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Abstract
Accurate reference evapotranspiration (ET0) estimation has an effective role in reducing water losses and raising the

efficiency of irrigation water management. The complicated nature of the evapotranspiration process is illustrated in the

amount of meteorological variables required to estimate ET0. Incomplete meteorological data is the most significant

challenge that confronts ET0 estimation. For this reason, different machine learning techniques have been employed to

predict ET0, but the complicated structures and architectures of many of them make ET0 estimation very difficult. For these

challenges, ensemble learning techniques are frequently employed for estimating ET0, particularly when there is a shortage

of meteorological data. This paper introduces a powerful super learner ensemble technique for ET0 estimation, where four

machine learning models: Extra Tree Regressor, Support Vector Regressor, K-Nearest Neighbor and AdaBoost Regression

represent the base learners and their outcomes used as training data for the meta learner. Overcoming the overfitting

problem that affects most other ensemble methods is a significant advantage of this cross-validation theory-based approach.

Super learner performances were compared with the base learners for their forecasting capabilities through different

statistical standards, where the results revealed that the super learner has better accuracy than the base learners, where

different combinations of variables have been used whereas Coefficient of Determination (R2) ranged from 0.9279 to

0.9994 and Mean Squared Error (MSE) ranged from 0.0026 to 0.3289 mm/day but for the base learners R2 ranged from

0.5592 to 0.9977, and MSE ranged from 0.0896 to 2.0118 mm/day therefore, super learner is highly recommended for ET0

prediction with limited meteorological data.

Keywords Reference evapotranspiration (ET0) � Extra tree regressor (ETR) � Support vector regressor (SVR) �
K-nearest neighbor (KNN) � AdaBoost regression (ADA) � Super learner � Ensemble learning � Cross-validation

1 Introduction

Due to the water scarcity that many countries around the

world are currently facing as a result of climate change, it

was necessary to reduce water consumption, especially in

agriculture. One of the best solutions for reducing water

losses in agricultural irrigation is to determine the crop

water requirements accurately. Evapotranspiration (ET) is

considered as the main ingredient in crop water demand

calculations.ET is the process of mislaying water from both

the soil surface and the plant.in reality, the ET value for a

specific crop can be estimated by using the corresponding

crop coefficient (KC) with ET0 which can be estimated

using different climate data under conventional underlying

surface conditions (Wu et al. 2021a, b, c).

ET0 is the fundamental component of water resource

management for increasing water productivity (Hu et al.

2022). The availability of a precise instrument for calcu-

lating ET0 is essential for irrigation managers and water

researchers (Tikhamarine et al. 2020). The Food and

Agriculture Organization (FAO) has been suggested that

the FAO Penman–Monteith (PM) model is the most widely
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used method for estimating ET0 (Nema et al. 2017; Wu

et al. 2021a, b, c). The PM model is applied to different

climates and environments without any adjustments being

made, and the resulting estimates are reliable. That’s why

it’s regarded as a standard for checking other models

against (Wu et al. 2021a, b, c). However, there are sig-

nificant drawbacks for using the PM method because it

needs access to a variety of meteorological data, such as air

temperature, relative humidity, solar radiation, and wind

speed as shown in Fig. 1 as model inputs (Chen et al. 2020;

Yamaç 2021).

Many studies have adopted a variety of empirical

techniques to compute ET0 including temperature-based,

radiation-based, humidity-based, water budget-based, mass

transfer-based, and pan-based techniques when all meteo-

rological parameters are not available (Chen et al. 2020;

Yamaç 2021). However, because of complex and dynamic

processes, it is challenging to estimate ET0 using empirical

equations, and to do so, high-quality, site-appropriate

meteorological data are required (Yamaç 2021).Therefore,

a simplified model must be developed in order to estimate

ET0 with high precision while using fewer meteorological

data.

Due to the above constraint, researchers developed

modeling methodologies to estimate ET0 over the world

when meteorological data is restricted or insufficient

(Laaboudi and Slama 2020; Valipour et al. 2019). When it

came to estimating ET0, machine learning took into con-

sideration more than any other method. In order to model

ET0, several researchers have switched from empirical

modeling to black-box modeling utilizing machine learning

tools where, the use of machine learning to estimate, pre-

dict, and forecast ET0 related indicators has been the

subject of hundreds of research articles published in the

past ten years (Chia et al. 2021).

In the agricultural domain, big data analytic technolo-

gies such as generalized neuro-fuzzy models, artificial

neural network, adaptive neuro-fuzzy inference system,

multi-layer perceptron neural network (MLPNN), extreme

learning machine, M5 tree model, least square-support

vector regression, multivariate adaptive regression splines

have been provided for ET0 estimation (Saggi and Jain

2019). Despite the fact that Big Data analysis plays an

important role in data management in digital agriculture,

most countries find it difficult to adopt digital agriculture

due to a lack of essential technologies, such as effective

mobile cellular infrastructure and facilities (Wanniarachchi

and Sarukkalige 2022).

Over the past twenty years, diverse artificial intelligence

models have been utilized across multiple scientific and

engineering domains to address a range of scientific chal-

lenges, including modeling, optimization, and prediction.

This is due to the capacity of artificial intelligence to

effectively address non-linear relationships between vari-

ables (Tikhamarine et al. 2020). In order to precisely

estimate ET0 scientists have turned to artificial intelligence

methods like neural networks and fuzzy logic because they

can handle large amounts of data, performs calculations

quickly and accurately, and delivers high accuracy. How-

ever, these techniques can have complex architectures and

structures that make simulation challenging (Ehteram et al.

2019).

Despite the increasing popularity of utilizing AI meth-

ods for estimating ET0, these techniques are often imple-

mented without considering the fundamental physical

processes that govern ET. This oversight may lead to

imprecise outcomes. Moreover, based on current under-

standing, endeavors to estimate ET0 using AI models have

revealed that optimal input combinations do not consis-

tently remain the same, even when subjected to identical

Fig. 1 Meteorological factors,

including sunshine duration,

wind velocity, humidity, and air

temperature, have an impact on

evapotranspiration, which refers

to both transpiration and

evaporation. This process

involves the loss of water from

both the soil surface and plant

690 Stochastic Environmental Research and Risk Assessment (2024) 38:689–713

123



climatic conditions. This is attributed to the stochastic and

indeterminate selection of meteorological parameters (Yu

et al. 2020).

Enhancing prediction accuracy and developing models

that give more accurate results is one of the main problems

of machine learning but, this can be done by giving the

model more data to train on, introducing large architec-

tures, and providing more computer resources (Ravindran

et al. 2021). Researchers studying evapotranspiration have

recently become interested in ensemble based approaches

since these systems are typically more reliable, perform

better, and require less computing power (Martı́n et al.

2021). For the purpose of forecasting ET0 in a variety of

climate zones across the globe, it has been suggested that

various machine-learning ensemble models be utilized

(Salam and Islam 2020). The main goals of using ensem-

bles are to decrease prediction variance, bias, and/or

enhance performance where, the major advantages of it are

that it can be carried out either through parallel or

sequential approach, and it has historically shown a good

behavior dealing with outliers and the negative impacts of

imperfect data (Kar et al. 2021; Martı́n et al. 2021).

Ensemble learning techniques are commonly catego-

rized into three main types: bagging, boosting, and stack-

ing/blending. The ensemble technique of bagging involves

the process of sampling from the training data with

replacement, also known as bootstrap, and subsequently

performing averaging or voting over the class labels;

Boosting produces ensemble by merging low-performing

learners in order to have the possibility that later models

would compensate for mistakes made by previous models;

In stacking, one learning algorithm uses the results of the

others to make predictions about the correct values in the

test set. Every approach possesses its own set of advantages

and disadvantages. Bagging is known to primarily reduce

variance as opposed to bias. However, it may not be as

effective when applied to relatively simplistic models.

Boosting, on the other hand, aims to reduce both bias and

variance by iteratively combining weak learners. It is

important to note that boosting is sensitive to noisy data

and outliers, and may result in over-fitting. Lastly, stacking

is a technique that aims to reduce both variance and bias by

addressing errors made by base learners. This is achieved

by fitting one or more meta-models on the predictions

made by the base learners (Shahhosseini et al. 2022).

In the domain of ensemble learning, it is important to

note that Bagging and Boosting are commonly recognized

as homogeneous ensembles, while Stacking stands out as a

heterogeneous ensemble. Homogeneous ensembles are

characterized by the inclusion of models constructed using

a singular machine learning algorithm. On the other hand,

heterogeneous ensembles encompass models derived from

a diverse range of algorithms. In the context of

performance prediction, it has been observed that a

heterogeneous ensemble holds a distinct advantage over a

homogeneous combination (Li et al. 2021; Mienye and Sun

2022).

