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Abstract
The European sardine is a pelagic species of great ecological importance for the conservation of the Mediterranean Sea as

well as economic importance for the Mediterranean countries. Its fishing has suffered a significant decline in recent years

due to various economic, cultural and ecological reasons. This paper focuses on the evolution of sardine catches in the

Mediterranean Sea from 1985 to 2018 according to the fishing Mediterranean country and the type of fishing practised,

artisanal and industrial. We propose three Bayesian longitudinal linear mixed models to assess differences in the temporal

evolution of artisanal and industrial fisheries between and within countries. Overall results confirm that Mediterranean

fishery time series are highly diverse along their dynamics and this heterogeneity is persistent throughout the time.

Furthermore, our results highlight a positive correlation between artisanal and industrial fishing. Finally, the study observes

a consistent decreasing time trend in the quantity of fish landings. Although the causes of this feature could be also linked

to economic motivations (such as a reduction in demand or the reorientation of fleets towards more commercially beneficial

species), it may indicate a potential risk to the stock of this species in the Mediterranean Sea.

Keywords Autoregressive processes � Joint linear mixed models � Pelagic ecosystem � Serial correlation

1 Introduction

Small pelagic fish species are key elements of the

Mediterranean pelagic ecosystem due to their high bulk

biomass at the mid-trophic level, which provides an

important energy connection between the lower and the

upper trophic levels (Albo-Puigserver et al. 2015). These

species have shown to be essential in the coupling between

the pelagic and the demersal environment, as they are prey

for pelagic predators such as tuna, cetaceans, pelagic birds,

and demersal predators such as hakes (Mellon-Duval et al.

2017; Navarro et al. 2017). Small pelagic fishing usually

live in dense shoals, making gear such as mid-water

pelagic trawls and purse seines particularly efficient for

their capture.

Fluctuations in populations of small pelagics can

therefore have serious ecological and socio-economic

consequences. The population dynamics of these species

could be strongly influenced by natural environmental

fluctuations (bottom-up control) and mortality (top-down

control) (Checkley et al. 2017). Catches in the Mediter-

ranean Sea are dominated by small pelagics, representing

nearly 49% of the harvest (Saraux et al. 2014). Among

them, the European sardine (Sardina pilchardus) is possi-

bly the most important species both ecologically and

economically.
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In recent years, the European sardine has undergone a

shocking process of fragility, with a drastic reduction in

body weight (about two thirds) and a much shorter life span

than 20 years ago, which can be a reflection of its reduction

in catches. This decline is the result of a complex process

probably caused by many factors, the combination of

which has led to this negative process (Brosset et al. 2017;

Brigolin et al. 2018). Many theories were raised within the

fishery scientific community: an increase in hungry sar-

dine-eating predators such as bluefin tuna, whose popula-

tion is increasing in the Mediterranean Sea, and dolphins.

Another important element is the reduction of plankton,

their food source. In the last few years, these marine micro-

organisms have been drastically reduced and have become

less nutritious. This is a result of global warming, as

plankton generally feed on nutrients from cold, deep

waters. In addition, there has also been a recent prolifera-

tion of jellyfish blooms, predators of eggs and larval stages

of sardines and also competitors for plankton. The

shrinking size of sardines, the fact that most sardines are

sold fresh rather than frozen, the changing economic

relationship that generates their sales, dominated lately by

large retail chains that virtually control their demand, and

changing consumer preferences and intergenerational dif-

ferences have all contributed, to a greater or lesser extent,

to a fall in sardine prices and catches in the market that

threatens the viability of the less powerful fishing fleets.

It is also important to note that the declining trend in

European sardine landings may lie in different factors (Coll

et al. 2024; Chen et al. 2021; Basilone et al. 2021). For

instance, there could be a refocusing of fishing fleets on

other economically more profitable species (such as

anchovy), the abandonment of fishing by shipowners

without replacement, a lack of demand due to a

reorientation of the processing industry, or changes in

consumption patterns and habits.

Figure 1 describes the quantity, in thousands of tonnes

(tt), of sardine caught by the main Mediterranean fishing

countries from 1985 to 2018. This graph shows very

interesting information. Two distinct behaviours can be

reported. On the one hand, we observe that from 1985 to

around 2005 the quantity of sardines fished experienced a

notable decrease, going from around 350 to 250 tt. In 2006

and 2007 we can appreciate a slight upturn, but from that

date onward there is again a decrease that seems to have

stabilised in recent years at around 225 tt.

At regional level, strong declines in sardine landings

have been reported in different Mediterranean areas (Coll

et al. 2019). However, no study has been performed to

assess sardine landings dynamics at a large-scale. Although

working at a fine scale and regional level (e.g. Mediter-

ranean eco-regions or subareas) has several advantages,

large-scale analysis is also essential to provide a broader

and complementary perspective of non-localised drivers of

fisheries where sardine fish stocks are shared among

countries, and reduce the bias of landings misallocation

(Stergiou et al. 2016). Understanding fish population

dynamics is a major goal of fisheries ecology.

