Skip to main content
Log in

The relationship between ENSO, IOD and SAM with extreme rainfall over South America

  • ORIGINAL PAPER
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

There is growing acceptance that the climate is changing. The Intergovernmental Panel on Climate Change reports that extreme events are accentuated with climate change, contributing to the risk and vulnerability of social and environmental systems. This research is focused on South America analyzing the spatial distribution of rainfall and extreme rainfall indices. Then, the pattern of influence of El Niño-Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and the Indian Ocean Dipole (IOD) forcings were analyzed. The climate analysis of the indices highlights the spatial coherence between them over the wettest and driest subregions. Lower total accumulated rainfall, number of rainy days, total accumulated rainfall due to moderate wet days, maximum number of consecutive wet days and higher maximum number of consecutive dry days were observed in the northeast of Brazil, the southeast of Argentina and the Andean region. The opposite was observed in Amazonia and Southeastern South America (SESA).Three subregions were analyzed: north of South America (NSA), South Atlantic Convergence Zone (SACZ), and SESA; being the ENSO events, the ones that provide a stronger and more spatially distributed signal. While the IOD signal is similar when analyzing on a monthly basis, SAM gets deeper in November. In general, the signal in SACZ shows greater spatial variability, while in NSA contains the largest number of significant grid points of opposite sign to the SESA. The response of rainfall and rainfall extreme events to ENSO, SAM and IOD forcings provides useful information for climate services, especially in global warming scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fg. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I Surface Climate. Monthly Weather Rev 116:505–524

    Google Scholar 

  • Aceituno P, Montecinos A (1992) Análisis de la estabilidad de la relación entre la Oscilación del Sur y la precipitación en América del Sur. In Paleo ENSO Records. International Symposium (eds Ortlieb L, Macharé J): 7–13

  • Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Jumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Varzquez-Aguirre J (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111(D5)

  • Almazroui M, Saeed F, Saeed S, Ismail M, Ehsan MA, Islam MN, Abid M, O’Brien E, Kamil S, Ur Rashid I, Nadeem I (2021) Projected changes in climate extremes using CMIP6 simulations over SREX regions. Earth Syst Environ 5(3):481–497

    Google Scholar 

  • Andreoli R, de Oliveira S, Kayano M, Viegas J, de Souza R, Candido L (2016) The influence of different el Niño types on the South American rainfall. Int J Climatol 37(3):1374–1390

    Google Scholar 

  • Annamalai H, Kida S, Hafner J (2010) Potential impact of the tropical Indian Ocean-Indonesian Seas on El Niño characteristics. J Clim 23:3933–3952

    Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean Dipole on the relationship between the Indian Monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502

    Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2003) Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys Res Lett. https://doi.org/10.1029/2001GL013294

    Article  Google Scholar 

  • Bale J, Masters G, Hodkinson I, Awmack C, Bezemer T, Brown V, Butterfield J, Buse A, Coulson J, Farrar J, Good J, Harrington R, Hartley S, Jones T, Lindroth R, Press M, Symrnioudis I, Watt A, Whittaker J (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8(1):1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x

    Article  Google Scholar 

  • Barros V, Doyle M, Camilloni I (2008) Precipitation trends in southeastern South America: relationship with ENSO phases and with low-level circulation. Theoret Appl Climatol 93(1–2):19–33

    Google Scholar 

  • Bell JE, Brown CL, Conlon K, Herring S, Kunkel KE, Lawrimore J, Luber G, Schreck C, Smith A, Uejio C (2018) Changes in extreme events and the potential impacts on human health. J Air Waste Manag Assoc 68(4):265–287

    Google Scholar 

  • Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829

    Google Scholar 

  • Black E, Slingo J, Sperber KR (2003) An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon Weather Rev 131(1):74–94

    Google Scholar 

  • Boulanger J, Leloup J, Penalba O, Rusticucci M, Lafon F, Vargas W (2005) Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Clim Dyn 24:393–413

    Google Scholar 

  • Cai W, Van Rensch P, Cowan T, Sullivan A (2010) Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J Clim 23(18):4944–4955

    Google Scholar 

  • Cai W, McPhaden MJ, Grimm AM, Rodrigues RR, Taschetto AS, Garreaud RD, Dewitte B, Poveda G, Ham Y, Santoso A, Ng B, Anderson W, Wang G, Geng T, Jo H, Marengo JA, Alves LM, Osman M, Li S, Wu L, Karamperidou C, Takahashi K, Vera C (2020) Climate impacts of the El Niño–southern oscillation on South America. Nature Rev Earth Environ 1(4):215–231

