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Abstract
Sensitivity analysis plays a pivotal role for the development and calibration of hydrological models, since they are often 
affected by equifinality. Despite a lot of effort has been placed for the development of effective sensitivity analysis meth-
ods, hydrological models remain over parametrized. We take advantage of the evidence that hydrological processes can be 
described as the superposition of effects occurring at different temporal scales (e.g., seasonal precipitation patterns, seasonal 
and daily snow and glacier melt, seasonal, daily and sub-daily water management operations) to develop a new framework 
to perform sensitivity analysis. We apply discrete and continuous wavelet transforms to disentangle hydrological signals 
occurring at different temporal scales and we take advantage of the different information stored at different temporal scales 
of the wavelet spectrum to perform a scale-dependent sensitivity analysis. This approach aims to increase the number of 
identifiable model parameters in comparison to standard sensitivity analysis performed in the time domain. As an exemplary 
problem, we apply the methodology to synthetic data describing surface water-groundwater interaction in rivers affected 
by hydropeaking (i.e., sudden fluctuations in the river stage due to hydropower production). The method could be applied 
also to other models displaying the superposition of processes with different intensities at different temporal scales such as 
ocean tide propagation in aquifers as well as snow and glacier melt models. The results indicate that considering multiple 
temporal scales allows us to increase the number of parameters that can be identified and hence calibrated with only a little 
increase in the computational effort.

Keywords Sensitivity analysis · Sobol index · Wavelet · Periodogram efficiency criterion · Hydropeaking · Surface water-
groundwater interaction

1 Introduction

Sensitivity analysis is an important step in the development 
of reliable hydrological models to interpret, reproduce and 
forecast surface and subsurface hydrological processes (Bru-
netti et al. 2018; Ciriello et al. 2013; Dell’Oca et al. 2017; 
Pianosi et al. 2016). When sensitivity analysis is performed 
in the context of model calibration (Siena and Riva 2020; 
Yang et al. 2017), assuming that we have a perfect hydro-
logical model, we could hope that all model parameters can 

be constrained by using the available observations and hence 
all parameters are sensitive (Wagener and Pianosi 2019). 
However, this is generally not the case (Beven 2006; Schöni-
ger et al. 2014). In fact, hydrological models are often over 
parametrized (Kirchner 2006; Samaniego et al. 2010; Seibert 
et al. 2019), they require parameters that cannot be accu-
rately determined by performing inverse modeling (Guse 
et al. 2020) or changes in the value of some model param-
eters have only a limited effect on the quantity of interest that 
is considered for model calibration, such as river discharge 
or hydraulic head in an aquifer (Borgonovo et al. 2017). Due 
to equifinality (i.e., the existence of multiple optimal param-
eter sets that reproduce the observed values), the identifica-
tion of model parameters is a challenging task and sensitiv-
ity analysis can support in the assessment of which model 
parameters can be effectively constrained considering the 
available data.. Moreover, hydrological processes display a 
complex temporal dynamic, which may lead to the identifi-
cation of time-dependent sensitive parameters.
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Song et al. (2015) include the topic of time-dependent 
sensitivity analysis in their review paper. The aim of time-
dependent sensitivity analysis is in general to assess the 
dynamics and the interplay among model parameters and 
processes under specific hydrological conditions or time 
windows (Bittner et al. 2021b; Herman et al. 2013; Reusser 
et al. 2011). Time-dependent sensitivity analysis aims at 
increasing parameter identifiability and at recognizing the 
different uncertainty sources in time, leading therefore to 
more reliable hydrological models (Pianosi and Wagener, 
2016). A critical aspect of this approach relies in the choice 
of the events and their representativeness, in particular in 
case of hydrological problems characterized by a wide range 
of variability (Meles et al. 2021).

An alternative approach to the definition of time-depend-
ent sensitivities is to perform a sensitivity analysis for the 
temporal scales (levels) in which a signal can be subdi-
vided after wavelet decomposition (Bittner et al. 2021a, 
2020). Wavelet transforms are calculated by passing a sig-
nal through a series of filters (Torrence and Compo 1998). 
After the application of each filter, the signal is decomposed 
into low and high frequencies. Several hydrological studies 
took advantage of wavelet decomposition to detect changes 
in the frequency components of the signal characterized by 
some intermittency and to determine the dominant temporal 
scales of variability of a time series (Ciria et al. 2019; Rossi 
et al. 2009; Wang et al. 2014; Zolezzi et al. 2009). There-
fore, wavelet transform showed that different hydrological 
processes contribute to different temporal scales of the same 
hydrological observations. Consequently, specialized mod-
els that require specific parameters and that affect different 
temporal scales are used to represent different hydrological 
processes characterized by specific temporal variabilities. 
Moreover, wavelet transform was applied for the assessment 
of model performance (Chiogna et al. 2018; Rathinasamy 
et al. 2014) and model calibration (Duran et al. 2020; Schae-
fli and Zehe 2009). In the context of sensitivity analysis, 
wavelet decomposition has been applied by Bittner et al. 
(2021a) coupling it with the active subspace model reduc-
tion technique and they proved that different parameters are 
sensitive on different temporal scales. Xiao et al. (2018) 
introduced a method to compute sensitivity indices for the 
model parameters based on the wavelet decomposition of the 
model output and then merging the information obtained for 
the different scales.