Pennino et al. (2017) stated that Mediterranean fisheries

are highly diverse and geographically varied, not only

because of the existence of different marine environments,

but also because of diverse socio-economic situations, and

fisheries status. The two most important types of com-

mercial fishing in the Mediterranean are artisanal and

industrial, defined in terms of small-scale and large-scale

commercial fisheries, respectively (Zeller and Pauly 2016).

This is a statistical article that focuses on the evolution

of sardine catches in the Mediterranean Sea from 1985 to

2018 according to the Mediterranean fishing country and

the type of fishing practised. The main objective is to detect

and analyse general patterns of the joint temporal evolution

of artisanal and industrial fisheries, as well as relevant

individual characteristics of the different Mediterranean

countries. This is a quantitative overview that provides a

different perspective on the problem than a purely bio-

logical, economic or ecological one.

The statistical framework of this study are the longitu-

dinal linear mixed models. The term longitudinal indicates

that each individual of the sample is measured repeatedly

on the same outcome at several points in time. Each

Mediterranean country was considered as an individual and

the annual sardine landings formed a set of individual time

series (1985 to 2018), one for each country and type of

fishing. The assumption that all of the information about

the response variable is generated by a function common to

all individuals of the target population is not realistic.

Ignoring individual heterogeneity among countries could
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Fig. 1 Annual thousands of tons of European sardine caught by the

main Mediterranean fishing countries from 1985 to 2018. Data come

from Sea Around Us (www.seaaroundus.org)
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lead to inconsistent and inefficient estimates of the

parameters of interest (Pinheiro and Bates 2000). As a

result, our longitudinal models will include not only

common population information and measurement error

terms, as described by Diggle et al. (2002), but also ran-

dom effects to account for specific country characteristics.

Statistical estimation is carried out within the Bayesian

inferential framework. Consequently, we assume a defini-

tion of probability that allows assigning probability distri-

butions to all unknown quantities, such as parameters,

random effects, hyperparameters, etc. In particular, a prior

distribution is always the starting point of the inferential

process that we will update with the experimental infor-

mation through the Bayes theorem to obtain the posterior

distribution for the relevant unknown quantities of the

model. This posterior distribution is the key element for the

posterior analysis about the relevant outcomes of the pro-

cess. The Bayesian framework is appropriate for conduct-

ing environmental research, as evidenced by Lye (1990),

Perreault et al. (2000) and Tongal and Booij (2023), among

others.

The contributions of the paper are twofold. On the

methodological side, we developed an approach in the

fishery framework for jointly modelling several longitudi-

nal response variables. This approach connects individual

information by considering correlation parameters that

measure the linear relationships between the random

effects of the different responses within each individual.

Secondly, on the applied fishery side, we demonstrated,

among all the heterogeneus behaviours of the countries, a

decline in landing quantity for both the artisanal and the

industrial fishing in the Mediterranean Sea over the past

three decades. In addition, we found a positive sinergistic

relationship between the two types of fisheries within each

country.

This paper is organised as follows. Section 2 presents

the data on artisanal and industrial sardine catches from

1985 to 2018 corresponding to the Mediterranean countries

that participate in the study. Section 3 discusses the general

joint Bayesian statistical framework and introduces three

modelling approaches that seem appropriate for analysing

the study’s data. Section 4 deals with the approximation of

the subsequent posterior distributions via Markov Chain

Monte Carlo methods (MCMC). It also presents a discus-

sion comparing the three proposed models, and a final

subsection that analyses the possible synergistic relation-

ships between the two types of fisheries in the different

countries studied. The paper ends with some concluding

remarks.

2 Sardine fisheries in the Mediterranean Sea

Annual landings data (tonnes) from 1985 to 2018 of

European sardine caught by artisanal and industrial meth-

ods by Mediterranean countries have been extracted from

Sea Around Us (www.seaaroundus.org). Countries partic-

ipating in the study are Albania, Algeria, Bosnia and

Herzegovina, Croatia, France, Greece, Italy, Montenegro,

Morocco, Slovenia, Spain and Turkey (See Fig. 2).

Data from European countries recognised as sovereign

from 2010 by the international community (Bosnia and

Herzegovina, Croatia, Montenegro, and Slovenia) were

imputed from 1985 to 2010 (Zeller and Pauly 2016) based

on information from Exclusive Economic Zones (EEZ),

which was linked to these countries after reconstructing

data by means of several sources.

According to Zeller and Pauly (2016), in the Sea Around

Us dataset, both artisanal and industrial sectors are pre-

dominantly commercial. Additionally, the size of the vessel

is not explicitly considered to differentiate between arti-

sanal and industrial fishing. However, in the latter, larger

vessels are common. In particular, artisanal fishing consists

not only of small-scale methods (such as hand lines and

gillnets) and fixed gears (like weirs and traps), but also is

limited to coastal areas within a maximum range of 50 km

from the coast or 200 m in depth. Another characteristic of

this method is that a small fraction of the catch is con-

sumed or given away by the crew. In contrast, industrial

boats can fish in waters of other countries or in the open

sea. They are motorized vessels that require significant

investments in their construction, maintenance, and

operation.