    Google Scholar 

  • Cane MA, Zebiak SE (1985) A theory for El Niño and the Southern oscillation. Science 228:1084–1087

    Google Scholar 

  • Carbone M, Piccolo M, Scian B (2004) Análisis de los períodos secos y húmedos en la cuenca del Arroyo Claromecó, Argentina. Papeles Geografía 40:25–35

    Google Scholar 

  • Carvalho LM, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15(17):2377–2394

    Google Scholar 

  • Catto JL, Jakon C, Berry G, Nicholls N (2012) Relating global precipitation to atmospheric fronts. Geophys Res Lett 39:L10805. https://doi.org/10.1029/2012GL051736

    Article  Google Scholar 

  • Cavalcanti IF, Kousky VE (2001) Drought in Brazil during summer and fall 2001 and associated atmospheric circulation features. Revista Climanálise 1:1–10

    Google Scholar 

  • Cavalcanti I, Carril A, Penalba O, Grimm AM, Menendez C, Sanchez E, Cherchi A, Sörensson A, Robledo F, Rivera J, Pántano V, Betolli ML, Zaninelli P, Zamboni L, Tedeschi R, Dominguez M, Ruscica R, Flach R (2015) Precipitation extremes over La Plata Basin—review and new results from observations and climate simulations. J Hydrol 523:211–230. https://doi.org/10.1016/j.jhydrol.2015.01.028

    Article  Google Scholar 

  • Cerón W, Kayano M, Andreoli R, Avila-Diaz A, Ayes I, Freitas E, Martins J, Souza R (2020) Recent intensification of extreme precipitation events in the La Plata Basin in Southern South America (1981–2018). Atmosp Res. https://doi.org/10.1016/j.atmosres.2020.105299

    Article  Google Scholar 

  • Chan SC, Behera SK, Yamagata T (2008) Indian Ocean dipole influence on South American rainfall. Geophys Res Lett 35(14)

  • Coelho CA, Uvo CB, Ambrizzi T (2002) Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theoret Appl Climatol 71(3):185–197

    Google Scholar 

  • CONAB (2017) Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar. Primeiro Levantamento-Safra 2017/18, 62p. http://www.conab.gov.br

  • Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J J Royal Meteorol Soc 21(15):1845–1862

    Google Scholar 

  • Donat M, Alexander L, Yang H, Durre I, Vose R, Caesar J (2013) Global land-based datasets for monitoring climatic extremes. Bull Am Meteor Soc 94(7):997–1006

    Google Scholar 

  • Drumond ARM, Ambrizzi T (2006) A pré-estação chuvosa no Brasil e sua relação com o dipolo do oceano Índico. XIV Congresso Brasileiro de Meteorologia, Florianópolis, 27 Nov–01 Dec. Accessed May 9, 2020

  • Easterling DR, Kunkel KE, Wehner MF, Sun L (2016) Detection and attribution of climate extremes in the observed record. Weather Clim Extr 11:17–27

    Google Scholar 

  • Fernandes LG, Rodrigues RR (2018) Changes in the patterns of extreme rainfall events in Southern Brazil. Int J Climatol 38(3):1337–1352

    Google Scholar 

  • Field CB, Barros V, Stocker TF, D Qin DJ, Dokken KL (2012) Ebi, MD Mastrandrea, KJ Mach, G.-K. Plattner, SK Allen, M. Tignor, and PM Midgley (eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change

  • Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the Southern Annular Mode. Geophys Res Lett 33(23)

  • Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462. https://doi.org/10.1029/1999GL900003

    Article  Google Scholar 

  • González MH, Vera CS (2010) On the interannual wintertime rainfall variability in the Southern Andes. Int J Climatol A J Royal Meteorol Soc 30(5):643–657

    Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22(7):1589–1609

    Google Scholar 

  • Gupta AS, England MH (2006) Coupled ocean-atmosphere-ice response to variations in the Southern Annular Mode. J Clim 19:4457–4486

    Google Scholar 

  • Hendon HH, Thompson DW, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J Clim 20(11):2452–2467

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hílm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92

    CAS  Google Scholar 

  • Iacovone MF, Pántano VC, Penalba OC (2020) Consecutive dry and wet days over South America and their association with ENSO events, in CMIP5 simulations. Theoret Appl Climatol 142(1):791–804

    Google Scholar 

  • IAI (2004) ENSO-Argentina. Informe Final IAI. Centro de Estudios Sociales y Ambientales.