In this study, we compare four different approaches to 
detect sensitive parameters using global sensitivity analy-
sis. One method is based on the computation of the Sobol 
index (Saltelli et al. 2010) in the time domain, while three 
new approaches compute the Sobol index in the wavelet fre-
quency domain. The first approach to detect sensitive param-
eters in the wavelet domain is based on the discrete wavelet 
transform of the model output and on the computation of the 

Sobol indices (Smith 2013) for each temporal scale sepa-
rately. The second approach considers as objective function 
for the computation of the Sobol indices the wavelet perio-
dogram efficiency criterion introduced by Schaefli and Zehe, 
(2009). The last approach considers an objective function 
which combines the wavelet periodogram efficiency crite-
rion and the mean absolute error in the time domain. The use 
of discrete and continuous wavelet transform in the sensitiv-
ity analysis has the goal to isolate the effects of parameters 
contributing only to specific temporal scales which may or 
may not be dominant in the whole signal.

We test and compare the four methods to the problem 
of surface water-groundwater interaction under transient 
conditions proposed by Hucks Sawyer et al. (2009), using 
synthetic data. In particular, the analytical solution describes 
the aquifer response to a river affected by hydropeaking, i.e. 
sudden fluctuations of the river stage caused by hydropower 
production (Hauer et al. 2017). Such fluctuations, caused 
by the energy market variability, occur at multiple temporal 
scales (e.g., sub-daily, daily and weekly) and have important 
implications for the riverine ecosystem (Bruder et al. 2016) 
as well as for energy and mass transfer in aquifers (Basilio 
Hazas et al. 2022; Ferencz et al. 2019; Ziliotto et al. 2021). 
The variability in the amplitude and frequency of the hydro-
peaking wave is an information that hydropower companies 
are not obliged to share and adds on the typical uncertainty 
parameters typically encountered in hydrogeological stud-
ies, such as hydraulic conductivity, specific yield and aqui-
fer thickness. Therefore, it is relevant to assess the share of 
uncertainty introduced in our model prediction by anthro-
pogenic operations and by natural geological properties of 
the aquifer. Similar problems displaying the superposition 
of processes occurring with different intensities at different 
temporal scales are not rare in hydrology and include tidal 
propagation in aquifers (Bakker 2019) and discharge genera-
tion in alpine catchments (Schaefli and Zehe 2009). Also in 
these cases, a sensitivity analysis performed isolating the 
processes (and hence the parameters) contributing to differ-
ent temporal scales can be beneficial to enhance parameter 
identifiability.

The paper is structured as it follows. In the methodology 
section, we briefly introduce the Sobol indices, the continu-
ous and discrete wavelet transforms, addressing the interested 
reader to more specific literature for further information. Then, 
we introduce the four sensitivity analysis approaches, how 
we compare them and we describe the hydrological problem 
that we consider as case study. Considering the large amount 
of results that we could show, we present a selection of the 
most relevant ones, focusing on the first order Sobol indices, 
and we provide as supporting material the results computed 
for the total Sobol indices. We critically discuss the results 
considering the effect of the sample size used to compute the 
sensitivity indices and hence the convergence of the sensitivity 
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indices, the effect of the chosen range of variability for the 
model parameters, focusing in particular on the amplitude of 
the signal and on the effect of a Gaussian noise on the syn-
thetic observations (representing a measurement error), and 
the advantages and disadvantages of the wavelet-based sensi-
tivity analysis methods.

2  Methodology

The goal of global sensitivity analysis can be for example to 
evaluate how much of the uncertainty in the model outputs 
depends on the uncertainty in the model input parameters, 
including their interaction, or to rank the model parameters 
according to their sensitivity. In this work, we focus on the 
use of variance based indices, i.e., the Sobol index, to achieve 
these goals, however other metrics are also available (Dell’Oca 
et al. 2017) and could be similarly applied. The novelty in 
the proposed methodology is the calculation of the sensitivity 
indices considering wavelet decomposition of the objective 
function. Such approach is not limited to the calculation of 
the Sobol index, but can be easily extended to other common 
metrics (e.g., Morris method (Smith 2013)) applied in hydro-
logical problems where the parameter space has high dimen-
sionality (Merchán-Rivera et al. 2022).

2.1  Sobol indices

We consider a scalar model Y = f
(
Xi

)
 which depends on Xi 

parameters with i = 1… k (Saltelli et al. 2010). The derivation 
of the Sobol indices is based on the decomposition of the vari-
ance of the model output into terms which can be attributed to 
each parameter Xi , as well as to the effect of their interactions 
(Smith 2013). For example, for each parameter, we can write 
the model variance based first order effect as VXi

(
E
X∼i

(
Y|Xi

))
 , 

where X∼i is the matrix of all parameters except Xi.
The first-order Sobol index for the parameter Xi is defined 

as

and represents the proportion of variance of the model V(Y) 
explained by the varying Xi alone and averaging over varia-
tions in other input parameters.

The total effect of Xi is quantified by the total Sobol 
Index, defined as

and quantifies the contribution of the parameter Xi to the 
total output variance of the model Y, including all interac-
tions of the parameter Xi with the other model parameters.

(1)Si =
VXi

(
E
X∼i

(
Y|Xi

))

V(Y)

(2)STi =
E
X∼i

(
VXi

(
Y|X∼i

))

V(Y)
= 1 −

V
X∼i

(
EXi

(
Y|X∼i

))

V(Y)

Together, the total variance of the model output equals 
the sum of all terms in which the variance can be decom-
posed. More details about the mathematical derivation of the 
Sobol indices can be found in Smith (2013).