Stacking technique shows the capability of combining

the benefits of various fundamental models and has been

demonstrated to be superior in the domains of intrusion

detection, short-term electricity consumption prediction,

and automatic cataract detection and grading. To date,

there has been no additional progress in utilizing stacking

and blending techniques to estimate daily ET0 in the con-

text of ensemble models (Wu et al. 2021a, b, c). The

stacking approach typically involves a set of base learners

at (level 0), along with a Meta learner at (level 1). The base

learners generate outputs that are then utilized as inputs for

the Meta learner.

The super learner methodology is an extension of the

stacking technique, which generates an ensemble model

through cross-validation. The super learner is constructed

by combining a variety of potential learners, which have

been created utilizing multiple algorithms, through a

weighted combination (Lankford and Grimes 2021). This

approach has been investigated by theoretical examination

and has been recommended by scholarly research. The

super learner has the potential to outperform the constituent

algorithms that were employed in its construction by

minimizing a cross-validation loss function (Taghizadeh-

Mehrjardi et al. 2021). The utilization of the super learner

offers numerous advantages due to its ability to provide

flexibility in terms of the variety and quantity of predictive

models employed for constructing the super learner.

Additionally, it takes into consideration the variations in

the predictive capabilities of each individual model. Fur-

thermore, this article outlines a strategic methodology to

effectively mitigate the risk of over-fitting during the

training process. This is achieved by using cross-validation

(Kabir and Ludwig 2019; Taghizadeh-Mehrjardi et al.

2021).In addition it is highly suitable for the field of par-

allel programming. The various candidate estimators can

perform their respective tasks independently, and the uti-

lization of these estimators on distinct training sets can also

be isolated (Hastie et al. 2009). However, when dealing

with large or streaming data, the current super learning

approach is constrained by the computational cost of con-

ducting cross-validated estimator selection from scratch for

every incoming batch of data (Benkeser et al. 2018).

From this viewpoint, this paper represents high perfor-

mance ensemble learning method which has the ability to

overcome the complexity of the PM model and the draw-

backs of other ensemble learning methods where, limited

meteorological data will be used as input for the proposed

model. The objectives of this work clarify on the following

points:
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• Employing the super learner ensemble learning

approach in conjunction with the cross validation

theory employing 12 folds to estimate ET0. This will

be carried out by utilizing various combinations of

limited meteorological data as inputs, thereby address-

ing the limitation of the PM model which requires a

diverse range of meteorological data that may not be

readily available in different regions across the world.

• The PM model and four machine learning models were

compared to the suggested model. Our framework’s

output was compared to competitors to assess our

model’s ability to estimate ET0 accurately with little

meteorological data.

2 Related work

Predicting ET0 accurately is important in many areas like

irrigation planning and scheduling, plant water require-

ments, hydrology, water resource allocation and drainage

planning (Chia et al. 2022). For the importance of this

variable many researchers have made great time and effort

to find solutions to overcome the obstacles that face the

estimation of it, especially, in the case of insufficient

meteorological data. Many papers have been published to

find solutions for the difficulties facing the estimation of

ET0.

Seifi and Riahi (2020) have been used three hybrid

models called least square support vector machine-gamma

test (LSSVM-GT), artificial neural network-gamma test

(ANN-GT) and Adaptive neuro fuzzy inference system-

gamma test (ANFIS-GT) which have been evaluated and

compared with each other to estimate ET0 under arid

conditions of Zahedan station, Iran where the results

indicated the ability of the developed LSSVM-GT

approach to predict ET0 accurately rather than other

approaches and can be utilized to generate efficient irri-

gation strategies with the purpose of preserving available

water sources.

Zhu et al. (2020) employed the particle swarm opti-

mization (PSO) algorithm to effectively ascertain the

parameters of the extreme learning machine (ELM) model.

Consequently, a pioneering hybrid PSO-ELM model was

introduced to estimate the daily evapotranspiration. In

comparison to equivalent empirical models using the same

inputs, the results showed that machine learning models

provided more accurate ET0 estimates. It was advised to

use the PSO-ELM model, which outperformed other

machine learning and empirical models, to predict daily

ET0 in the dry Northwest China region with few inputs.

Wu et al. introduced three hybrid models that combine

the extreme learning machine model (ELM) with

biological heuristic algorithms: the Particle Swarm Opti-

mization algorithm (PSO), the Genetic Algorithm (GA),

and the Artificial Bee Colony (ABC) For daily ET0 fore-

casting across China’s varying climate zones, the result

showed the ability of PSO-ELM to estimate the ET0 with

high precision using limited meteorological data.

Wu et al. (2019) used a five-fold cross-validation

approach to assess the performance of four bio-inspired

algorithm optimized extreme learning machine ( ELM)

models for predicting daily ET0 across China: ELM with

genetic algorithm (ELM-GA), ELM with ant colony opti-

mization (ELM-ACO), Elm with cuckoo search algorithm

(CSA), and ELM with flower pollination algorithm (ELM-

FPA). The findings supported the ability of bio-inspired

optimization algorithms, particularly the FPA and CSA

algorithms, to enhance the daily ET0 prediction accuracy of

the traditional ELM model in China’s various climates.

Mokari et al. (2022) compared four machine learning

(ML) models, extreme learning machine (ELM), genetic

programming (GP), random forest (RF), and support vector

regression (SVR), for estimating daily ET0 with different

limited climatic data as inputs in New Mexico using ten

fold cross-validation method where, the results showed that

SVR and ELM were the best ML models for all input

scenarios in the analyzed climate zones, showing the best

stability in testing.

Mangalath Ravindran et al. (2022) proposed an inno-

vative approach to estimating daily ET0 through the

implementation of an Automated Machine Learning (Auto

ML) solution. This is the first instance in which such a

methodology has been applied to ET0 prediction in a sce-

nario characterized by limited input parameters, repre-

senting a significant contribution to the field of ET0

estimation research. The study implemented two distinct

Auto ML frameworks, namely Auto Gluon-Tabular (AGT)

and H2O Auto ML, which are automated machine learning

tools designed for tabular data. AGT is a novel open-source

AutoML methodology developed by Amazon Web Ser-

vice, while H2O AutoML is built on the scalable and open-

source H2O ML platform. The study utilized daily mete-

orological data from a humid tropical climatic region in

Kerala, India, and assessed the performance of these

frameworks against radiation-based empirical methods and

conventional ML methods. Where, the results showed the

AGT’s superiority in ET0 prediction at all weather stations.

Wu et al. (2021a, b, c) used the artificial bee colony

(ABC) algorithm, the differential evolution (DE) algo-

rithm, and the particle swarm optimization (PSO) algo-

rithm to calibrate the Hargreaves model, commonly

referred to as HG, is widely acknowledged as the most

efficient and uncomplicated method for estimating ET0

where, PSO-HG model was found to have the most accu-

rate ET0 estimation on daily and monthly scales, and it can
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be recommended as the preferred model to predict ET0 in

humid regions in southwest China.

Mattar and Alazba (2019) involved the modeling of ET0

as a significant component of hydrological applications,

utilizing diverse combinations of climatic variables

through two distinct methodologies: gene expression pro-

gramming (GEP) and multiple linear regression

(MLR).The findings suggest that the GEP and MLR

models have a more significant impact on the mean relative

humidity and wind speed at a height of 2 m than other

variables. Incorporating temperature data into models,

solar radiation exhibits a marginal impact on enhancing the

precision of ET0 estimation. Furthermore, the GEP models’

lower statistical error criteria values have substantiated

their superior performance in comparison to MLR models

and other empirical equations.

Ehteram et al. (2019) developed a new approach for

modeling monthly ET0 at Indian weather station by

employing a modified support vector machine (SVM)

based on the cuckoo algorithm (CA). The SVM-CA results

were compared with those from empirical models, genetic

programming (GP), a tree model (M5T), and an adaptive

neuro-fuzzy inference system (ANFIS) where, a positive

outcomes proved that the suggested SVM-CA model out-

performs the GP, M5T, and ANFIS models in predicting

ET0.

This study (Feng and Tian 2021) aimed to explore the

ability of the k-Nearest Neighbor algorithm (KNN) as a

data mining technique for estimating ET0 in a semi-arid

region of China, despite the limited availability of climatic

data. Furthermore, an ET0 forecast model based on the

KNN algorithm was evaluated in comparison to the PM-56

equation. Where, the results indicated that KNN model was

shown to have the highest accuracy in case of using max,

min temperature and relative humidity as inputs.