Figure 3 shows two spaghetti plots. The top fig-

ure shows the annual amount of sardines caught by arti-

sanal fishing from 1985 to 2018 in those Mediterranean

countries that retain this type of fishery. The bottom fig-

ure displays the same quantity but for the annual amount of

sardines caught by industrial methods. The first thing that

strikes is how few sardines are caught by traditional

methods compared to those caught by industrial fishing.

There is only one notable situation, such as that of Algeria,

which has a positive evolution of its traditional fisheries.

Note that not all countries have both types of fisheries

(Bosnia and Herzegovina has no registered industrial

fisheries and Albania has not registered artisanal fisheries).

The behaviour of the countries is very different both in

relation to the quantity of sardines caught by industrial

methods at the beginning of the study (year 1985) and in

their evolution over time. Countries such as Italy and

Algeria are particularly striking. Italy started out as the

country that fished the most sardines at the beginning of the

study, exceeding the 150 tonne barrier the first years. From
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the mid-1980 s onwards, it experienced a significant

decrease, fishing less than 50 tonnes per year from 1998

onwards. Although it seems to have recovered in recent

years, it is still below the annual level of 50 tonnes of

sardines fished. Algeria started the study in the group of

low fishing countries but experienced strong growth until

the end of the 1980 s. Since then it has maintained a fairly

stable behaviour until around 2008 when it has seen a

drastic reduction in its sardine catches. Spain has also

exhibited a consistent decline in industrial fishing activity

since around 1995, without showing any signs of recovery

since then. A weak recovery seems to have been observed

in some countries in recent years. Bosnia and Herzegovina

is the country that fishes the least quantity of sardines. It

only reports industrial fishing but has experienced a

notable expansion in the most recent years. Turkey also

increased fishing significantly between the 70 s and the

90 s, and it is currently, along with Algeria, Croatia,

Greece and Morocco one of the largest sardine fisheries.

France and Slovenia have lowered substantially their cat-

ches in the recent years.

It is important to note that no information was recorded

neither for Spain’s artisanal fishing until 2010, nor for

Turkey’s since 2000. This does not necessarily imply that

these fisheries did not exist during the indicated years. In

fact, to conduct our analysis, we have treated the absence

of these data from Spain and Turkey as missing data. That

is, we believe that there was fishing activity, but it could

not be recorded for unknown reasons.

3 Joint Bayesian longitudinal modelling

Let ðyð1Þij ; y
ð2Þ
ij Þ be the bivariate random vector describing

the response of individual i, i ¼ 1; . . .;N at time tij,

j ¼ 1; 2; . . .; ni. Consider the random vector

ðyð1Þ; yð2ÞÞ0 ¼ fðyð1Þi ; y
ð2Þ
i Þ0; i ¼ 1; . . .;Ng, where

ðyð1Þi ; y
ð2Þ
i Þ ¼ fðyð1Þij ; y

ð2Þ
ij Þ; j ¼ 1; . . .; nig.

As in Verbeke and Davidian (2009) and Armero et al.

(2018), we assume a Bayesian share-parameter framework

to jointly model both responses that uses random effects to

generate an association structure between both longitudinal

measures. To this effect, a Bayesian joint longitudinal

model (BJLM) for ðyð1Þ; yð2ÞÞ0 is specified via the joint

probability distribution

f ðyð1Þ; yð2Þ; h;/Þ ¼ f ðyð1Þ; yð2Þ j h;/Þ f ð/ j hÞ pðhÞ
¼ f ðyð1Þ j h;/Þ f ðyð2Þ j h;/Þ f ð/ j hÞ pðhÞ

¼
�YN

i¼1

f ðyð1Þi j h;/iÞ f ðy
ð2Þ
i Þ j h;/iÞ

� �YN

i¼1

f ð/i j hÞ
�
pðhÞ;

ð1Þ

Fig. 2 Countries bordering the Mediterranean Sea. Photo by Ian Macky, PAT Atlas, https://ian.macky.net/pat/map/medi/mediblu.gif
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where f ðyð�Þi j h;/iÞ is the conditional probability distribu-

tion of y
ð�Þ
i given the vector /i of the random effects

associated with individual i and the vector h of the

parameters and hyperparameters of the model; f ð/i j hÞ is
the conditional probability distribution of /i given h; and

pðhÞ a prior distribution for h. Conditional independence

between both responses and random effects corresponding

to individuals is assumed.

This BJLM works in the framework of the normal dis-

tribution, so the i-th component of the sampling probability

distribution is:

f ðyð1Þi j h;/iÞ ¼N ðlð1Þi ;Rð1Þ
i Þ

f ðyð2Þi j h;/iÞ ¼N ðlð2Þi ;Rð2Þ
i Þ;

ð2Þ

where l
ð�Þ
i is the conditional mean of y

ð�Þ
i given ðh;/iÞ and

Rð�Þ
i its conditional variance-covariance matrix whose

(j, l)th element is Cov ðyð�Þij ; y
ð�Þ
il j h;/Þ.