2.2  Continuous wavelet

Wavelet transform permits to determine the relevant scales 
of variability of a signal and to highlight the changes in the 
modes of variability within a time series. The continuous 
wavelet transform (CWT) of a discrete sequence d , with 
constant time spacing �t , is defined as its convolution with 
a scaled and translated version of the mother wavelet �0(�):

where (*) indicates the complex conjugate, n is the local-
ized time index, n′ is the time variable, s is the wavelet 
scale and N is the length of the data series. In this paper, 
the Morlet wavelet was chosen as mother wavelet (Labat 
2010). Generally, the wavelet transform Wn�(s) is complex, 
hence one can identify an amplitude ||Wn�(s)

|| and a phase 
tan−1

[
ℑ
{
Wn�(s)

}
∕ℜ

{
Wn�(s)

}]
 . The wavelet power spectrum 

is defined as

And the cumulative wavelet-periodogram is then defined 
as.

 where smax(n) is the maximum scale analyzed at each step 
outside the so called cone of influence (COI), which is the 
region of the power spectrum where boundary effects are 
important. The CWT in fact assumes to have cyclic data and 
hence infinite time series. Since this is not the case in prac-
tice, the wavelet transformation at the beginning and end of 
the time series may contain some errors due to side effects. 
More details about the CWT can be found in Torrence and 
Compo (1998).

2.3  Discrete wavelet

As a difference to the continuous wavelet transform, the 
discrete wavelet transform (DWT) analyses signals intro 
progressively finer octaves, hence operating on scales with 
discrete numbers, typically based on integers power of two. 
This allows us to reconstruct the signal in a much easier and 
efficient way. The DWT is defined as

(3)Wn�(s) =

N−1∑

n=0

dn�
∗

[
(n� − n)�t

s

]

(4)ln(s) =
||Wn�(s)

||
2

(5)Cn(s) =

s∑

k=s0

ln(k),with = s0,… , smax(n)
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where �(t) is the mother wavelet function, j is the translation 
index, and k is the dilatation index. In our work, we used the 
Haar wavelet. More about DWT can be found in Heil and 
Walnut (1989).

2.4  Methods applied to perform the sensitivity 
analysis

In this paper, we considered four approaches to perform the 
sensitivity analysis and our model is defined as Y = f

(
Xi

)
. 

The workflow of the four methods is illustrated in Fig. 1. 
Scope of the comparison of multiple methods is to show that 
also parameters that may seem non influent with a classical 
Sobol analysis (Method 1) performed in the time domain 
may actually be important in the wavelet domain (Meth-
ods 2, 3 and 4). This is particularly interesting in hydrology 
where the variability in the observations is often caused by 
the superposition of multiple signals with different relevant 
temporal scales (Labat 2010). For example, a river influ-
enced by the management of a hydropower plant is typically 
affected by signals with different frequencies (Ciria et al. 
2019; Zolezzi et al. 2009), which propagate towards the 
aquifer and affect surface-water groundwater interaction.

2.4.1  Method 1 (MAE): Sobol index in the time domain

The first method considers as objective function for the cal-
culation of the Sobol index the mean absolute error (MAE) 
computed in the time domain, defined as

(4)�j,k(t) = 2−j∕2�
(
2−jt − k

)

where N indicates the length of the vector of some observed 
values O(t) of a time dependent variable and y(t,X) repre-
sents the corresponding modelled values. The MAE is a 
classical metric for the evaluation of the goodness of fit 
of hydrological model, in particular in the context of sur-
face water-groundwater interaction (Serrano and Workman 
1998). Method 1 represents therefore our benchmark since it 
represents a commonly applied sensitivity analysis approach. 
We further considered other objective functions, such as the 
root mean squared error, however we did not observe sig-
nificant differences in the results and therefore we consider 
in this work only Eq. (5).

2.4.2  Method 2 (DWT): Sobol index computed for each 
DWT level

In Method 2, we considered for the Sobol index calculation 
the MAE computed considering each single level in which 
the observed and the modelled time series can be decom-
posed. Therefore, for each level in which we decompose 
the two signals of observed and modelled time series we 
compute the MAE according to Eq. (5) and then we calcu-
late the first order and the total Sobol indices according to 
Eqs. (1) and (2), respectively. Beside the MAE we tested 
the root mean squared error without observing significant 
differences in the results.

In Method 2, therefore, we decompose both the syn-
thetic observations and the model results with the DWT, we 
compute the MAE on each level and then apply the Sobol 

(5)MAE(O(t), y(t,X)) =

∑N

t=1
�O(t) − y(t,X)�

N

Fig. 1  Description of the pro-
cess to perform the sensitivity 
analysis using the four methods 
considered in this work. Blue 
indicate the parts of the process 
in common among the four 
methods, in orange we highlight 
the differences
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Indices. Therefore, each model parameter is characterized 
by a set of sensitivity indices equal to the number of levels 
in which the signal is decomposed using the DWT. This 
approach aims to disentangle the superimposed signals and 
hence focuses on the dominant parameters controlling the 
processes occurring at different temporal scales. Notice that 
the scale dependent sensitivity indices of Method 2 are novel 
information that is not equivalent to the sensitivity indices 
for the full signal. In particular, the sum of the scale depend-
ent sensitivity indices does not converge in general to the 
sensitivity indices computed for the full signal. In fact, for 
the i-th first order Sobol indices we have

The second term in the numerator is a covariance term 
reflecting the interscale dependency where j and k denote the 
scales and can be expressed as:

The term expressed by Eq. 7 is generally different form 0 
and therefore the sum of the first order Sobol indices com-
puted at each level 

∑
j V

{j}

i
 is not equal to the first order Sobol 

indices computed for the entire signal.
Hence the i-th first order Sobol indices can be rewritten 

as:

2.4.3  Method 3 (R): Sobol index computed for the Wavelet 
Periodogram Efficiency criterium

Method 3 is based on the Wavelet Periodogram Efficiency 
criterium R(O, y) as presented by Schaefli and Zehe (2009) 
for the calculation of the Sobol index. The Wavelet Peri-
odogram Efficiency criterium is a measure to quantify the 
similarity between two wavelet periodograms and, in par-
ticular, to compare their distribution over all scales at each 
time step t. The Kolmogorov–Smirnov distance at time step 
t is defined as