Zhang et al. (2022) proposed six machine learning

algorithms for the estimation of daily ET0. Data pertaining

to meteorological conditions, encompassing the uppermost

and lowermost temperatures, radiation levels, relative

humidity, and wind velocity, spanning the temporal range

from 1960 to 2019, were procured from a total of eighteen

monitoring stations situated in the northeastern region of

Inner Mongolia, China. Three different combinations of

inputs were used to train and test the proposed models.

These combinations were compared with corresponding

empirical equations, which included two equations based

on temperature, three equations based on radiation, and two

equations based on humidity. The results indicated that

when the characteristics of radiation or humidity were

added to the given temperature characteristics, all of the

proposed machine learning models were able to estimate

ET0. Furthermore, the accuracy of these models was higher

than that of the calibrated empirical equations that were

external to the training study area. This suggests that it

would be feasible to construct an ET0 prediction algorithm

for cross-station information with similar meteorological

characteristics, in order to achieve an acceptable ET0

estimation for a specific station.

This study (Dong et al. 2022) examined the spatiotem-

poral fluctuations in ET0 (evapotranspiration) in China and

enhance the precision of ET0 estimations across several

spatiotemporal dimensions. In this study, three machine

learning models, namely convolutional neural nets (CNN),

extreme learning machines (ELM), and multiple adaptive

regression splines (MARS), were evaluated alongside

seven empirical models calibrated using the mind evolu-

tionary algorithm (MEA). The objective was to determine

the most appropriate models for estimating ET0 across

various spatiotemporal scales in China. The findings indi-

cate that machine learning models had superior perfor-

mance compared to empirical models across various

spatiotemporal scales. CNN demonstrated superior perfor-

mance in terms of both model correctness and stability

when calculating ET0.

The objective of this study (Abdallah et al. 2022a) was

to assess the efficacy of a D-vine Copula-based quantile

regression (DVQR) algorithm for estimating daily evapo-

transpiration (ET0) in two hyper-arid locations, specifically

the Atbara and Kassala stations, located in Sudan. The

study focused on the period from 2000 to 2015 and

examined the performance of the DVQR model using

different input structures. Additionally, the DVQR model

was compared to other statistical models including Multi-

variate Linear Quantile Regression (MLQR), Experimental

Models (EMMs), Bayesian Model Averaging Quantile

Regression (BMAQR), and Classical Machine Learning

(CML). In addition, many computational intelligence

models were utilized in this study, namely random forests

(RF), support vector machines (SVM), Extreme Learning

Machines (ELM), extreme gradient booster (XGBoost),

and M5 Models Tree (M5Tree). The findings indicate that

the first EMMs exhibited subpar performance, but

demonstrated improvement following the implementation

of calibrating methodologies. The DVQR, MLQR, &

BMAQR models exhibited superior performance in com-

parison to the calibrated EMMs. In comparison to the

MLQR & BMAQR models, the DVQR model demon-

strated superior accuracy across both study sites. The

M5Tree, Support Vector Machine (SVM), and Extreme

Gradient Boosting (XGBoost) models exhibited superior

performance compared to the Extreme Learning Machine

(ELM) and Random Forest (RF) algorithms at both testing

sites.

The objective of this study (Elbeltagi et al. 2023) was to

develop a model for estimating evapotranspiration (ETo) in

Egypt’s key agricultural governorates, namely Al
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Buhayrah, Alexandria, Ismailiyah, and Minufiyah. This

was achieved through the utilization of four machine

learning (ML) algorithms, namely a linear regression

approach (LR), random subspace (RSS), reduced error

pruning tree (REPTree),and additive regression (AR). The

study identified maximum temperature (Tmax), minimum

temperature (Tmin), and solar radiation (SR) as the three

input variables that exerted the most significant influence

on the results of subset regression and sensitivity analysis.

The outcome achieved through the process of performing

an action or task. The results of a comparison investigation

of machine learning models demonstrated that REPTree

exhibited superior performance compared to its competi-

tors, as evidenced by reaching the highest values across

multiple performance metrics in both the training and

evaluation stages.

The integration of the forecasting models of the top

estimation techniques is one of the most efficient methods

to provide accurate predictions; this is called ensemble

learning approach (Roy et al. 2020). Ensemble learning

combines weak learners to develop a new strong model to

decrease deviation, lowering variance, or enhance predic-

tive accuracy where, bagging, boosting, and stacking are

popular ensemble learning approaches (Wu et al.

2021a, b, c). Ponraj and Vigneswaran (2020) used

employed various machine learning algorithms (i.e. mul-

tiple linear regression, random forest, and gradient boost

regression) to estimate ET0 with and without preprocessing

approaches, and the findings show that the preprocessed

gradient boost model outperformed the other two models.

Wu et al. (2020a, b) assessed the potential usability of

the random forest (RF) prediction model, which is used to

replicate daily ET0 where, the results demonstrate that the

RF model is a superior way to predict ET0 for the dry oasis

area with fewer data. Huang et al. (2019) investigated the

capability of CatBoost algorithm for effectively forecasting

daily ET0 with minimal meteorological data in humid parts

of China, where, CatBoost performances were compared

with random forest (RF) and support vector machine

(SVM) performances. The results indicated that CatBoost

data processing took less time and memory than RF and

SVM also; it improved accuracy, stability, and computa-

tional cost over RF but, SVM produced the best prediction

accuracy and stability with partial meteorological param-

eter combinations, whereas CatBoost performed best with

complete combinations.

Wu et al. (2020a, b) evaluated and compared the effi-

ciency of five Boosting-based models, namely Adaptive

Boosting (ADA), Gradient Boosting Decision Tree

(GBDT), Extreme Gradient Boosting (XGB), Light Gra-

dient Boosting Decision Machine (LGB), and Gradient

boosting with categorical features support (CAT), in the

estimation of daily ET0 across ten stations situated in the

eastern monsoon zone of China. Where, the result showed

the utilization of CAT models is highly advisable for the

estimation of ET0 and can be advocated to enhance the

efficiency of the model with restricted meteorological

parameters in the eastern monsoon region of China.

In this research (Başakın et al. 2023) the authors

employed stochastic gradient boost (SGB), a widely uti-

lized soft computing technique, for estimating reference

evapotranspiration (ET0) in the Adiyaman region of

southeastern Turkey. The ET0 (reference evapotranspira-

tion) was calculated using the FAO-56-Penman–Monteith

technique. Subsequently, we approximated the ET0 using

the SGB (Simplified Surface Energy Balance) approach,

incorporating maximum and minimal temperature, wind

speed, solar radiation, and relative humidity data received

from a meteorological station. The findings indicate that

the hybrid SSA-SGB method produced more precise results

in comparison to the predictions made using the stand-

alone SGB method.

This work (Heramb et al. 2023) aimed to optimize

various machine learning techniques, including random

forest model (RF), intense gradient boosting (XGB), &

light gradient boost (LGB), using the grey wolf optimizer

(GWO), specifically GWORF, GWOXGB, and GWOLGB

for ET0 estimation. The findings indicate that the hybrid

machine learning (ML) models outperformed traditional

and empirical models in accurately predicting outcomes at

all stations. Additionally, the random forest (RF) models

demonstrated significantly better accuracy when utilizing

the Grey Wolf Optimizer (GWO) compared to the

LightGBM (LGB) and XGBoost (XGB) models.

The objective of this study (Jayshree et al. 2023) was to

examine the efficacy of four ensemble strategies in accu-

rately estimating the daily ET0 values at chosen locations

in 10 agro climatic regions in Karnataka, India, spanning

the time period from 1979 to 2014. The evaluation of these

models was conducted by employing various combinations

of meteorological variables as inputs through the use of

tenfold cross-validation. The results demonstrated that the

ensemble models, including all climatic variables, yielded

the most precise estimates of ET0 when compared to

alternative input combinations. Additionally the random

forest regressor demonstrated superior performance com-

pared to the other three models across all evaluated met-

rics. Nevertheless, the model in question resulted in the

most significant computational expenditure, while the

computational cost associated with the bagging approach

for the linear regression was the most minimal. The per-

formance for the extreme gradient-boosting algorithm was

shown to be the most stable when trained on a modified

dataset.

