: N = 2, 500 , zmin = −0.477 , zmax = −0.014 , 
z̄ = −0.174 , z0.50 = −0.168 , �z = 0.076 , sz = −0.515 , and 
kz = 3.122 . Negative (positive) values correspond to latent 
heat absorption (release). The spatial distribution and histo-
gram of the data are shown in Fig. 13.

The comparison of validation measures presented in 
Table 6 and a visual comparison of the reconstructed maps 
and prediction uncertainty, shown in Fig. 14, reveals sim-
ilar patterns as the Walker lake data: the OK predictions 
show somewhat smoother variation and larger variance 
than MPRS. However, in this case MPRS displays some-
what worse prediction performance but is significantly more 
efficient computationally than either of the OK methods.

4.3  Time series (temperature and precipitation)

The MPRS method can be applied to data in any dimen-
sion d. We demonstrate that the MPRS method provides 
competitive predictive and computational performance for 
time series as well.

We consider two time series of daily data at Jökulsa 
Eystri River (Iceland), collected at the Hveravellir mete-
orological station, for the period between January 1, 1972 
and December 31, 1974 (a total of N = 1, 096 observa-
tions) (Tong 1990). The first set represents daily tempera-
tures (in degrees Celsius) and the second daily precipita-
tion (in millimeters). The time series and the respective 
histograms are shown in Fig. 15. The summary statistics 
for temperature are: zmin = −22.4 , zmax = 13.9 , z̄ = −0.441 , 
z0.50 = 0.3 , �z = 6.021 , sz = −0.595 , and kz = 3.196 . The 
precipitation statistics are: zmin = 0 , zmax = 79.3 , z̄ = 2.519 , 
z0.50 = 0.3 , �z = 6.025 , sz = 6.512 , and kz = 65.268 . The 
temperature follows an almost Gaussian distribution, while 
precipitation is strongly non-Gaussian, highly skewed, with 
the majority of values equal or close to zero and a small 
number of outliers that form an extended right tail.

The interpolation validation measures and computational 
times for MPRS, OK-U and OK-R are listed in Table 7. The 
results are based on 100 randomly selected training-vali-
dation splits which include trN points. For the temperature 
data, the MPRS performance relative to the OK approaches 
is similar as for the 2D spatial data that do not dramatically 
deviate from the Gaussian distribution, such as the latent 
heat. However, in the case of precipitation MPRS returns a 
lower MAE than OK for tr = 0.33 , while for tr = 0.66 MPRS 

Table 7  Interpolation validation 
measures for MPRS, OK-U and 
OK-R based on 100 randomly 
selected training-validation 
splits. The training sets include 
trN points ( N = 1, 096 and 
tr = 0.33, 0.66 ) from the daily 
temperature and precipitation 
time series

Data tr Method MAE RMSE MR (%) ⟨t
cpu

⟩ (s)

Temperature 33% MPRS 2.27 3.14 85.71 0.03
OK-U 2.17 3.02 86.27 0.04
OK-R 2.15 3.00 87.06 0.05

66% MPRS 1.77 2.49 91.09 0.02
OK-U 1.66 2.37 91.99 0.11
OK-R 1.66 2.37 91.99 0.06

Precipitation 33% MPRS 3.09 6.85 19.25 0.03
OK-U 3.24 6.74 20.29 0.04
OK-R 3.23 6.84 20.11 0.05

66% MPRS 2.80 6.06 28.73 0.02
OK-U 3.03 6.16 26.73 0.11
OK-R 2.99 6.23 28.59 0.06

Table 8  Interpolation validation 
measures for the MPRS and 
IDW methods based on 100 
randomly chosen training 
sets including tr% of the total 
number N = 178 of points 
in calcium and magnesium 
contents in soil samples at the 
0–20 cm soil layer

Data tr Method MAE MARE (%) RMSE MR (%) ⟨t
cpu

⟩ (s)

Ca 33% MPRS 6.93 14.67 8.95 60.51 0.006
IDW 7.16 15.60 9.13 59.71 0.001

66% MPRS 6.43 13.60 8.38 65.49 0.005
IDW 6.92 15.15 8.82 64.35 0.001

Mg 33% MPRS 4.31 17.56 5.46 52.40 0.006
IDW 4.48 18.54 5.59 49.68 0.001

66% MPRS 3.72 15.11 4.80 65.18 0.005
IDW 4.21 17.23 5.27 60.77 0.001
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is clearly better for all measures. This observation agrees 
with the results for the synthetic spatial data, i.e., the relative 
performance of MPRS improves for strongly non-Gaussian 
data (cf. Figure 5 which displays relative errors for lognor-
mal data with gradually increasing sz).