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Cambridge University Press, Cambridge, pp 1132

  • IPCC (2022) Climate Change 2022: mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Shukla PR, Skea J, Slade R, Al Khourdajie A, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley S (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157926.

  • Javadinejad S, Dara R, Jafary F (2019) Impacts of extreme events on water availability. Ann Geograph Stud 2(3):16–24

    Google Scholar 

  • Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. CR Geosci 340(9–10):621–628

    Google Scholar 

  • Jordan T, Riquelme R, González G, Herrera C, Godfrey L, Colucci S, León J, Gamboa C, Urrutia J, Tapia L, Centella K, Ramos H (2015) Hydrological and geomorphological consequences of the extreme precipitation event of 24–26 March 2015. In XIV Congreso Geológico de Chile, Chile

    Google Scholar 

  • Karl TR, Nicholls N, Ghazi A (1999) Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. In: Weather and climate extremes (pp. 3–7). Springer, Dordrecht

  • Kayano MT, Cerón WL, Andreoli RV, Souza RA, Souza IP, Canchala T (2021) El Niño-Southern Oscillation and Indian Ocean Dipole modes: their effects on South American rainfall during austral spring. Atmosphere 12(11):1437

    Google Scholar 

  • Kidson JW (1988) Interannual variations in the Southern Hemisphere circulation. J Clim 1(12):1177–1198

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263

    Google Scholar 

  • L’Heureux ML, Thompson DW (2006) Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Climate 19:276–287

    Google Scholar 

  • Lau NC, Nath MJ (2004) Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J Climate 17:245–265

    Google Scholar 

  • Marengo JA (2010) Vulnerabilidade, impactos e adaptação à mudança do clima no semi-árido do Brasil. Parcerias Estratégicas 13(27):149–176

    Google Scholar 

  • Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36(3):1033–1050

    Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PL, Cavalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-Paegle J, Zipser E, Seth A, Alves LM (2012) Recent developments on the South American monsoon system. Int J Climatol 32(1):1–21

    Google Scholar 

  • Martín-Gómez V, Barreiro M (2016) Analysis of oceans’ influence on spring time rainfall variability over Southeastern South America during the 20th century. Int J Climatol 36(3):1344–1358

    Google Scholar 

  • IPCC (2021) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In: Masson-Delmotte V, P Zhai, A Pirani, SL Connors, C Péan, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Leitzell, E Lonnoy, JBR Matthews, TK Maycock, T Waterfield, O Yelekçi, R Yu, B Zhou, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, https://doi.org/10.1017/9781009157896

  • Mo K (2000) Relationships between low frequency variability in the southern hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610

    Google Scholar 

  • Montecinos A, Díaz A, Aceituno P (2000) Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J Clim 13(4):746–758

    Google Scholar 

  • Penalba OC, Robledo FA (2010) Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century. Clim Change 98(3):531–550

    Google Scholar 

  • Penalba O, Beltran A, Messina C (2005) Monthly rainfall in central-eastern Argentina and ENSO: a comparative study of rainfall forecast methodologies. Rev Bras Agrometeorologia 13(2):49–61

    Google Scholar 

  • Penalba O, Pántano V, Spescha L, Murphy G (2019) El Niño-Southern Oscillation incidence over long dry sequences and their impact on soil water storage in Argentina. Int J Climatol 39:2362–2374. https://doi.org/10.1002/joc.5957

    Article  Google Scholar 

  • Pittock AB (1980) Patterns of climatic variation in Argentina and Chile – I 1931–1960 Precipitation. Monthly Weather Rev 108(9):1347–1361

    Google Scholar 

  • Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234(1):3–27

    Google Scholar 

  • Reason CJC, Rouault M (2005) Links between the Antarctic oscillation and winter rainfall over western South Africa. Geophys Res Lett 32(7)

  • Reboita MS, Ambrizzi T, Crespo NM, Dutra LMM, Ferreira GWDS, Rehbein A, Drumond A, Rocha RPD, Souza CAD (2021) Impacts of teleconnection patterns on South America climate. Ann N Y Acad Sci 1504(1):116–153

    Google Scholar 

  • Rivera J, Penalba O (2014) Trends and spatial patterns of drought affected area in southern South America. Climate 2:264–278. https://doi.org/10.3390/cli2040264

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño-Southern Oscillation. Mon Weather Rev 115:1606–1626

    Google Scholar 

  • Saji NH, Yamagata TJCR (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res 25(2):151–169

    Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363

    CAS  Google Scholar 

  • Saji NH, Ambrizzi T, Ferraz SET (2005) Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dyn Atmos Oceans 39(1–2):87–101