(6)Si =
Vi

var
�
f (X)

� =

∑
j V

{j}

i
+
∑

j≠k V
{jk}

i
∑

jk cov
�
fj(X), fk(X)

�

(7)
∑

j≠k

V
{jk}

i
=
∑

j≠k

(
E
X∼i

[
fj(X)|Xi

]
− E

Xi

[
E
X∼i

[
fj(X)|Xi

]])
⋅

(
E
X∼i

[
fk(X)|Xi

]
− E

Xi

[
E
X∼i

[
fk(X)|Xi

]])

(8)

Si =
Vi

var
[

f (X)
] =

varXi

[

EX∼i

[

f (X)|Xi
]]

var
[

f (X)
]

=
∑

jk covXi

[

EX∼i

[

fj(X)|Xi
]

,EX∼i

[

fk(X)|Xi
]]

∑

jk cov
[

fj(X), fk(X)
]

where y(t,X) is again a realization of the model with param-
eters X and O(t) the set of the observed time series. The 
overall wavelet periodogram efficiency criterion is then 
obtained averaging Dn(t) over all time steps:

R varies between 0 and 1, and a smaller value indicates a 
better fit between y(t,X) and O(t).

Considering R as objective function for the Sobol index 
allows us to give a particular attention to the frequency com-
position of the signal, but the information is aggregated for 

(9)

Dn(t|O(t), y(t,X)) =max
|

|

|

|

|

Cn(t, s|O(t))
Cn

(

t, s = smax|O(t)
)

−
Cn(t, s|y(t,X))

Cn
(

t, s = smax|y(t,X)
)

|

|

|

|

|

(10)R(O(t), y(t,X)) =
1

N

N∑

t=1

Dn(t|O(t), y(t,X))

the entire signal and one single index is calculated for each 
model parameter. Method 3 therefore significantly differs 
from Method 2 since the information contained at different 
scales is merged together in the objective function R¸ while 
in Method 2 we obtain different sensitivity indices for each 
level of the DWT.

2.4.4  Method 4 (MAER): Sobol index for a composite 
objective function

Method 4 considers as objective function for the calculation 
of the Sobol index for a combination of the MAE in the time 
domain and of the Wavelet Periodogram Efficiency criterium 
in the wavelet domain, defined as

MAER aims at considering both the relevance of scale 
dependent processes by using R and their relevance in abso-
lute terms on the modelled signal by using the MAE.

2.5  Convergence analysis

As stated by Sarrazin et al. (2016), there are several kinds 
of convergence analysis that can be performed in the con-
text of sensitivity analysis. For example, the convergence of 

(11)
MAER(O(t), y(t,X)) =

∑N
t=1 |O(t) − y(t,X)|

N

+ 1
N

N
∑

t=1
Dn(t|O(t), y(t,X))
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the input factor screening aims at identifying which are the 
most influent parameters; The convergence of the input fac-
tor ranking is reached when the ranking of the parameters is 
stable independently on the increasing number of samples 
used for the calculation of the sensitivity analysis. The con-
vergence of the sensitivity indices values aims at identifying 
the minimum number of samples needed to obtain a constant 
value in the calculated sensitivity indices. The choice of 
which kind of convergence should be reached depends on the 
goal of the sensitivity analyses, and it is often a compromise 
between the computational resources available and the preci-
sion needed. In our case, we say that convergence has been 
reached, if the change in the Sobol Indices from one simula-
tion to the one with more samples is smaller than 10%. The 
number of samples needed to reach the convergence varies 
as a function of several aspects, as for example the model 
itself and the number of model parameters. In this work, we 
created a set of  106 samples for each model configuration 
that we analyzed. For each of these sets of parameters we 
than randomly choose  103,  104 and  105 samples to create 
smaller sets of realizations and to evaluate if any difference 
is present among the four methods in terms of convergence.

The four methods to perform the sensitivity analysis are 
applied to a hydrological model. The value of the Sobol 
indices are used also to identify the non-sensitive parameters 
(screening) and the ranking of the most sensitive parameters.

2.6  Application to a hydrological problem

An appropriate case study to identify advantages and limita-
tions of the proposed methodology is to consider hydrologi-
cal problems characterized by the superposition of periodic 
signals. Among them we can mention streamflow generation 
in alpine catchments (Schaefli and Zehe 2009) as well as in 
karst systems (Bittner et al. 2021a). Such problems are how-
ever characterized by high parameter space dimensionality 
and therefore sensitivity analysis is rarely performed consid-
ering Sobol indices. Other relevant problems which are char-
acterized by a low parameter space dimensionality and by 
the availability of analytical solutions are the propagation of 
tides in groundwater (Bakker 2019; Slooten et al. 2010), the 
propagation of natural river stage fluctuations towards the 
aquifer (Serrano and Workman 1998) as well as the propaga-
tion of hydropeaking waves in groundwater (Hucks Sawyer 
et al. 2009). Such analytical solutions are widely used in 
practice to estimate lumped model parameters.

We consider a 1-dimensional, homogeneous, semi-infinite 
aquifer, whose water level is affected by the periodic stage 
fluctuations of an adjacent river. As reported in Hucks Saw-
yer et al. (2009), the transient flow in the aquifer is described 
by the 1-dimentional linearized Boussinesq equation

where h is the hydraulic head [m], x is the spatial coordinate 
[m] and t is the time [d]. P is the aquifer diffusivity  [m2/d] 
and it is related to the aquifer properties:

where K is the hydraulic conductivity [m/d], sy is the specific 
yield [-] and b is the saturated aquifer thickness [m].