4.4  Real 3D spatial data

Finally, we study calcium and magnesium soil content sam-
pled in the 0–20 cm soil layer (Diggle and Ribeiro Jr 2007). 
There are N = 178 observations and the data are measured 
in mmolc∕dm3 . The calcium data statistics are zmin = 21 , 
zmax = 78 , z̄ = 50.68 , z0.50 = 50.5 , �z = 11.08 , sz = −0.097 , 
and kz = 2.64 , while for magnesium the respective statistics 

are zmin = 11 , zmax = 46 , z̄ = 27.34 , z0.50 = 27 , �z = 6.28 , 
sz = 0.031 , and kz = 2.744.

In this case we compare MPRS with the IDW 
method (Shepard 1968) using a power exponent equal to 2 
and unrestricted search radius. As evidenced in the valida-
tion measures (Table 8), MPRS outperforms IDW in terms 
of prediction accuracy. The relative differences change from 
a few percent for tr = 0.33 to ∼ 12% for tr = 0.66 . For this 
particular dataset, IDW is computationally more efficient 
than MPRS. However, this is due to the limited data size. 
With increasing N the relative computational efficiency of 
MPRS will improve and eventually outperform IDW, since 
the computational time for the former scales as O(P) , while 
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Fig. 16  a Synthetic Gaussian data with m = 150 , � = 25 and 
WM(� = 0.2, � = 0.5 ) covariance. b–d MPRS, OK-U, and OK-R pre-
dictions on the grid of the size 50 × 50 , based on 50 ( 2% ) randomly 

distributed samples (cyan circles). VM stand for the validation meas-
ures MAE, MARE, RMSE, MR, and ⟨tcpu⟩ , respectively
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Fig. 17  Visual and numerical comparison of the MPRS predictions with the changed parameters a, b T, c, d nreal, and e, f nb from the default 
values T = 0.001 , nreal = 100 , and nb = 8 . VM stand for the validation measures MAE, MARE, RMSE, MR, and ⟨tcpu⟩ , respectively
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for the latter as O(PN) [e.g., see comparison of MPR and 
IDW (Žukovič and Hristopulos 2018)].

5  Discussion

The MPRS method involves a number of model parameters 
and hyperparameters (cf. Table 1). The model parameters 
are set to reasonable default values which remain constant 
during the training process. Some of the hyperparameters 
are dynamically adjusted to secure efficient and autonomous 
operation. In principle, optimal values for the model param-
eters and hyperparameters can be determined by selecting 
a search method and via cross-validation. Nevertheless, the 
default values presented above (cf. Table 1) deliver reason-
able prediction performance in most cases. Below we illus-
trate how the MPRS prediction and computational perfor-
mance are affected by changing some default settings.

We use again the synthetic Gaussian data generated from 
a field with m = 150 , � = 25 and WM(� = 0.2, � = 0.5 ) 
covariance, simulated on a 50 × 50 grid (see Fig. 16a). The 
samples are produced by randomly choosing 2% of the data, 
i.e., tr = 0.02 corresponding to 50 points. The low sampling 
density aims to demonstrate how MPRS copes with a lack 
of conditioning data around the prediction points, and how 
the MPRS performance is affected by tuning the model. 
Figure 16 illustrates the reconstructions obtained by (b) 
MPRS, (c) OK-U, and (d) OK-R methods, along with the 
calculated validation measures (VM). Compared to MPRS 
with the default settings, the OK methods provide consider-
ably smoother (mainly OK-U) reconstructed fields with a 
pronounced averaging effect. They display smaller MAE, 
MARE and RMSE errors. However, the MPRS correlation 
coefficient and CPU time are clearly superior.

The MPRS predictions in areas with few observations 
(see, e.g., the upper right corner in Fig. 16b) display abrupt 
changes. This artifact is due to the lack of conditioning data 
(local constraints) close to the prediction points in the target 
area. Nevertheless, the artifact can be rectified by resetting 
certain model parameters or hyperparameters, as demon-
strated in Fig. 17. Panels (a) and (b) show that the degree of 
data roughness (due to fluctuations) is naturally proportion-
ate to the temperature. Thus, visually smoother (rougher) 
predictions can be obtained by decreasing (increasing) T. 
On the other hand, considering that the original Matérn field 
with smoothness parameter � = 0.5 is rather rough, overall 
better VM are obtained with the higher T = 0.01 value.