On the other hand, evapotranspiration studies have

ignored other ensemble methods, such as Stacking, despite
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the significant benefits, which include the ability to

simultaneously develop ensembles from a variety of

learning models and benefit from each one’s advantages

while avoiding its drawbacks. Furthermore, when dealing

with outliers and noise, Stacking ensembles have typically

performed well (Martı́n et al. 2021). The term ‘‘stacked

ensemble’’ refers to a specific type of ensemble approach in

which multiple machine learning models are assembled in

layers, with data moving from the input to the outcome

(Petinrin and Saeed 2019; Vidyarthi et al. 2020).

Wu et al. (2021a, b, c) presents the initial assessment of

stacking and blending ensemble models for the purpose of

estimating daily ET0. The stacking and blending models

utilized a two-tiered architecture. The first layer, or level-0,

consisted of basic models such as random forest (RF),

support vector regression (SVR), multilayer perceptron

neural network (MLP), and K-Nearest Neighbor regression

(KNN). The second layer, or level-1, produced the ultimate

outcome through linear regression (LR). The findings

suggest that the stacking and blending models exhibited

superior performance compared to the basic and empirical

models, irrespective of the input combination. In contrast

to basic models, the stacking and blending models exhib-

ited greater portability across stations situated in diverse

climate zones. Regarding computational expenses, stacking

and blending models outperformed basic models in terms

of accuracy within a reasonable time frame and with a

smaller training dataset. However, blending models were

able to achieve comparable high accuracy to stacking

models in less time after expanding the size of the training

dataset. Hence, the utilization of stacking and blending

ensemble models is highly recommended for the estimation

of ET0, particularly in cases where the training dataset or

meteorological variables are restricted.

Even though the performance of an ensemble or com-

bining learners in multiple ways performed much better

than a single-candidate learner, there is concern that these

methods may over fit the data and may not be the best way

to combine the candidate learners (Kabir and Ludwig

2019). From the previous literature review, it’s evident that

researchers have tried to improve ET0 prediction approa-

ches, and that work in this field is currently in progress.

This study introduces the super learner technique, an

ensemble approach to get over the limitations of the PM

model and other machine learning models to estimate ET0

precisely.

3 Materials and methods

The study area and dataset, the meteorological input

combinations, the proposed model’s flowchart, the super

learner technique’s structure, the machine learning models

employed in this investigation are all included in this

section, model evaluation metrics and PM model.

3.1 Study area and data collection

In light of recent climate changes and population growth in

Egypt, the country is facing a significant water shortage.

Consequently, it is imperative to devise solutions to

address this issue. The Egyptian government is currently

focused on improving water resource management, par-

ticularly by mitigating water loss in the agricultural sector.

This research aims to assist the government in developing

an accurate model for estimating reference evapotranspi-

ration, particularly in regions lacking sufficient meteoro-

logical data.

The Arab Republic of Egypt has a landmass of

approximately 1,002,000 square kilometers and a location

in the northeastern part of the African continent. Its lati-

tudes range from 22 to 32 degrees north, while its longi-

tudes range from 25 to 37 degrees east.

The 32 Egyptian weather stations that contributed to the

dataset utilized in this investigation are depicted in Fig. 2.

These stations are part of the United Nations Food and

Agriculture Organization’s (UN-FAO) CLIMWAT data-

base, which has been used in the vast majority of ET0

estimation research (Smith et al., 1993). the dataset covers

the period from 1971 to 2000 and includes Long-term

monthly mean values of maximum and lowest air tem-

perature (Tmax, Tmin) [�C], relative humidity (RH) (%),

solar radiation (Rs) (MJ/m2/day), wind speed (U) at 2 m

height (km/day), sunshine hours (H) as inputs and ET0

(mm/day) estimated with the PM model as target.

3.2 Data splitting

The dataset consists of 384 records, which have been

divided into two subsets. The training set contains 80% of

the data, while the testing set contains the remaining 20%.

The descriptive statistics of the characteristics of the

dataset are presented in Table 1. In this table, the variables

Xmin, Xmean, Xmax, and Sx represent the minimum, mean,

maximum, and standard deviation, respectively. Additional

to this, Fig. 3 depicted the boxplot which illustrated the

distribution of each variable in the dataset employed in the

current study.

3.3 Proposed model workflow

The stages involved in the application of the suggested

model to this research, beginning with the creation of the

dataset and ending with the prediction of ET0, are shown in

Fig. 4.
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3.4 Super Learner model (SL)

The concept of stacking was introduced by David Wolpert

in the past 15 years. The implementation details, which

were previously considered an ‘‘art’’ by Wolpert in 1992,

were transformed into a scientific approach in 1996 by Leo

Breiman. Breiman showcased the effectiveness of non-

negative least squares (NNLS) regression in amalgamating

predictions from algorithms that were fitted to the same

dataset, also known as meta-learning. The theory proposed

by Mark van der Laan, Sandrine Dudoit, and Aad van der

Vaart in 2007 was further expanded to demonstrate that, in

the case of large samples, the stacking approach is an

optimal method for acquiring knowledge about two

variables.

The aforementioned algorithm acquired an alternative

terminology, namely ‘‘Super Learner’’ (Phillips et al.

2023). SL model, commonly known as the model

ensemble, is a loss-based learning system developed and

studied by Lin et al. (2019). The present model is catego-

rized as a stacking ensemble learning methodology, which

amplifies the accuracy of the model by means of selecting

and amalgamating multiple models (Lee et al. 2022). The

SL model will asymptotically outperform all other candi-

date learners, according to theoretical findings where a

Meta learner is learned using the outcomes of a number of

base learners. Utilizing cross-validation, the outputs from

base learners, also known as the level-one data, can be

produced (Kabir and Ludwig 2019).

Consequently, this methodology not only delineates the

associations between predictors and the modeling out-

comes generated through penalized regression, but also

possesses the capability to depict the non-linear connec-

tions and interplay through the utilization of spline algo-

rithms or decision trees (Taghizadeh-Mehrjardi et al.

2021). The framework of SL model according to Lee et al.

(2022) that used in this study is illustrated in Fig. 5, where,

it demonstrates the SL model’s workflow, as well as the

base learners that were employed in this study. The MLEns

(Flennerhag & jlopezpena 2018) (http://ml-ensemble.com)

module was used to create the SL model.

The methodology for constructing the SL model as

illustrated in Lee et al. (2022) can be succinctly outlined as

follows. The objective of analyzing a dataset through

observation Dn = (Xn, Yn), n = 1, 2, 3… k, is to make an

Fig. 2 Geographical distribution of weather stations in Egypt that were selected from the CLIMWAT database

Table 1 Characteristics of the datasets as described by descriptive

statistics

Tmax Tmin RH Rs U H ET0

Xmin 16.6 2.5 7 9.6 17 4.5 1.37

Xmean 28.09 14.87 57.85 19.75 266.20 8.92 5.03

Xmax 41 26.3 98 27.8 596 11.9 12.46

Sx 6.17 5.59 17.21 5.22 122.03 1.57 2.26
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estimation of the regression W0 (X) = E (Y|X) where X is a

vector of the variables that go into the model, and Y is the

outcome that is of interest to us. The SL method comprises

a set of distinct principles, which are outlined as follows:

(1) Minimizing the predicted loss E [L (D, W)] is a good

way to think about the regression problem as

follows:

W0ðXÞ ¼ argminE½LðD;WÞ� ð1Þ

with L being a loss function.

(2) The entire data set v is divided into k subsets using a

k-fold cross-validation approach. Each subset is

comprised of verification and training samples V(v)

(v = 1,2,3,….,n), T(v) (v = 1,2,3,….,n), correspond-

ingly. Consider a set of algorithms that produce j

base learners denoted by bW i (i = 1, 2, 3… j).In the

v-th iteration, every base model is trained on the

training set T(v). Additionally, the predictions for the

respective verification sample can be determined by:

bWi;T vð ÞðV vð Þ; ði ¼ 1; 2; 3. . .jÞÞ ð2Þ

(3) The individual predictions generated by each base

learner are aggregated through a stacking process,

resulting in the formation of a prediction matrix

Z = bWi;T vð ÞðV vð Þ. The proposed approach involves a

set of candidate base learners that are combined

using a weight vector a to form a family of weighted

combinations which can determine by:

mðzjaÞ ¼
X

j

i¼1

ai
bWi;T vð ÞðV vð Þ;

X

j

i¼1

ai ¼ 1 ð3Þ

(4) The weight vector a is determined by minimizing the

cross-validated errors between the permissible

weight vector combinations and the actual output

Y. This is achieved through the calculation of:

Fig. 3 Box plot illustrates the distribution of each variable employed in the current study’s dataset

Fig. 4 The proposed model workflow involves generating a dataset by

combining meteorological data and ET0, which is calculated using

PM model data. The dataset is then split into training and testing sets,

comprising 80% and 20% of the data, respectively. A super learner

model is trained using the training set, and the proposed model is

evaluated using five statistical indices, namely R2, RMSE, MAE,-

MAPE and MSE, on the testing set
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ba ¼ arg min
X

n

c¼1

Yc � mðzcjaÞð Þ2 ð4Þ

(5) The final super learner is produced by combining the

optimal weight vector ba with bW i (X) according

tomðzjaÞ, where:

bWSLðXÞ ¼
X

j

i¼1

bai
bWiðXÞ ð5Þ

3.5 Base learners

Base learners refer to algorithms that are not completely

specified but establish a specific learning approach. It’s

best to consider a variety of base learners and create var-

ious versions of the same base learner with different tuning

criteria. Incorporating a low-performing learner in the

library setting does not pose any detrimental effects, as

their performance will be assigned a value of zero (Phillips

et al. 2023).