The boundary conditions considered state that at the 
river bank (x = 0), the groundwater fluctuations correspond 
to the river fluctuations, while at large distance from the 
river the lateral flow approaches zero. The analytical solu-
tion of Eq. 14 in a semi-infinite aquifer is derived following 
Singh (2004). We consider that the river fluctuations may 
be described by the superposition of two sinusoidal waves: 
h1(x = 0, t) = A1sin

(
�1t

)
 and h2(x = 0, t) = A2sin

(
�2t

)
 , 

where �1 and A1 are the frequency and amplitude of the first 
sinusoidal wave, respectively, and �2 and A2 are the fre-
quency and amplitude of the second sinusoidal wave, respec-
tively. The second wave is assumed to have smaller ampli-
tude and higher frequency respect to the first one. Moreover, 
we consider that both h1(x = ∞, t) = 0 and h2(x = ∞, t) = 0 . 
The fluctuations in the aquifer are hence described by:

where � is a phase term [-], which is assumed to be 0 in 
this study.

We investigate three scenarios,  S1,  S2 and  S3, in which the 
amplitude  A2 represents 20%, 40% and 80% of  A1, respec-
tively, as shown in Fig. 2. P depends on the characteristics 
of the aquifer, which are generally poorly known and hence 
uncertain. A similar signal to the one represented in Fig. 2 
can be found in rivers influenced by the management of 
hydropower plants. In fact, this usually introduces in the 
river different kind of fluctuations, such as a daily fluctua-
tion, due to the different energy demand during the day, and 
a weekly fluctuation, due to the lower energy demand during 
the weekend respect to the working days. However, this pat-
tern can differ depending on the management of the hydro-
power plant, on the energy market and legislative framework 
leading to an uncertainty in the model parameters describing 
the river stage fluctuations.

We use Eq. 16 to generate synthetic observation of the 
groundwater level (Fig. 2). The parameters used for the 

(12)�h

�t
= P

�2h

�x2

(13)P =
Kb

sy

(14)

h(x, t) =A1exp

(

−x
√

�1
2P

)

sin

[

−x
√

�1
2P

+ �1t + �

]

+ A2exp

(

−x
√

�2
2P

)

sin

[

−x
√

�2
2P

+ �2t + �

]
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generation of the synthetic observations with a length of 
64 time points, corresponding to one measurement per 
hour, are reported in Table 1. Considering the length of 
the time series considered, we decompose the signal up to 
level 5 with the DWT. We can observe that the difference 
between  S1,  S2 and  S3 decreases with increasing distance 
due to the exponential decay term which dampens high 
frequency fluctuations at higher distances.

We also tested what is the effect on the sensitivity anal-
ysis of a Gaussian noise (measurement error) with zero 
mean and three different values for the standard deviation 
σ (i.e., 0.01m, 0.05m and 0.1m) which is added to Eq. 4 
(Fig. 3).

In this study, we investigate the sensitivity of the param-
eters A1 , P , �1 , A2 , �2 at three different distances from 
the river: 10 m, 50 m and 100 m, using the four methods 
described in Sect. 2.7. For these parameters, we chose a 
uniform distribution with ranges reported in Table 1.

3  Results and discussion

The four methods are tested on synthetic data, however, as 
shown in Huck Sawyer et al. 2009, the analytical solution 
that we apply is able to reproduce fairly well experimental 
observations in the Colorado river. Therefore, in order to 
illustrate the methodology, we use synthetic data, instead of 
experimental data to avoid the influence of model conceptual 
uncertainty (e.g., the representation of surface water-ground-
water interaction considering negligible resistance between 
river and groundwater flow) and uncertainty due to boundary 

Fig. 2  Observations generated 
considering three scenarios for 
the amplitude A2: blue line 
 S1 (A2 = 0.2A1), red line  S2 
(A2 = 0.4A1), yellow line  S3 
(A2 = 0.8A1)

Table 1  Parameters considered in the sensitivity analysis

We report their value used for the generation of the observed time 
series and their ranges for the calculation of the sensitivity analysis

Parameter Value for the generation 
of the observations

Paramenter range for the 
sensitivity analysis

From To

P 270  m2/d 0.27  m2/d 2700  m2/d
A1 0.5 m 0.1 m 1 m
�1 1 cycles/d 0.5 cycles/d 1.5 cycles/d
A2,S1 0.1 m 0.02 m 0.2 m
A2,S2 0.2 m 0.04 m 0.4 m
A2,S3 0.4 m 0.08 m 0.8 m
�2 3 cycles/d 1.5 cycles/d 4.5 cycles/d
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conditions (e.g., fix head conditions on the opposite side 
than the river) on the analysis of parametric uncertainty.

Considering the large amount of simulations and gen-
erated results, in the following we will focus on the most 
relevant aspects of the analysis. Table 2 summarizes the 
setups that we investigated for a specific purpose. If not 
explicitly mentioned, there is no remarkable difference 
among the results presented in the following sections and 
the results obtained for the other setups. The results of 
Method 1 are indicated with MAE, the results for the 
five levels of Method 2 are indicated with L1, L2, L3, L4 
and L5 according to the level considered, the results of 

Method 3 are indicated with R and finally the results of 
Method 4 are indicated as MAER.