The fully specification of the Bayesian model is com-

pleted with the elicitation of a prior distribution pðhÞ for h
and the conditional distribution f ð/i j hÞ, i ¼ 1; . . .;N.

Once the Bayesian model is fully specified and the data D

(i.e., the observations of ðyð1Þij ; y
ð2Þ
ij Þ ) are obtained, the next

step of the Bayesian protocol is to compute the posterior

distribution pðh;/ j DÞ via the Bayes theorem. This dis-

tribution is the basis of the statistical analysis and the

starting point of the posterior distribution of any relevant

measure of performance of the model depending on ðh;/Þ.

3.1 Longitudinal modelling for the total
European sardine landings

Let y
ðAÞ
ij represent the total tonnage of sardines caught in

country i during year tij using artisanal methods, and let y
ðIÞ
ij

represent the total tonnage of sardines caught using

industrial methods. Both quantities are measured on a

logarithmic scale. This study considers a time scale based

on the calendar, with ti ¼ ð0; . . .; 34Þ denoting the range of

years. Time zero (ti1 ¼ 0) corresponds to the initial year of

the study, specifically, 1985.

We will consider three BLJM (i.e., models M1, M2,

and M3) for analysing the evolution of artisanal and

industrial fisheries within the general methodological

framework explained in the previous section. Model M1 is
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a basic homoscedastic linear mixed model with the natural

covariate time and random effects. Models M2 and M3

account for serial correlation in terms of autoregressive

elements, whose inclusion is justified by a strong depen-

dence of each year’s fishing activity on previous years and

the large number of observations per country. In particular,

M2 and M3 introduce auroregressive terms in the condi-

tional means and the variance-covariance matrices of the

sampling probability distribution in (2), respectively. The

models are defined as follows:

Model

M1 f ðyðAÞi j h;/iÞ ¼ N ð1 bðAÞ0 þ 1 b
ðAÞ
0i þ t bðAÞ1 þ t b

ðAÞ
1i ; r

ðAÞ2IÞ;

f ðyðIÞi j h;/iÞ ¼ N ð1 bðIÞ0 þ 1 b
ðIÞ
0i þ t bðIÞ1 þ t b

ðIÞ
1i ; r

ðIÞ2IÞ;
ð3Þ

where 1 is a vector of ones of dimension 35,

t ¼ ð0; 1; . . .; 34Þ0, bðAÞ0 and bðIÞ0 common intercepts for

artisanal and industrial fishing, respectively as well as bðAÞ1

and bðIÞ1 for the subsequent common slopes. Individual

random intercepts b
ðAÞ
0i and b

ðIÞ
0i , and random slopes b

ðAÞ
1i and

b
ðIÞ
1i are conditionally independent and normally distributed

as ðbðAÞ0i ; b
ðIÞ
0i j R0Þ�N ð0;R0Þ and

ðbðAÞ1i ; b
ðIÞ
1i j R1Þ�N ð0;R1Þ. Variance-covariance matrix R0

includes the correlation coefficient q0 between b
ðAÞ
0i and b

ðIÞ
0i

as well as its respective variances rðAÞ
2

0 and rðIÞ
2

0 . Analo-

gously, q1 and both variances rðAÞ
2

1 and rðIÞ
2

1 for R1. This

model is homoscedastic. Therefore the variability associ-

ated with the random measurements is always equal and

constant, rðAÞ
2

I and rðIÞ
2

I for artisanal and industrial,

respectively, where I represents the 35� 35 unit matrix.

Model M1 is completed with the elicitation of a prior

distribution for the parameters and hyperparameters of the

model. We assume a non-informative prior scenario, which

gives the maximum prominence to the data, as well as prior

independence. We specify normal distributions with large

standard deviation for the common regression coefficients,

pðb0Þ ¼ pðb1Þ ¼ N ð0; 102Þ and uniform distribution

Uð0; 10Þ for all standard deviation terms, rðAÞ, rðIÞ, rðAÞ0 ,

rðIÞ0 , rðAÞ1 , and rðIÞ1 . Prior distributions for correlation terms

q0 and q1 are chosen as uniform Uð�1; 1Þ.

Model

M2 f ðyðAÞi j h;/iÞ ¼ N ð1 bðAÞ0 þ 1 b
ðAÞ
0i þ t bðAÞ1 þ t b

ðAÞ
1i ; R

ðAÞÞ;

f ðyðIÞi j h;/iÞ ¼ N ð1 bðIÞ0 þ 1 b
ðIÞ
0i þ t bðIÞ1 þ t b

ðIÞ
1i ; R

ðIÞÞ:
ð4Þ

In this model, the means of both conditional distributions

are expressed as in model M1. The element (j, l) of the

conditional variance-covariance matrix Rð�Þ is defined as

follows:

Cov ðyð�Þij ; y
ð�Þ
il j h;/iÞ ¼ rð�Þ

2 Xminðj;lÞ

k¼1

qð�Þ
ðtij�tik Þþðtil�tik Þ

; ð5Þ

where qð�Þ is the coefficient of the autoregressive term of a

heteroscedastic AR(1).