It has been decided to use the machine learning algo-

rithms Extra Tree Regressor (ETR), Support Vector

Regressor (SVR), K-Nearest Neighbors (KNN), and Ada-

Boost Regressor (ADA) as base learners in the Super

Learner’s model, where the Scikit-learn package (Pedre-

gosa et al. 2011) (https://scikit-learn.org) in Python 3.8 was

used to implement the models that were employed in this

study. The selected machine learning algorithms can be

described as follows:

(1) Extra Tree Regressor (ETR)

As first proposed by Geurts et al., the Extra Tree

Regressor (ETR) method is a refined strategy that expands

on the strengths of the Random Forest model (Hameed

et al. 2021). Extra-Trees are appealing due to their com-

putational efficiency during learning and their ability to

compete with other set approaches in terms of accuracy, all

while being extremely quick thanks to their extreme ran-

domness (Berrouachedi et al. 2019). ETR’s greatest

advantage is that it does not necessitate intensive focus on

the choice of hyper parameter values while implementation

(Saeed et al. 2021).

There are primarily two significant differences between

the ETR and Random Forest systems. First, the ETR uses

every possible cutting point and randomly selects one to

use for dividing nodes. Two, it grows trees using the

complete training set (Hameed et al. 2021; Jamei et al.

2021). Figure 6 provides an illustration of the architecture

of ETR. With a dataset in hand, ETR chooses a split rule at

the root node at random, using a combination of feature

selection and cutoff point selection. Until you reach a leaf

node, this process will be repeated in all of the nodes below

the current one. More specifically, the number of trees in

the ensemble, the number of attributes/features to randomly

choose, and the minimum number of samples/instances

required to divide a node are the three most critical

parameters of ETR (Saeed et al. 2021).

(2) Support Vector Regressor (SVR)

Vapnik was the one who initially suggested using a

support vector machine, also known as the SVM approach

(Üne et al. 2020; Yamaç, 2021). Owing to its high ability to

focus on the complex nonlinear relationships between

Fig. 5 Super Learner’s Architecture which involves partitioning the

entire dataset into folds, with each fold being further divided into a

training set and a verification set (V). Four base learner models,

namely ETR, SVR, KNN, and ADA, are then trained on the training

set and evaluated on the verification set for each fold to generate

predictions. These predictions are used to create a new dataset

consisting of both Z and V, which is then used to train the Meta

learner and ultimately generate predictions
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inputs, SVM is employed for regression and classification

issues (Chia et al. 2020; Üne et al. 2020; Yamaç 2021).

However, according to current studies on SVM model

implementation, the key difficulty is optimizing internal

parameters (Ehteram et al. 2019). For the ET0 prediction,

which is more likely to be a regression problem than a

classification problem, the support vector regression

(SVR), which is a version of the support vector machine, is

the type of model that is typically utilized (Chia et al.

2020). The accuracy of SVR models is determined by the

appropriate selection of kernels and their corresponding

parameters. Typically, the radial basis function (RBF) is

the preferred kernel due to its superior efficiency in esti-

mating ET0, as supported by prior research findings

(Abdallah et al. 2022b; Hebbalaguppae Krishnashetty et al.

2021; Svm et al. 2022).

(3) K-Nearest Neighbors (KNN)

Cover and Hart (1967) created the k-nearest neighbor

(KNN) approach, which is widely used in data mining

models today (Yamaç 2021). As a result of its efficiency,

ease of use, adaptability, and performance, this technique is

capable of addressing issues with classification and

regression (Yamaç, 2021; Yamaç and Todorovic 2020).

The KNN approach does have certain drawbacks, despite

the many benefits that were just discussed. Due to the need

to calculate the distance between each query example and

all training samples, the KNN algorithm might have a slow

running time when dealing with large training datasets.

Nevertheless, kd-trees can be utilized to improve KNN

searches for large amounts of data (Feng and Tian 2021;

Yamaç and Todorovic 2020).

Choosing the appropriate ‘‘K’’ value is an important step

in applying the KNN algorithm. If the K value is low, the

algorithm will become increasingly difficult to understand

and will be vulnerable to overfitting. On the other hand, if

the K value is high, the model is going to be quite easy to

understand (Liu et al. 2021).The steps of KNN technique

(Qaddoura and Younes 2022) can be summarized in the

following as shown in Fig. 7:

(1) Determine the value of k, as shown in the

figure k = 3

(2) Using Euclidean distance, calculate the distance

between the aqua-colored point and each red-colored

point.

(3) Based on k = 3, the three dots with red color inside

the circle represent the three nearest neighbors.

(4) The predicted value can be determined by taking the

average value of the three red point values.

(4) AdaBoost Regression (ADA)

The ADA model quickly rose to prominence as one of

the most effective ways to machine learning recognition

(Asadollah et al. 2021; Wang et al. 2022; Yamaç and

Todorovic 2020). AdaBoost is well recognized as the first

effective boosting algorithm, wherein the base learners

consist of decision trees that possess a solitary split.

Decision trees that consist of only a few nodes and bran-

ches are commonly referred to as decision stumps (Mienye

and Sun 2022). In the present study, decision tree regres-

sors are utilized as the base learners of ADA model.

ADA’s key benefits are that it is more stable with noisy

data and has a low impact on the overfitting problem (Jin

et al. 2020). In addition to this, the ADA is a well-liked

boosting strategy due to the high estimation precision it

Fig. 6 The architectural design of the ETR is the subject of

discussion. Upon obtaining a dataset, ETR employs a randomized

approach to select a split rule for the root node, utilizing a

combination of feature selection (N) and cutoff point selection. The

aforementioned procedure will be iterated in all nodes situated

beneath the present one, until a leaf node is reached

Fig. 7 KNN for regression problems, where the predicted value can

be determined by taking the average of the values of the 3 nearest

points based on the distance between the aqua-colored point and each

red-colored point
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offers and the ease with which it can be implemented in

code (Yamaç and Todorovic 2020). The ADA is a meta-

estimator that fits a regression to the entire data and then

fits multiple copies of the regression to the corresponding

dataset, adjusting the weight of the instances based on the

errors of the current prediction as presented in Fig. 8 (Jin

et al. 2020).

For the sake of clarity, we will refer to the data set as

(Dm). As can be seen, each of the data in (Dm) is given an

equal weight to begin with. The weight is what determines

whether or not a sample will be taken. In accordance with

the weight, we take a sample from the dataset (Dm) using

replacement in order to produce a training set (Dm1), and

we then make use of the training set in order to train a

regressor. The purpose of a prediction loss evaluation is to

evaluate the trained regressor and determine a weight (w1)

for the regressor, as is illustrated in Fig. 8 (Min and Luo

2016).

3.6 Meta learner

A meta-learner is an algorithm with a defined set of inputs

that has been taught to make predictions about a new

collection of variables. Therefore, the meta-learner is a

learner that learns from the knowledge of other learners.

Dataset used to fit the meta-learner, including cross-vali-

dated prediction values and validation set outcomes from

base learners (Van Der Laan et al. 2007). The Multilayer

Perceptron, sometimes known as MLP, is a popular artifi-

cial neural network (ANN) architecture that is frequently

employed in the field of hydrological modeling (Achite

et al. 2022). MLP model has been extensively utilized in

the examination of diverse complicated problems (Wu

et al. 2021a, b, c). MLP is inspired by neurons in the human

central nervous system. It also features straightforward

coding and, in most situations, accurate ET0 calculations

(Bellido-Jiménez et al. 2022). Due of the aforementioned

benefits, MLP will be utilized as a Meta learner in the

current investigation. The parameter configurations for the

base learners, Meta learner, and Super Learner models

employed in the current study are presented in Table 2.