3.1  Convergence analysis

Figure 4 displays the value of the first order Sobol indices 
for the five model parameters considering the four differ-
ent methods applied in this study and using four sample 
sizes  (103,  104,  105 and  106realizations of parameter sets). 
We show the results only for  S3  (A2 = 0.8A1), no measure-
ment error and the distance of 50 m from the river. We 
can observe that the value of the Sobol indices is already 
very similar between  105 and  106 samples, however for the 

Fig. 3  Observations generated considering three standard deviations to represent the Gaussian measurement error: blue line σ = 0.01m, red line 
σ = 0.05m, yellow line σ = 0.1m

Table 2  Overview of the setups investigated in this work

Setup Purpose Number of samples Distance from the river Relative amplitude of A2 Measurement error 
(standard deviation)

Convergence analysis 103,  104,  105,  106 50m 0.8A1 0
Identify the effect of different relative amplitudes 

on the sensitivity indices
106 10m, 50m 100m S1  (A2 = 0.2A1) 0

S2  (A2 = 0.4A1)
S3  (A2 = 0.8A1)

Effect of measurement error on the sensitivity 
analysis

106 10m 0.4A1 0.01, 0.05, 0.1
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following analyses, we will consider the results obtained 
considering  106 samples. In fact, in particular for Method 
2, where we compute the Sobol indices for five DWT lev-
els, we can still observe some small differences between 
the results for  105 and  106 samples, in particular for Level 
1 and Level 2, corresponding to the high frequency com-
ponents of the signal. These differences are however insig-
nificant for the purpose of parameter identification and 
ranking.

The convergence analysis performed in this work is quite 
simple and its purpose is only to identify the sample size 
to be used for further analysis. More rigorous approaches, 
as discussed for instance in Sarrazin et al. (2016) may be 
needed depending on the purpose of the study. We can 
observe however that among the four methods the conver-
gence is very similar. Considering the computational time, 
Method 2 is more expensive than the others because it 
requires the decomposition of the signal and the sensitiv-
ity analysis for each level considered. The additional com-
putational effort is related to the computational cost of the 
DWT and CWT in methods 2, 3 and 4, which depends on 
the length of the time series. This additional time can repre-
sent a minimal fraction of the total computational effort for 
complex hydrological models. In our case, however, since 
we are dealing with an analytical solution, the increase in 

computational time with respect to method 1 varies between 
a factor of two (method 3 and 4) and a factor of five (method 
2). The results are shown only for the first order Sobol index, 
but a similar pattern is present also in the analysis of the total 
Sobol indices (Figure S1 in the supporting information).

3.2  Identify the effect of different relative 
amplitudes on the sensitivity indices

Hydropeaking waves can be characterized by different 
amplitudes at multiple temporal scales depending on the 
management of the hydropower plants, the legislation and 
the catchment. Therefore, we investigate three different sce-
narios in which the range in the amplitude of the high fre-
quency wave  A2 varies (see Table 2 and Fig. 1). The results 
are presented separately for Method 2 (Fig. 5) and the other 
three methods (Fig. 6), to better appreciate the advantage of 
performing a scale dependent sensitivity analysis for each 
DWT level in which the signal can be decomposed.

We can observe that the sensitivity indices for L1 and L2 
are very different in comparison to higher levels and indicate 
that  A2 and ω2 can be identified by considering these levels 
in the signal, independently on the relative amplitude of  A2. 
It is interesting to notice that, the higher  A2, the more the 

Fig. 4  First order sensitivity 
indices computed for different 
sample sizes  103 (blue bars),  104 
(red bars),  105(yellow bars) and 
10.6 (purple bars) for the five 
model parameters:  A1 (panel a), 
 A2 (panel b), ω1 (panel c), ω 2 
(panel d), P (panel e)
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sensitivity of ω2 increases, while the sensitivity of  A2 itself 
decreases.

To identify  A1 and ω1, it is appropriate to select L3 to L5. 
Comparing the results for the three different distances, we 
can observe that  A2 and ω2 are relevant parameters at short 
distanced from the river, consistently with the fact that the 
aquifer acts as a low pass filter for the river fluctuations 
(Fig. 1). The diffusivity of the aquifer P becomes the most 
relevant parameter at 100m distance from the river con-
sidering L1 and L2, while considering L3, L4 and L5, the 
parameters  A1 and ω1 have similar or even higher sensitivity 
values than P.

Figure 6 shows that the sensitivity analysis based on the 
MAE, is not able to identify the parameter ω2 at any distance 
from the river. If we include information about the scale 
dependence of the investigated processes by considering R 
both in Method 3 and in Method 4, we can observe that 
ω2 is sensitive and the sensitivity decreases with increasing 
distance from the river. The sensitivity of P increases with 
increasing distance from the river and the parameter is sensi-
tive only if the MAE is considered in the objective function 
used for the sensitivity analysis (Method 1 and Method 4). 

The sensitivity of  A2 is very small compared to the other 
parameters in all three approaches presented in Fig. 6.

Summarizing, independently on the relative ampli-
tude of  A2, Method 1 is not able to identify  A2 and ω2 
as sensitive parameters. The reason for that, is that their 
contribution to the MAE is not large since the rapid water 
table fluctuations are present only at short distances and 
they are relatively small in comparison to  A1. Method 2 
is able to identify as sensitive all five model parameters, 
depending on the distance and the level considered in 
the analysis. The decomposition in the different scales 
allows us to focus on relevant processes with a charac-
teristic frequency and moreover it allows us to detect the 
sensitivity of P for distances in which the periodicity in 
the groundwater fluctuations is not very relevant anymore 
due to the exponential decay of their amplitude. Method 3 
identifies only ω1 and ω2 as sensitive parameters, because 
the objective function is completely biased towards the 
information in the frequency domain. Finally, Method 4 
is able to identify  A1, ω1, ω2 and P as sensitive parameters 
because it considers an objective function that combines 
MAE and R. In this case, depending on the need of the 

Fig. 5  First order sensitivity indices computed considering three scenarios for the amplitude  A2 using Method 2: blue bars  S1  (A2 = 0.2A1), red 
bars  S2  (A2 = 0.4A1), yellow bars  S3  (A2 = 0.8A1)
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analysis, it is also possible to use different weights to 
MAE and R, however, considering the pattern observed 
in Fig. 6, the identification of  A2 will remain challenging 
using this method as neither MAE nor R identify  A2 as 
very sensitive parameter. Although computationally more 
expensive than the other methods, Method 2 allows us to 
increase the parameter identifiability. While the results 
are shown only for the first order Sobol index, a similar 
pattern is obtained also for the total Sobol indices (Figure 
S2 and Figure S3 in the supporting information).