To clarify the derivation of matrix (5), we formulate this

model in an alternative way by conditioning yij on yij�1

(Chi and Reinsel 1989), assuming, for the sake of sim-

plicity, that the response variable is univariate:

ðyi1 j h;/iÞ ¼ li1 þ �i1;

ðyij j yij�1; h;/iÞ ¼ lij þ qðyij�1 � lij�1Þ þ �ij; j ¼ 2; . . .; 35

ð6Þ

where the measurement errors are normally distributed,

denoted as ð�ij j rÞ�N ð0; r2Þ, and lij ¼ b0 þ b0i þ
tijðb1 þ b1iÞ for any measurement j of country i.

Additionally, this model can be expressed by means of

an autoregressive process of the term ðyij � lijÞ as follows

ðyi1 � li1Þ ¼ �i1;

ðyij � lijÞ ¼ qðyij�1 � lij�1Þ þ �ij; j ¼ 2; . . .; 35:
ð7Þ

Moving forward, this autoregressive process can be

rewritten as a moving average process:

ðyij � lijÞ ¼
Xj

k¼1

qðtij�tikÞ�ik: ð8Þ

Thus, the variance of this term is

V ðyij � lijÞ ¼
Xj

k¼1

q2ðtij�tikÞr2;

which is always finite in our case, given that the data in the

study are balanced, and the number of measurements for

each country is 35. Additionally, this variance is the

summation of a finite geometric series with a ratio value q2

between 0 and 1.

Finally, the calculation of the elements of the variance-

covariance matrix in (5) is straightforward:

Covðyij; yil j h;/iÞ ¼ r2
Xminðj;lÞ

k¼1

qðtij�tikÞþðtil�tikÞ:

We chose this specific matrix, i.e., a heteroscedastic

autoregressive error matrix, instead of considering matrices

as those described in Hedeker and Gibbons (2006), to avoid

potential confusion between the random intercept and the

error at the initial time.

In addition, we have selected a uniform prior distribu-

tion, Uð�1; 1Þ, for the autoregressive coefficients qðAÞ and

1640 Stochastic Environmental Research and Risk Assessment (2024) 38:1635–1646
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qðIÞ. By enforcing jqðAÞj and jqðIÞj to be less than 1, we

place limits on the values of the elements in the variance-

covariance matrix. The prior distribution for the remaining

parameters and hyperparameters in this model follows the

same approach as model M1.

Model

M3 f ðyðAÞi j h;/iÞ ¼ N ð1 bðAÞ0 þ 1 b
ðAÞ
0i þ t bðAÞ1 þ t b

ðAÞ
1i þ w

ðAÞ
i ; rðAÞ

2

IÞ;

f ðyðIÞi j h;/iÞ ¼ N ð1 bðIÞ0 þ 1 b
ðIÞ
0i þ t bðIÞ1 þ t b

ðIÞ
1i þ w

ðIÞ
i ; rðIÞ

2

IÞÞ:
ð9Þ

This model is similar to model M1 but includes a latent

autoregressive term w
ð�Þ
i ¼ ðwiðti1Þð�Þ; . . .;wiðtiniÞ

ð�ÞÞ0 in the

conditional mean, where each wiðtijÞð�Þ, j ¼ 2; . . .; ni, is a

realisation at time tij from a Gaussian process with mean

qwiðti;j�1Þ and variance r2w, where ðwiðti1Þ j
rwÞ�N ð0; r2wÞ (Diggle et al. 2002). That is, w

ð�Þ
i is a

vector of time correlated noises. Again, the prior distribu-

tion for the parameters and hyperparameters of this model

is as in model M1 to which we add the marginal prior

distribution, Uð�1; 1Þ for the correlation coefficients qðAÞ

and qðIÞ, and Uð0; 100Þ for the standard deviations, rðAÞw and

rðIÞw , of the autoregressive term in the conditional means.

4 Posterior inferences

The posterior distribution associated with models M1, M2

and M3 has been approximated via MCMC sampling

(Tanner 2012) through JAGS software (Plummer 2003)

(version 4.0.5). In particular, we used the runjags

package developed by Denwood (2016) to parallelise the

simulation process, running three parallel chains for each

model with a total of 5,000,000 iterations and a burn-in of

1,000,000 iterations. To reduce autocorrelation in the

sample, we also thinned the chains by storing every 5000th

iteration. The computations were performed on a computer

with an Intel i9 processor, 32 GB of RAM, and running

Windows 10 Enterprise LTSC. The full inferential analy-

sis, performed by an R code, and the data are publicly

available as supplementary material in the GitHub reposi-

tory at https://github.com/gcalvobayarri/European_sar

dine_analysis.git.