3.7 Penman–Monteith FAO 56 equation (PM
model)

The FAO Penman–Monteith model has served as the

foundation for numerous prior comparative evaluations due

to its wide applicability across geographic regions with

Fig. 8 Schematic of AdaBoost Regression, where all data points in

the dataset denoted as (Dm) are assigned uniform weights. The

determination of whether a sample will be taken or not is contingent

upon the weight of the sample. Sampling with replacement is

employed to generate a training set (Dm1) from the dataset (Dm) based

on weight considerations. The training set is subsequently utilized to

train a regressor. The objective of conducting a prediction loss

evaluation is to assess the efficacy of the trained regressor and

ascertain an appropriate weight (w1) for the regressor
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little to no modification of its parameters. The Penman–

Monteith (P-M) model was initially formulated by Mon-

teith to approximate the rate of evapotranspiration. This

model takes into consideration the potential evaporation

that occurs over water surfaces and the transpiration pro-

cess, while assuming that the vegetation canopy functions

as a single uniform cover or ‘‘big-leaf’’. The P-M model

got standardization by the Food and Agriculture Organi-

zation (FAO) and the World Meteorological Organization

(WMO) (Abeysiriwardana et al. 2022). The PM model is

presented in Chen et al. (2020), Hu et al. (2022), Üneş et al.

(2020), Wu et al. (2021a, b, c) and Zhu et al. (2020) as:

ETo ¼
0:408D Rn � Gð Þ þ c 900

Tþ273
U2 es � eað Þ

Dþ c 1 þ 0:34U2ð Þ ð6Þ

where ET0 reference evapotranspiration [mm/day], Rn net

radiation at the crop surface [Mj/m2 /day], G soil heat flux

density [Mj/m2/day], T mean daily air temperature at 2 m

height [oC], U2 wind speed at 2 m height [m/s], es satura-

tion vapour pressure [KPa], ea actual vapour pressure

[KPa], es - ea saturation vapour pressure deficit [KPa], D
Slope vapour pressure curve [KPa/oC], c Psychrometric

constant [KPa/ o C].

The FAO-56 document should be reviewed for further

information regarding the computation of each of the

variables listed above (Allen et al. 1998).

3.8 Input combinations

As stated in Table 3, this study examined six different

combinations of meteorological data as inputs for the

suggested model.

3.9 Model performance evaluation

All of the models’ performances were assessed with using

five well-known metrics: root mean square error (RMSE),

mean absolute error (MAE), mean squared error (MSE),

mean absolute percentage error (MAPE) (Vaz et al.

2023),and coefficient of determination (R2) (Sharma et al.

2022) as the following:

(1)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X
N

i¼1

ETact
i � ETpred

i

� �2

v

u

u

t ð7Þ

where ETact
i and ETpred

i are ET0 values estimated

by FAO-56 PM and models respectively.

(2)

MAE ¼
PN

i¼1 ETact
i � ETpred

i

�

�

�

�

�

�

N
ð8Þ

where ETact
i and ETpred

i are ET0 values estimated

by FAO-56 PM and models respectively.

(3)

R2 ¼
PN

i¼1 ETact
i � ETact

O

� �

ETpred
i � ETpred

o

� �h i2

PN
i¼1 ETact

i � ETACT
O

� �2
PN

i¼1 ETpred
i � ETpred

O

� �2

ð9Þ

where ETact
i and ETpred

i are ET0 values estimated

by FAO-56 PM and models and ETpred
o , ETACT

O are

the mean values estimated by models and FAO-56

PM respectively.

(4)

MSE ¼ 1

N

X
N

i¼1

ETact
i � ETpred

i

� �2

ð10Þ

where ETact
i and ETpred

i are ET0 values estimated

by FAO-56 PM and models respectively.

(5)

Table 2 Model parameters of base learners, meta learner, and super learner models

Model Setting of parameters

Base learners Extra Tree Regressor (ETR) random_state = 43, n_estimators = 50, criterion = ’mae’,

max_depth = 32, max_features = ’log2’

K-Nearest Neighbors (KNN) algorithm = ’auto’, n_neighbors = 5, weights = ’uniform’

Support Vector Regressor (SVR) gamma = 0.0001, kernel = ‘‘rbf’’, C = 270, epsilon = 0.009

AdaBoost Regression (ADA) random_state = 43,n_estimators = 10, learning_rate = 0.3,

loss = ’exponential’

Meta learner Multilayer Perceptron (MLP) random_state = 43, max_iter = 2000, alpha = 0.1,

activation = ’logistic’, solver = ’lbfgs’,

learning_rate = ’invscaling’, learning_rate_init = 0.5

Super Learner (SL) random_state = 43, folds = 12
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MAPE ¼ 1

N

X
N

i¼1

ETact
i � ETpred

i

�

�

�

�

�

�

ETact
i

*100

where ETact
i and ETpred

i are ET0 values estimated by

FAO-56 PM and models respectively.

4 Experimental results

This section relies on the experiment results obtained from

the proposed model to assess its effectiveness in utilizing

diverse restricted meteorological data as inputs. Subse-

quently, a comparative analysis is presented between the

results obtained from our proposed model and the base

learners. Ultimately, a comparative analysis is presented

between the results obtained from our proposed model and

those of other models in the same field. The present

investigation utilized five distinct statistical metrics,

namely RMSE, MAE, MSE, MAPE and R2, in conjunction

with diverse input meteorological variables to assess the

study’s objectives.

The R2 is a statistical measure utilized to assess the

correlation and concurrence between the actual and pre-

dicted daily ET0. R2 value of 1 is considered to be excellent

and indicates a positive correlation. While the metrics of

MAE, RMSE, MAPE, and MSE are utilized to quantify the

level of error that is linked with the estimated models.

These metrics are characterized by a numerical range that

spans from 0 to !, with the ideal value being 0 (Vaz et al.

2023).

Initially, a correlation analysis was conducted utilizing a

seaborn heatmap (Waskom 2021) to examine the rela-

tionship between meteorological input parameters, specif-

ically maximum and minimum temperature (Tmax and

Tmin), relative humidity (RH), solar radiation (RS), wind

speed (U), sun shine hours (H), and the output variable,

namely reference evapotranspiration (ET0). As indicated in

Fig. 9, the results of the correlation analysis demonstrate

that RS exerts the most substantial impact on ET0, whereas

U exhibits the least significant effect. This justification is

also supported by previous investigations (Yildirim et al.

2023).

Additionally, the correlation between relative humidity

and ET0 was found to be strong and negative. The observed

negative correlation indicates that there exists an inverse

association between ET0 and relative humidity. As per the

given information, an increase in relative humidity would

result in a decrease in the reference evapotranspiration

variable. This phenomenon is evidenced by the fact that

increased relative humidity results in reduced water loss

from both the Earth’s surface and plant cells to the atmo-

sphere. This is due to the presence of elevated atmospheric

humidity, which is supported by the findings of study (Seifi

& Riahi 2020).

Table 3 Different input

combinations used in this study
ID Input combinations Employed models

ETR SVR KNN ADA SL

M1 Tmax, Tmin, RH, Rs, and U ETR1 SVR1 KNN1 ADA1 SL1

M2 Tmax, Tmin, RH, H, and U ETR2 SVR2 KNN2 ADA2 SL2

M3 Tmax, Tmin, RH, and U ETR3 SVR3 KNN3 ADA3 SL3

M4 Tmax, Tmin, U, and Rs ETR4 SVR4 KNN4 ADA4 SL4

M5 Tmax, Tmin, and U ETR5 SVR5 KNN5 ADA5 SL5

M6 RH, Rs, and U ETR6 SVR6 KNN6 ADA6 SL6

Fig. 9 Correlation analysis of selected variables and ET0, where the

result demonstrate that RS exerts the most substantial impact on ET0,

whereas U exhibits the least significant effect
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4.1 Performance analysis of super learner

The study compared the performance of the SL model with

that of the PM model during testing period, using various

combinations of meteorological data. The findings as

shown in Table 4 indicated that the model with complete

meteorological variable inputs (M1) demonstrated the best

performance of RMSE, MAE and MSE (0.0512, 0.0358

and 0.0026 mm/day), and MAPE of 0.9148% across all

input conditions. Previous research provides support to this

argument as well (Wu et al. 2021a, b, c; Yu et al. 2020). In

cases where the solar radiation variable is substituted with

sunshine hours (M2), the statistical indicators exhibit lower

performance (0.2717, 0.2239 and 0.0738 mm/day for

RMSE, MAE and MSE, respectively), and MAPE of

5.6145% compared to the M1 inputs. However, the

performance is higher than the other combination models

(M3, M4, M5, and M6) inputs.