Both Figs.  5 and 6 show the interaction between 
parameters  A2 and ω2, in the methods in which those 
parameters are sensitive. In fact, the increase in the rela-
tive value of  A2 leads to a higher sensitivity in ω2. This 
means that the larger is the fluctuation of the river stage 
at high frequency, the more relevant is the identification 
of the right frequency for the objective function. This 
effect is illustrated in Fig. 7 considering even the MAE 
as objective function, where the sensitivity of  A2 is small 
for a distance of 10m from the river and the scenario  S2 

(where  A2 = 0.4A1), and evidenced by the behavior of its 
derivatives with respect to  A2 and ω2. In particular, we 
can observe the much larger increase in MAE by changing 
ω2 in comparison to its increase by varying  A2.

3.3  Effect of measurement error on the sensitivity 
analysis

This analysis focuses on the effect of a Gaussian measure-
ment error on the results of the sensitivity analysis. The 
values of the first order Sobol index are barely affected by 
the measurement error using the Method 1. When we start 
considering the analysis which include information from the 
wavelet decomposition (Methods 2, 3 and 4), we can observe 
some effects on the value of the first order Sobol index of 
the parameters. However, the effect is not large and it does 
not influences the ranking of the sensitive parameters which 
remains the same independently on the error. The sensitiv-
ity of different parameters is affected by the measurement 
error while considering different methods and a clear pattern 

Fig. 6  First order sensitivity indices computed considering three scenarios for the amplitude  A2 using Method 1(MAE), 3 (R) and 4 (MAER): 
blue bars  S1  (A2 = 0.2A1), red bars  S2  (A2 = 0.4A1), yellow bars  S3  (A2 = 0.8A1)
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cannot be identified. Therefore, we can conclude that the 
results obtained using Method 1 are slightly more stable than 
the results obtained with the other methods if a Gaussian 
measurement error affects the objective function, although, 
at least for the example investigated in this study, this effect 
seems to be negligible for the identification and the ranking 
of sensitive model parameters (Fig. 8).

3.4  Implication for parameter estimation

The implications for parameter estimation are illustrated 
considering a simple Quasi-Newton Algorithm to find the 
optimal solution that minimizes the objective functions. We 
consider a set of fixed parameters (Table 3), which are used 
as values for the parameters that are not sensitive accord-
ing to the result of the sensitivity analysis performed with 
the four different methods and also as starting points for 
the optimization algorithm. We consider a distance of 10 m 
from the river and no measurement error. The results are 
reported in Table 3. In addition to the results for Method 1 
to Method 4, we also consider the mean value of the sensi-
tive parameters for Method 2 computed over different scales. 
Specifically,  A1 and ω1 are the mean value of L3, L4 and 
L5, A2 and ω2 are the mean value of L1 and L2, and P is 

not optimized. Moreover, we consider a composite objective 
function for the optimization problem after performing the 
sensitivity analysis with Method 2 where we minimize the 
sum of the MAE computed at each level. These are to some 
extent arbitrary choices, as we consider equally relevant all 
levels and the attempt to merge the different information 
obtained at different scales could be further investigated in 
future studies.

We can observe that the most convenient method in the 
parameter estimation exercise is Method 2, since it allows 
to optimize four parameters. It is also interesting to notice 
that the optimization algorithm converges towards similar 
values of the sensitive parameters for the different levels 
in the DWT decomposition, with the exception of  A1 at L5 
which converges to a value that is the furthest apart from the 
true values in comparison to the other methods.

However, also Method 4 offers a very interesting alterna-
tive. In fact, by using the combined objective function it is 
able to identify the true frequencies, although P and  A2 are 
fixed to a wrong value. The parameter  A1 on the contrary is 
not very close to the true value. Method 3 is able to identify 
as expected the frequencies ω1 and ω2 quite accurately, while 
Method 1 captures relatively well ω1 but  A1 does not con-
verge to the right value better than Method 2 L3 and Method 

Fig. 7  MAE computed varying only  A2 and ω2, while keeping constant all other parameters. The second and the third panel, represent the d(MAE)

dA2

 
and d(MAE)

d�2

 , respectively
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2 L4. This indicates the importance of having also the pos-
sibility of constraining the aquifer diffusivity P, for example 
by taking measurements further away from the river.

Figure 9 shows that Method 1 is able to capture the low 
frequency variability of the groundwater table fluctuations, 
but systematically misses the high frequency part of the 

signal. Method 3 and Method 4 display a similar dynamic as 
the observations, but they underestimate the amplitude of the 
fluctuations. Considering L1 and L2 in Method 2, we have 
a similar result as for Method 3 and Method 4, although the 
amplitude is to some extent better represented, while consid-
ering L4 and L5 we obtain a signal similar to the MAE. The 
result obtained by the proposed averaging procedure and the 
composite objective function are by far the most satisfactory 
results as they properly capture both the frequencies and 
the amplitudes of the observed groundwater fluctuations, 
although we did not provide any optimization for P because 
it was not identified as a sensitive parameter.