Table 1 shows a basic description of the approximated

posterior distribution of the parameters and hyperparame-

ters of the models under study. The first thing that strikes us

is the consistency of the results obtained with the three

models. All of them present similar results for their out-

comes in relation to the initial behaviour of the different

countries, their time trends, and the strong impact of the

autoregressive terms in models M2 and M3. Very few

differences can be observed in the estimates of the

regression coefficients in both types of fisheries. In all of

them, a smooth but negative time trend is discernible which

indicates a decreasing pattern in the amount of sardine

fishing in recent decades. This is a consistent situation with

the behaviour shown by the data in Fig. 1.

Posterior estimation of the variances associated with the

random effects of the intercept and the slope of the arti-

sanal and industrial fisheries are also very similar, mainly

for models M2 and M3. It is worth noting the great

heterogeneity shown by the different Mediterranean

countries at the beginning of the study in both types of

fisheries as well as the fact that the greatest heterogeneity is

shown by the artisanal fishery, which moves in much

smaller dimensions than the industrial fishery. The asso-

ciation between the amount of artisanal and industrial

fishing in the different countries, expressed through the

information on q0 and q1, is not very strong either at the

beginning or during the study period, but the results indi-

cate a positive association between them. This is an

important issue that we will be fully described later.

The correlation qð�Þ parameters involved in the autore-

gressive terms of models M2 and M3 are not comparable.

In the case of M2 they are associated with the variance-

covariance matrices of the sampling model while in M3

they are on the conditional mean. In both cases, they play a

relevant role in the estimated model, with positive posterior

means very close to one: 0.913 and 0.938 inM2, and 0.953

and 0.947 in M3 for artisanal and industrial fisheries,

respectively.

The variability associated with the measurement error in

M1 is large (posterior means 0.662 and 0.486 for artisanal

and industrial fisheries, respectively). These values are

somewhat lower in the case of M2 due to the inclusion of

the autoregressive term in the conditional matrix. The

relevant difference happens with M3 in which the inclu-

sion of the autoregressive term in the conditional mean

takes away a large amount of the measurement error

variabiliy.

4.1 Model comparison

All of the three proposed models seem reasonable and

show consistent and robust results. However, we would

like to be able to choose one of the three as the most

appropriate and most compatible with the data. Model

checking is an essential issue of any statistical analysis.

The existing literature on this subject is abundant and

multifaceted due to the great quantity and disparity of

criteria proposed (Vehtari and Ojanen 2012).

It is not our aim to study this issue in depth because it is

beyond the scope of this paper. Here, we would like to

briefly discuss this subject and obtain some results that will
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help us to compare our three models. In this regard, we will

focus on three methods that are quite popular in the

Bayesian reasoning: The penalised expected deviance

(PED), the Bayes factor (BF) and the conditional predictive

ordinate (CPO). PED was proposed by Plummer (2008). It

is based on the deviance information criterion (DIC)

(Spiegelhalter et al. 2002) that combines the expected

deviance as a measure of fit and the effective number of

parameters of the model as a measure of their complexity.

The complexity penalty used by PED is higher than that of

DIC so it is to be understood that PED will generally

favour simpler models than DIC. The Bayes factor is

regarded as the conceptual solution to model selection

problems but presents many practical problems. According

to Kass and Raftery (1985); Berger and Pericchi (1996), it

is defined in terms of prior predictive distributions evalu-

ated on the observed data (evidence) which can be inter-

preted as the support provided by the data in favour of the

subsequent model. We will use the R package bridge-

sampling (Gronau et al. 2020) that uses bridge sampling

(Meng and Wong 1996; Meng and Schilling 2002) to

approximate the evidence from each of the three models

examined. Finally, as in Gelfand and Dey (1994), we use

the cross-validated predictive density to assess our models.

In our case, it is defined as the conditional posterior density

of a future artisanal and industrial tonnage of sardines

caught of country i in an hypothetical replicated

experiment

f ðypredi

ðAÞ
; ypredi

ðIÞ j D�ðiÞÞ ¼
Z

f ðypredi

ðAÞ
; ypredi

ðIÞ j h;/Þ pðh;/ j D�ðiÞÞ d ðh;/Þ

where D�ðiÞ are all the data in D except for the observa-

tions of country i (leave-one-out procedure). The funda-

mental idea underlying this proposal assumes that if the

estimated model is correct, the observations of each

country can be considered as a random value from the

subsequent cross-validated predictive density (Chen et al.

2000). In this predictive framework, we consider the CPO

for country i, i. e. CPOi, defined as the value of

f ðypredi

ðAÞ
; ypredi

ðIÞ j D�ðiÞÞ at the observed ðyðAÞi ; y
ðIÞ
i Þ data.

Large CPOi values are supportive of the model as they

indicate a good agreement between the data and the model.