Furthermore, in the context of reducing input variables,

there exists a degree of similarity between the model that

employs input combinations of temperatures, wind speed,

and humidity (M3) inputs and the model that utilizes

combinations of humidity, solar radiation, and wind speed

(M6) inputs. The former model yields RMSE, MAE, and

MSE values of 0.4141, 0.3338, and 0.1715 mm/day,

respectively and MAPE of 8.1670%, while the latter model

produces RMSE, MAE, and MSE values of 0.4186, 0.3345,

and 0.1753, respectively, and MAPE of 8.0131%. Con-

versely, the utilization of solely temperature and wind

speed (M5) inputs resulted in the least optimal perfor-

mances in comparison to all other input combinations, with

Table 4 Testing set results of

super learner and machine

learning models applied at 32

weather stations dataset where

the statistical indexes of the

models that perform the best

under each input combination

are highlighted in bold. (M1:

Tmax, Tmin, RH, Rs, and U, M2:

Tmax, Tmin, RH, H, and U, M3:

Tmax, Tmin, RH, and U, M4:

Tmax, Tmin, U, and Rs, M5:

Tmax, Tmin, and U, M6: RH, Rs,

and U)

Input combinations Models RMSE (mm/day) MAE (mm/day) MSE (mm/day) MAPE%

M1 ETR1 0.4430 0.2690 0.1963 6.1132

SVR1 0.1025 0.0442 0.0105 1.2088

KNN1 1.0404 0.7257 1.0824 20.0631

ADA1 0.8165 0.5985 0.6667 14.5622

SL1 0.0512 0.0358 0.0026 0.9148

M2 ETR2 0.5303 0.3555 0.2812 8.2607

SVR2 0.2994 0.2382 0.0896 6.3108

KNN2 1.1663 0.8645 1.3604 23.6777

ADA2 0.8526 0.6415 0.7269 15.6013

SL2 0.2717 0.2239 0.0738 5.6145

M3 ETR3 0.6201 0.4624 0.3845 11.2237

SVR3 0.4416 0.3696 0.1950 9.4351

KNN3 1.1822 0.8833 1.3976 24.4576

ADA3 0.8865 0.6946 0.7859 17.7314

SL3 0.4141 0.3338 0.1715 8.1670

M4 ETR4 0.4515 0.3464 0.2039 9.2724

SVR4 0.6391 0.3625 0.4084 9.5470

KNN4 1.3202 0.8775 1.7428 23.2431

ADA4 0.8212 0.6130 0.6743 15.3556

SL4 0.4404 0.3202 0.1940 8.3999

M5 ETR5 0.6313 0.5128 0.3986 13.4573

SVR5 0.7001 0.5196 0.4901 13.4412

KNN5 1.4184 1.0149 2.0118 26.9005

ADA5 0.8852 0.7011 0.7837 18.0366

SL5 0.5735 0.4575 0.3289 11.5706

M6 ETR6 0.4747 0.3769 0.2253 9.5639

SVR6 0.4770 0.3764 0.2275 9.1261

KNN6 1.2985 1.0159 1.6861 27.6747

ADA6 0.8353 0.5692 0.6977 13.2120

SL6 0.4186 0.3345 0.1753 8.0131
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respective RMSE, MAE, and MSE values of 0.5735,

0.4575, and 0.3289 respectively, and MAPE of 11.5706%.

The R2 values for various super learner models utilizing

distinct meteorological data as inputs are presented in

Figs. 10, 11 and 12 as per the analysis. The most optimal

SL was executed in the M1 inputs, exhibiting a high

coefficient of determination (R2 = 0.9994), while the least

favorable SL was conducted in the M5 inputs, demon-

strating a relatively lower coefficient of determination (R2

= 0.9279). Furthermore, it can be observed that there is a

certain level of resemblance between the R2 values

obtained for SL when utilizing M3 (temperature, humidity,

and wind speed) and M6 (humidity, wind speed, and solar

radiation) inputs, with R2 values of 0.9624 and 0.9616,

respectively. Furthermore, the study found that substituting

Rs in M1 inputs with sunshine hours (M2) inputs resulted

in a decrease of 1.56% in R2 values. Specifically, the R2

values were 0.9994 and 0.9838 for M1 and M2,

respectively.

Additionally, incorporating Rs variable into M5 inputs

(M4) led to an improvement of 3.09% in R2 values. The R2

values were 0.9575 and 0.9279 for M4 and M5, respec-

tively. Finally, replacing Rs in M4 inputs with RH variable

(M3) resulted in a slight improvement of 0.5% in R2 val-

ues. The R2 values were 0.9575 and 0.9624 for M4 and

M3, respectively. The preceding findings indicate that RH

has a substantial impact and are more effective in

approximating ET0 using SL models. Previous results

demonstrated that RH have significant influence on ET0

estimation (Ferreira et al. 2019).

4.2 Comparison of performance analysis of SL
and base learners across Input Combinations

Table 4 demonstrates that the base learners’ performance

varied depending on the input conditions. Specifically, the

models utilizing complete meteorological variables (M1)

exhibited the best performance in terms of RMSE, MSE,

MAE, and MAPE across all input conditions, with the

exception of the ADA model for M6 inputs, which inclu-

ded RH, Rs, and U, and outperformed the other ADA

models in terms of MAE and MAPE. Moreover, the models

using M5 inputs demonstrated lower performance across

all input conditions for RMSE, MSE, MAE and MAPE,

except for the ADA model using M3 inputs, which

exhibited lower RMSE and MSE than the M5 inputs, and

Fig. 10 Scatter plots

comparison based on statistical

metric R2 between predicted

ET0 values by employed models

against ET0 estimated by

standard PM model for M1 and

M2 input combinations
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Fig. 11 Scatter plots

comparison based on statistical

metric R2 between predicted

ET0 values by employed models

against ET0 estimated by

standard PM model for M3 and

M4 input combinations

Fig. 12 Scatter plots

comparison based on statistical

metric R2 between predicted

ET0 values by employed models

against ET0 estimated by

standard PM model for M5 and

M6 input combinations
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the KNN model using M6 inputs, which exhibited lower

MAE and MAPE than the M5 inputs.

Furthermore, Table 4 showed that among the various

base learners, SVR models exhibited the most superior

performance in terms of RMSE, MSE, MAE and MAPE

across M1 inputs, which utilized complete meteorological

data, and this finding is in agreement with prior research

(Yu et al. 2020), M2 inputs, which replaced the Rs in M1

inputs with H, and M3 inputs, which included temperature,

wind speed, and relative humidity. Specifically, the RMSE

values were 0.1025, 0.2994, and 0.4416 mm/day for M1,

M2, and M3, respectively. The MSE values were 0.0105,

0.0896, and 0.1950 mm/day for M1, M2, and M3,

respectively, and the MAE values were 0.0442, 0.2382, and

0.3696 mm/day for M1, M2, and M3, respectively. Finally,

the MAPE values were 1.2088, 6.3108 and 9.4351,

respectively. However the observation of a larger root

mean square error (RMSE) compared to the mean absolute

error (MAE) in the support vector machine (SVM) models

suggests the presence of outliers or significant errors, but to

a lesser degree than in the other base learner models. This

finding is consistent with previous research (Chia et al.

2020). Additionally, SVR model is effective in addressing

the intricate nonlinear association between ET0 and mete-

orological factors. Furthermore, it demonstrates

notable precision and computational efficiency when esti-

mating ET0 (Hou et al. 2023).

Additionally, The ETR models shown enhanced per-

formance when incorporating the Tmax, Tmin, and U (M5)

inputs, except for the MAPE metric, which revealed lower

values compared to SVR. Furthermore, the M4 inputs,

which encompassed the M5 inputs and Rs, in conjunction

with the M6 inputs, comprising the RH, Rs, and U com-

binations, also yielded favorable results. RMSE and MSE

values obtained were 0.4515 and 0.6313, and

0.4747 mm/day for RMSE, and 0.2039, 0.3986, and

0.2253 mm/day for M4, M5, and M6, respectively. The

MAE values yielded the highest performance for the M4

and M5 inputs, with respective values of 0.5128 and

0.3769. Furthermore, the MAPE values obtained from the

M4 input combinations were 9.2724, which were lower

than the MAPE values obtained from SVR model when

utilizing the M5 and M6 input combinations. Specifically,

the MAPE values for the ETR were 13.4573 and 9.5639 for

M5 and M6, respectively, while the MAPE values for the

SVR model were 13.4412 and 9.1261 for M5 and M6,

respectively. The ETR model demonstrated superiority in

terms of accuracy compared to the KNN and ADA models.