    Google Scholar 

  • Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon Weather Rev 135(4):1290–1309

    Google Scholar 

  • Sena AC, Magnusdottir G (2021) Influence of the Indian Ocean Dipole on the large-scale circulation in South America. J Clim 34(15):6057–6068

    Google Scholar 

  • Sgroi LC, Lovino MA, Berbery EH, Müller GV (2021) Characteristics of droughts in Argentina’s core crop region. Hydrol Earth Syst Sci 25(5):2475–2490

    Google Scholar 

  • Silvestri GE, Vera CS (2003) Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys Res Lett 30(21):2115. https://doi.org/10.1029/2003GL018277

    Article  Google Scholar 

  • Silvestri G, Vera C (2009) Nonstationary impacts of the southern annular mode on southern hemisphere climate. J Clim 22(22):6142–6148

    Google Scholar 

  • Skansi M, Brunet M, Sigró J, Aguilar E, Groening J, Bentancur O, Rojas C (2013) Warming and wetting signals emerging from an analysis of changes in climate extreme indices over South America. Global Planet Change 100:295–307

    Google Scholar 

  • Spinoni J, Vogt J, Naumann G, Carrao H, Barbosa P (2014) Towards identifying areas at climatological risk of desertification using the Köppen-Geiger classification and FAO aridity index. Int J Climatol 35(9):2210–2222

    Google Scholar 

  • Taschetto AS, Ambrizzi T (2012) Can Indian Ocean SST anomalies influence South American rainfall? Clim Dyn 38(7–8):1615–1628

    Google Scholar 

  • Tedeschi RG, Cavalcanti IF, Grimm AM (2013) Influences of two types of ENSO on South American precipitation. Int J Climatol 33(6):1382–1400

    Google Scholar 

  • Thompson D (2006) The southern annular mode and New Zealand climate. Water Atmos 14(2):24–25

    Google Scholar 

  • Thompson D, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899

    CAS  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Oceans 103(C7):14291–14324

    Google Scholar 

  • Vasconcellos FC, Cavalcanti IF (2010) Extreme precipitation over Southeastern Brazil in the austral summer and relations with the Southern Hemisphere annular mode. Atmos Sci Lett 11(1):21–26

    Google Scholar 

  • Vasconcellos FC, Pizzochero RM, de Albuquerque Cavalcanti IF (2019) Month-to-month impacts of Southern annular mode over South America climate. Anuário Do Instituto De Geociências 42(1):783–792

    Google Scholar 

  • Vera CS, Osman M (2018) Activity of the Southern Annular Mode during 2015–2016 El Niño event and its impact on Southern Hemisphere climate anomalies. Int J Climatol 38:e1288–e1295

    Google Scholar 

  • Vicente‐Serrano SM, López‐Moreno JI, Gimeno L, Nieto R, Morán‐Tejeda E, Lorenzo‐Lacruz J, Beguería S, Azorin‐Molina C (2011) A multiscalar global evaluation of the impact of ENSO on droughts. J Geophys Res Atmos 116(D20)

  • Wallace JM, Thompson DWJ (2002) The Pacific center of action of the Northern Hemisphere annular mode: real or artifact? J Clim 15(14):1987–1991

    Google Scholar 

  • Wang T, Tu X, Singh VP, Chen X, Lin K (2021) Global data assessment and analysis of drought characteristics based on CMIP6. J Hydrol 596:126091

    Google Scholar 

  • Wilks D (2006) Statistical methods in the atmospheric sciences. Second Edition. Academic Press, p 627

  • Zubair L, Rao SA, Yamagata T (2003) Modulation of Sri Lankan maha rainfall by the Indian Ocean dipole. Geophys Res Lett 30(2)

Download references

Acknowledgements

This work has been supported by the projects PIP 0333, UBACyT 20020170100357BA, PICT 2018/03589 and PICT 2019/02933. We are also grateful to the two anonymous reviewers whose comments helped to improve the paper.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conceptualization and design. Material preparation and data collection was performed by MFI. The analysis and writing were performed by all the authors, who read and approved the final manuscript.

Corresponding author

Correspondence to Maria Florencia Iacovone.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacovone, M.F., Pántano, V.C. & Penalba, O.C. The relationship between ENSO, IOD and SAM with extreme rainfall over South America. Stoch Environ Res Risk Assess 38, 1769–1782 (2024). https://doi.org/10.1007/s00477-023-02653-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-023-02653-4

Keywords

Navigation