Table 1 Summary of the approximated posterior distribution of the parameters and hyperparameters in models M1, M2 and M3

M1 M2 M3

Mean Sd 0.95CI Mean Sd 0.95CI Mean Sd 0.95CI

bðAÞ0
5.759 1.253 (3.197,8.239) 5.365 1.340 (2.379, 7.794) 5.375 1.169 (2.936, 7.590)

bðAÞ1
�0.022 0.026 (�0.074,0.031) �0.029 0.031 (�0.090 0.031) �0.029 0.031 (�0.090, 0.031)

rðAÞ0
3.837 1.144 (2.333,6.780) 3.848 1.198 (2.258,6.969) 3.781 1.075 (2.269, 6.434)

rðAÞ1
0.083 0.026 (0.049,0.144) 0.081 0.034 (0.019,0.158) 0.080 0.036 (0.016, 0.162)

rðAÞ 0.662 0.027 (0.612,0.718) 0.522 0.022 (0.480,0.567) 0.181 0.049 (0.063, 0.0.259)

qðAÞ – – – 0.913 0.053 (0.804 0.994) 0.953 0.038 (0.861, 0.998)

rðAÞw
– – – – – – 0.455 0.036 (0.389, 0.528)

bðIÞ0
9.249 0.768 (7.668,10.777) 9.019 0.783 (7.215,10.363) 9.105 0.662 (7.652,10.291)

bðIÞ1
�0.032 0.024 (�0.079,0.017) �0.033 0.025 (�0.081, 0.018) �0.035 0.023 (0.080,0.010)

rðIÞ0
2.398 0.692 (1.488,4.111) 2.198 0.717 (1.294 3.927) 2.109 0.603 (1.285,3.620)

rðIÞ1
0.074 0.022 (0.045,0.127) 0.070 0.025 (0.032,0.130) 0.070 0.025 (0.030,0.130)

rðIÞ 0.486 0.018 (0.453,0.524) 0.341 0.013 (0.317,0.368) 0.064 0.037 (0.003,0.136)

qðIÞ – – – 0.938 0.037 (0.862, 0.997) 0.947 0.035 (0.872, 0.998)

rðIÞw
– – – – – – 0.327 0.019 (0.288, 0.362)

q0 0.237 0.325 (�0.420, 0.807) 0.393 0.318 (�0.319, 0.889) 0.369 0.313 (�0.335, 0.867)

q1 0.422 0.285 (�0.245 0.853) 0.404 0.371 (�0.473, 0.930) 0.397 0.387 (�0.514, 0.942)

Table 2 Approximated PED for models M1, M2 and M3 and mean

(standard deviation) of ten replicates of the approximate evidence, in

logarithmic scale, for models M1, M2 and M3

M1 M2 M3

PED 1226 804 161

log(Evidence) �802:52 ð0:37Þ �531:91 ð0:01Þ �517:93 ð1:02Þ
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Table 2 shows the PED value for models M1, M2 and

M3 as well as the sample and standard deviation of ten

replicates of the approximated evidence, in the logarithmic

scale. Both criteria point toM3 as the best model, followed

in both cases by M2. It seems clear that the two models

with autoregressive elements perform better than the basic

model, the PED is clearly in favour of M3, but the dif-

ferences are narrower in the case of the logarithm of the

evidence.

Table 3 includes the CPO, in logarithmic scale, for each

of the countries in the study associated with models M1,

M2 and M3. This latter model records the highest CPO

values in all countries except Montenegro. In this country,

the highest CPO is obtained with M2, although the dif-

ferences between the CPO of this country with both models

is quite small. M1 has the smallest CPO values in all

countries with a large difference compared to ones from

M2 and M3. Spain is in all models by far the most dif-

ferent country from the rest, followed by Slovenia and

Croatia. The CPO values obtained suggest that the model

most compatible with the data is also M3.

The inclusion of an autoregressive term in the model

clearly seems to be a good decision, and better on the

conditional mean than on the variance. If we had to choose

one model it would be M3.

4.2 Association and country-specific fishing
patterns

As a complement to the statistical analysis carried out, we

now turn to M3 and present some of the derived results.

We recall that bðAÞ1 and bðIÞ1 is, respectively, the regression

slope associated with time in the conditional mean of the

total tonnage (in logarithmic scale) of sardines caught by

artisanal and industrial methods. The subsequent posterior

mean and standard deviation of bðAÞ1 is �0.029 and 0.031

and �0.035 and 0.023 for bðIÞ1 . Figure 4 shows the marginal

posterior distribution of bðAÞ1 and bðIÞ1 and shows in the

shaded part the posterior probability that the subsequent b1
is negative, 0.912 and 0.857, for the artisanal and industrial

fishery, respectively. These values give strong support to a

decreasing trend for both types of fisheries.

As mentioned before, an interesting issue of our study is

the possible association between the specific characteristics

of artisanal and industrial fisheries in the different countries

of the study: do both types of fisheries have a synergistic

relationship and generate a mutually cooperative relation-

ship? Or, on the contrary, are they negatively associated,

and therefore it is to be expected that high values for

industrial fisheries are linked to low values for artisanal

fisheries and vice versa?.