4  Conclusion

In this work, we compared four different approaches to per-
form a sensitivity analysis and three of them are novel since 
they consider metrics defined in the wavelet domain. The 
motivation for considering wavelet decomposition relies in 
the evidence that hydrological time series are the result of 
processes that affect different temporal scales and therefore 
we aim at taking advantage of this property to enhance the 
parameter identifiability. Although we consider in this work 
a problem with low parameter dimensionality, the proposed 

Fig. 8  First order sensitivity 
indices computed consider-
ing three standard deviations 
to represent the Gaussian 
measurement error: blue bars 
σ = 0.01 m, red bars σ = 0.05 m, 
yellow bars σ = 0.1 m

Table 3  Results of the parameter estimation exercise. Only sensitive 
parameters (number bold) are considered by the optimization algo-
rithm

A1 (m) ω1 (1/d) A2 (m) ω2 (1/d) P  (m2/d)

True values 0.5 0.2618 0.2 0.7854 270
Fixed parameters 0.3 0.3 0.1 0.85 40
Method 1 0.7131 0.2711 0.1 0.85 40
Method 2 L1 0.3 0.3 0.3417 0.7966 40
Method 2 L2 0.3 0.3 0.3581 0.7968 40
Method 2 L3 0.7131 0.2711 0.1 0.85 40
Method 2 L4 0.7131 0.2711 0.1 0.85 40
Method 2 L5 0.9218 0.2703 0.1 0.85 40
Method 2 Mean 0.7827 0.2708 0.3499 0.7967 40
Method 2 Composite 0.7023 0.2694 0.3624 0.7987 40
Method 3 0.3 0.2446 0.1 0.7855 40
Method 4 0.1973 0.2613 0.1 0.7861 40
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methodology is not restricted to this simple yet relevant 
setup. The sensitivity analysis results show that in aquifers 
affected by hydropeaking the properties of the wave (ampli-
tude and frequency) are generally more relevant than the 
aquifer properties (hydraulic conductivity, specific yield and 
aquifer thickness). An accurate description of surface water 
management practices is therefore of utmost importance for 
the study of surface water-groundwater interaction in this 
kind of systems. If we want to extend the proposed method-
ology to a hydrological model focusing on discharge time 
series prediction in an alpine catchment, we can perform the 
DWT of the discharge observation and of the model results. 
We can compare then the results with the observation at each 
scale using an appropriate metric, such as the Nash Sutcliffe 
Efficiency. In this way, we can better identify and eventu-
ally constrain for instance the snow and glacier parameters 
considering daily and seasonal components of the discharge 
signal. Of course, if processes like snow and glacier melt 
share the same scales of variability, the identification of their 
parameters separately can remain challenging. Further work 
is hence needed to test the methodology in more complex 
and comprehensive hydrological models.

We chose a low dimensionality problem because we 
focus on variance-based sensitivity analysis. However, 
the extension to the application of the wavelet transform 
to other sensitivity indices (e.g., Morris method (Smith 

2013)) is straightforward. Application to field measurements 
is beyond the scope of this paper, but it was demonstrated 
that the method is robust also in case of experimental errors 
present in the synthetic observations. The data presented in 
Basilio-Hazas et al. (2022) could also represent a benchmark 
for the application of methodology. In that case, however, 
the relevant periodicities are the weekly and the seasonal 
ones and the complexity of the aquifer system requires the 
use of a numerical model for the representation of the meas-
ured hydraulic heads. A Gaussian measurement error affects 
the value of the Sobol index computed for some parameters 
in the wavelet domain, but it does not affect the identification 
and ranking of the sensitive parameters.

The analyses highlight that the most promising method 
to enhance parameter identifiability is based on the discrete 
wavelet transform decomposition of the signal and then 
on the calculation of the objective function for the differ-
ent scales in which the signal is decomposed. Although 
computationally more expensive, this method allows us to 
identify the maximum number of parameters in the example 
considered in this study. This information can be further 
integrated in a parameter estimation procedure, however, 
in this work we show only a first rudimentary attempt to 
handle this possibility. An interesting and computationally 
efficient alternative is the use of the MAER as objective 
function, i.e. the combination of objective functions defined 

Fig. 9  Results of the optimization exercise for a MAE (red continu-
ous line, first panel), R (yellow line continuous, first panel), MAER 
(purple continuous line, first panel), b L1 (red dashed line, second 
panel), L2 (yellow dashed line, second panel), L3 (purple dashed line, 
second panel), L4 (green dashed line, second panel), L5 (cyan dashed 

line, second panel) and c the mean of L1-L5 parameters (red dash-
dotted line, third panel) and the parameter of the composite L1-L5 
objective function (yellow dash-dotted line, third panel). Observa-
tions are the blue continuous line in all three panels
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in the time (MAE) and in the frequency domain (R), respec-
tively. We show that for our case study overparameterization 
is not inherently affecting the problem, but it is caused by 
the approach chosen for the sensitivity analysis and param-
eter calibration. The proposed approach reduces the issue 
of overparameterization because also weak processes (and 
parameters) which are overlaid by stronger effects in the 
time series can be identified by filtering the signal with the 
wavelet transform. Since the wavelet-based sensitivity analy-
sis isolates processes occurring at different temporal scales, 
a temporal scale-based model calibration may lead to more 
robust results in the sense that they may show the same error 
but a more physically correct behavior: parameter optimiza-
tion could be done with a prioritization towards the most 
relevant scales. By doing so one should overcome equifi-
nal local optima representing unphysical model states. The 
sensitivity analysis performed in the wavelet domain in this 
study has not shown a significant effect on the convergence 
of the sensitivity indices. Future studies should also consider 
the possibility of performing not only a sensitivity analysis 
at multiple levels, but also take advantage of the possibil-
ity of performing the sensitivity analysis for different time 
windows, hence combining multilevel and time-dependent 
sensitivity analysis methods.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00477- 023- 02654-3.
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