Similar effects can be achieved by varying the hyper-
parameter controlling the number of realizations, nreal, 
at thermal equilibrium. The MPRS predictions represent 
conditional means based on nreal estimates obtained from 
different realizations in thermal equilibrium. Consequently, 
higher nreal implies more precise estimates and smoother 

reconstructions, as evidenced in panels (c,d) in Fig. 17. On 
the down side, increasing nreal also implies (linear) increase 
of the required CPU time.

The number of interacting neighbors per point nb , is also 
expected to influence both smoothness and predictive accu-
racy. In particular, higher nb implies more bonds between 
each prediction point and samples in its neighborhood, 
which should intuitively reduce fluctuations of the simu-
lated states at prediction points leading to smoother predic-
tion maps. At the same time, higher nb implies interactions 
with more distant samples; this can be beneficial for cap-
turing longer-range correlations resulting in more precise 
predictions. Panels (e) and (f) in Fig. 17 show the MPRS 
prediction maps for nb = 4 and 16. In this case, there are no 
conspicuous differences in surface smoothness for the two 
nb values, but there are differences between the VM, i.e., 
slightly smaller errors for nb = 16.

We have demonstrated that at some extra computational 
cost the MPRS prediction performance can be improved by 
tuning model parameters/hyperparameters, instead of using 
the default values. Nevertheless, the defaults were employed 
in all the tests reported herein and produced competitive 
results with the OK and IDW approaches. We have also 
shown that for highly skewed distributions MPRS estimates 
of uncertainty can outperform OK. The sensitivity analysis 
presented in this section shows that, at least for the studied 
dataset, model tuning does not lead to dramatic changes. 
Nevertheless, if computational cost is not an issue, search-
ing for optimal hyperparameters and data-driven adjustment 
of the MPRS parameters can be further pursued in order to 
optimize performance. For example, increasing the number 
of realizations at equilibrium may be necessary to improve 
the sampling of MPRS predictive distributions.

6  Conclusions

We proposed a machine learning method (MPRS) based 
on the modified planar rotator for spatial regression. The 
MPRS method is inspired from statistical physics spin mod-
els and is applicable to scattered and gridded data. Spatial 
correlations are captured via distance-dependent short-range 
spatial interactions. The method is inherently nonlinear, as 
evidenced in the energy equations (2) and (5). The model 
parameters and hyper-parameters are fixed to default values 
for increased computational performance. Training of the 
model is thus restricted to equilibrium relaxation which is 
achieved by means of conditional Monte Carlo simulations.

The MPRS prediction performance (using default set-
tings) is competitive with standard spatial regression meth-
ods, such as ordinary kriging and inverse distance weighting. 
For data that are spatially smooth or close to the Gaussian 
distribution, standard methods overall show better prediction 
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performance. However, the relative MPRS prediction per-
formance improves for data with rougher spatial or tempo-
ral variation, as well as for strongly non-Gaussian distribu-
tions. For example, MPRS performance is quite favorable for 
daily precipitation time series which involve large number 
of zeros.

The MPRS method is non-parametric: it does not assume 
a particular data probability distribution, grid structure or 
dimension of the data support. Moreover, it can operate fully 
autonomously, without user input (expertise). A significant 
advantage of MPRS is its superior computational efficiency 
and scalability with respect to data size, features that are 
needed for processing massive datasets. The required CPU 
time does not depend on the sample size and increases only 
linearly with the size of the prediction set. The high com-
putational efficiency is partly due to the full vectorization 
of the MPRS prediction algorithm. Thus, datasets involving 
millions of nodes can be processed in terms of seconds on a 
typical personal computer.

Possible extensions include generalizations of the MPRS 
Hamiltonian (2). For example, spatial anisotropy can be 
incorporated by introducing directional dependence in the 
exchange interaction formula (6). Another potential exten-
sion is the use of an external polarizing field to generate spa-
tial trends. Such a generalization involves additional param-
eters and respective computational cost. This approach was 
applied to the MPR method on 2D regular grids, and it was 
shown to achieve substantial benefits in terms of improved 
prediction performance (Žukovič and Hristopulos 2023). 
Finally, the training of MPRS can be extended to include 
the estimation of optimal values for the model parameters 
and hyperparameters. This tuning will improve the predic-
tive performance at the expense of some computational cost.
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