Figure 5 shows the mean of the posterior distribution of

the random effects associated with the intercept and slope

of each of the countries in the study. Slovenia, Montenegro

and Spain started the study with low levels associated with

small-scale fisheries, below the level of the other countries

in the study. These countries behave very differently with

respect to industrial fishing: above, at the average and

below the rest of the countries in the study. This is the case

for Spain, Slovenia and Montenegro, respectively. Algeria

has a level of artisanal fishing well above the rest but its

level of industrial fishing is in the average of the countries

studied. The rest of the countries have specific character-

istics above the average of the countries in the study, both

in artisanal and industrial fishing. Italy and Algeria stand

out as the countries with a higher level associated with

industrial and artisanal fishing than the rest. In particular, it

is worth noting that Spain is the country with the greatest

imbalance, in favour of industrial fishing over artisanal

fishing at the beginning of the study.

The evolution of artisanal and industrial fisheries has not

been the same. Spain, Italy, Greece, France and, especially,

Croatia exhibit decreasing dynamics for artisanal fisheries

while in the other countries, Algeria, Morocco, Montene-

gro and Turkey, the trends are positive. It seems that arti-

sanal fisheries are in recession in the economically stronger

countries. Industrial fisheries show a positive trend in

almost all countries except France and Italy. The countries

with the highest pattern of industrial fishing are Turkey and

Algeria. Although the association between sardine catches

and artisanal and industrial fishing is not very strong, it is

generally positive, so there seems to be a certain synergy

between both types of fishing, although not in all countries,

Table 3 CPO’s, in logarithmic scale, for the different countries in the

study computed from models M1, M2 and M3

Log CPO

M1 M2 M3

Algeria �35:45 �28:30 �25:29

Croatia �125:88 �86:74 �76:46

France �65:40 �46:63 �45:44

Greece �53:00 �31:54 �30:06

Italy �51:68 �34:94 �31:74

Montenegro �50:86 �37:40 �37:94

Morocco �38:19 �29:56 �27:31

Slovenia �97:49 �95:91 �95:28

Spain �353:48 �169:58 �163:76

Turkey �189:13 �44:60 �35:94
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as in the case of Croatia that shows an apparent negative

relationship.

5 Conclusions

We have presented a Bayesian joint longitudinal modelling

to assess the temporal evolution of the European sardine

landings, industrial and artisanal, in the Mediterranean

countries from 1985 to 2018. These models dealt with

general patterns as well as individual characteristics of the

countries in the study. Therefore, these types of models

may contribute to improving the risk assessment of Euro-

pean sardine in the Mediterranean Sea.

Overall results confirmed that Mediterranean fisheries

were highly diverse from the beginning of the time series

and this heterogeneity still remains over time. This general

result is in agreement with a recent study that analysed the

convergence of the Mediterranean countries in terms of

several ecological indicators (i.e. Marine Trophic Index,

Fishing in Balance Index and Expansion Factor) during

1950–2010 (Pennino et al. 2017), showing strong temporal

persistence in their fishery behaviours. Furthermore, the

results demonstrate a general decline in European sardine

fishing quantities in the Mediterranean Sea. Additionally,

0

5

10

15

20

−0.15 −0.10 −0.05 0.00 0.05 0.10

0

5

10

15

20

−0.15 −0.10 −0.05 0.00 0.05 0.10

Fig. 4 Approximate marginal posterior distribution of bðAÞ1 and bðIÞ1 , respectively, for model M3

−4

−2

0

2

4

−4 −2 0 2 4
Artisanal

In
du

st
ria

l

Countries
Algeria
Croatia
France
Grece
Italy
Montenegro
Morocco
Slovenia
Spain
Turkey

(a) Random intercepts.

−0.10

−0.05

0.00

0.05

0.10

−0.10 −0.05 0.00 0.05 0.10
Artisanal

In
du

st
ria

l
Countries

Algeria
Croatia
France
Grece
Italy
Montenegro
Morocco
Slovenia
Spain
Turkey

(b) Random slopes.
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there is a positive correlation observed between the landing

dynamics of artisanal and industrial fishing within each

country.

As mentioned in the introduction, the decline of sardine

fisheries is a multifaceted issue that would need different

approaches from different points of view. In addition, we

know that the evidence of a declining trend in landings

does not necessarily imply a potential risk for the stock, but

there could also be other causes related to the economy,

politics, or changes in demand and consumption.

Our study shows modest but interesting objectives

because it provides quantitative information on the dis-

parity in the evolution of industrial and artisanal sardine

fishing in the different countries studied. Bayesian mod-

elling is very flexible and would allow for the inclusion of

additional information through baseline or temporal

covariates. In this sense, it would be interesting to be able

to feed our modelling with information related to the

economic characteristics of the different countries and their

fishing fleets, as well as geographical and environmental

information on the areas where the sardine shoals are

located.

The use of the official landings may be a limitation for

this study as this data does not account for discards, by-

catch and illegal, unreported and unregulated (IUU) cat-

ches. Despite these limitations, we believe the application

of Bayesian longitudinal mixed model provides a novel

way to assess changes in fisheries exploitation by different

countries at large scale. This study represents a new

standpoint from which to explore species fisheries

exploitation time series under a probabilistic framework.
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Christensen V, Corrales X, Fernández-Corredor E, Giménez J, L.
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