This advantage can be attributed to the ETR model’s

ability to effectively simulate outlier values, which is a

challenging task for any AI model (Hameed et al. 2021).

The ADA and KNN models exhibited inferior performance

across all input combinations, as evidenced by their lower

RMSE, MSE, MAE and MAPE results as shown in Table 4

relative to the other base learner models. However, ADA

outperformed KNN, which demonstrated the poorest

results in comparison to the remaining base learner models.

The K-nearest neighbors (KNN) model exhibits the least

favorable performance compared to the other base learners,

indicating a limited capacity to effectively capture non-

linear relationships between weather conditions and ET0

(Zhang et al. 2022).

In contrast, the results depicted in Figs. 10, 11 and 12

indicate that the R2 value of SVR models ranged from

0.8926 to 0.9977. Notably, the SVR approach exhibited

superior performance compared to all other base learner

models when utilizing complete meteorological data as

inputs (M1), as well as when using M2, M3, and M6 inputs.

Conversely, the R2 value of ETR models ranged from

0.9127 to 0.9570, with ETR demonstrating the best per-

formance among all base learner models when using M4

and M5 inputs. Furthermore, it was observed that KNN

models exhibited the least R2 outcomes compared to all

other fundamental learner models. The R2 values ranged

from 0.5592 to 0.7629.

Based on the preceding outcomes of the base learner

models in contrast to the results of the SL models, it can be

concluded that the SL models exhibited superior perfor-

mance across all input combinations. The evaluation met-

rics, namely RMSE, MSE, MAE, and R2, ranged from

0.0512, 0.0026, 0.0358 mm/day, and 0.9279 to 0.5735,

0.3289, 0.4575 mm/day, and 0.9994, respectively. Fur-

thermore, the MAPE exhibited a range of values, spanning

from 0.9148 to 11.5706. The superiority of SL models over

other base learner models in estimating ET0 can be

attributed to their smaller values of RMSE, MSE, MAE,

and MAPE, as well as their higher R2 values. Moreover, it

possesses the capability to provide precise outcomes even

with restricted meteorological information, such as M3,

M4, M5, and M6.

4.3 Comparison with related work

To evaluate the effectiveness of our proposed model, we

employed performance metrics on the testing set and

compared its results with those of other techniques that

have been applied to the same dataset. The objective of the

aforementioned research (Mattar 2018) was to create and

assess a gene expression programming (GEP) model that

could estimate the average monthly evapotranspiration

(ET0) with limited climatic data. The dataset utilized in the

analysis was sourced from the CLIMWAT database com-

prising of data, collected from 32 weather stations located

in Egypt.
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A comparative analysis has been conducted between our

proposed model and the GEP model, utilizing four distinct

input combinations, namely Tmax, Tmin, and U, Tmax, Tmin,

RH, and U, Tmax, Tmin, Rs, and U, RH, Rs, and U. The

comparison has been evaluated based on two metrics. The

statistical metrics R2 and RMSE are commonly used in data

analysis and modeling to evaluate the accuracy and good-

ness of fit of a given model.

Table 5 displays the RMSE and R2 outcomes of our

proposed model and the GEP model results shown in

Mattar (2018) for all input combinations utilized in the

comparison. The results indicated that our proposed mod-

el’s RMSE values achieved the lowest errors than those of

the GEP models. Specifically, our proposed and GEP

model’s RMSE values were 0.582 and 0.573 mm/day when

utilizing Tmax, Tmin, and U inputs, 0.430 and 0.414 mm/day

when using Tmax, Tmin, RH, and U inputs, 0.476 and

0.440 mm/day when using Tmax, Tmin, Rs, and U inputs,

and 0.546 and 0.418 mm/day when using RH, Rs, and U

inputs, respectively. The lowest RMSE values indicate a

superior fit and serve as a metric for the precision of our

proposed model in forecasting ET0.

On the contrary, Table 5 displays R2 values indicating

slight variations in performance between the utilization of

Tmax, Tmin, and U inputs, Tmax, Tmin, RH, and U inputs and

Tmax, Tmin, Rs, and U. The R2 values for our proposed

model and GEP models were marginally different, with

0.9279 and 0.929 for Tmax, Tmin, and U inputs, 0.9624 and

0.962 for Tmax, Tmin, RH, and U inputs, and 0.9575 and

0.953 for Tmax, Tmin, Rs, and U respectively. However,

when considering alternative input combinations utilizing

RH, Rs, and U as inputs, the R2 values for our proposed

model exhibited a 2.45% increase. Specifically, the R2

values for our proposed model and the GEP model were

0.9616 and 0.938, respectively.

Overall, our proposed model exhibited superior perfor-

mance compared to the GEP models across all input

combinations utilized in the comparison, except for the

Tmax, Tmin, and U inputs, where the R2 value of the GEP

model was marginally higher than that of our proposed

model. The present findings suggest that the proposed

model exhibits a high degree of accuracy and can be

effectively utilized for the purpose of modeling ET0.

A different methodology (Mattar and Alazba 2019)

which employed multiple linear regressions (MLR) to

model reference evapotranspiration (ET0) using the iden-

tical dataset that we employed, and its performance was

compared to that of our proposed model using two statis-

tical metrics: RMSE and MAE utilizing four distinct input

combinations, namely Tmax, Tmin, and U, Tmax, Tmin, RH,

and U, Tmax, Tmin, Rs, and U, RH, Rs, and U.

Table 6 displays the RMSE and MAE results of both our

proposed model and the MLR model, as reported in (Mattar

& Alazba 2019), across all input combinations that were

compared. The findings suggest that the RMSE and MAE

values of our proposed model exhibited superior perfor-

mance compared to the MLR models, as they yielded the

lowest errors. The RMSE values of our proposed MLR

model were determined to be 0.573 and 0.701 mm/day

when incorporating Tmax, Tmin, and U inputs. When uti-

lizing Tmax, Tmin, RH, and U inputs, the RMSE values were

found to be 0.414 and 0.502 mm/day. Similarly, when

using Tmax, Tmin, Rs, and U inputs, the RMSE values were

determined to be 0.440 and 0.668 mm/day. Lastly, the

RMSE values were found to be 0.418 and 0.685 mm/day

when utilizing RH, Rs, and U inputs. The MAE values of

our proposed MLR model were computed to be 0.457 and

0.503 mm/day when utilizing Tmax, Tmin, and U inputs.

When using Tmax, Tmin, RH, and U inputs, the MAE values

were 0.333 and 0.411 mm/day. Similarly, when using

Tmax, Tmin, Rs, and U inputs, the MAE values were 0.320

and 0.478 mm/day. Lastly, when using RH, Rs, and U

inputs, the MAE values were computed to be 0.334 and

0.528 mm/day. The superior fit of our proposed model in

forecasting ET0, as compared to MLR, is evidenced by the

lowest RMSE and MAE values obtained across all input

combinations utilized in the comparison. These values

serve as a metric for the precision of our model.

5 Discussion

The objective of this work is to examine the utilization of

the SL approach for estimating reference evapotranspira-

tion. There are a wide range of standard and non-traditional

techniques that can be employed for the estimation of ET0.

Several research have also demonstrated that machine

Table 5 Performance comparison between our proposed model and

GEP models in (Mattar 2018) study based on R2 and RMSE across

different input combinations, where the statistical indexes of the

models that perform the best under each input combination are

highlighted in bold

Input combinations Model R2 RMSE (mm/day)

Tmax, Tmin, and U GEP 0.929 0.582

Our (SL5) 0.9279 0.573

Tmax, Tmin, RH, and U GEP 0.962 0.430

Our (SL3) 0.9624 0.414

Tmax, Tmin, Rs, and U GEP 0.953 0.476

Our (SL4) 0.9575 0.440

RH, Rs, and U GEP 0.938 0.546

Our (SL6) 0.9616 0.418

Stochastic Environmental Research and Risk Assessment (2024) 38:689–713 707

123



learning methods outperformed conventional empirical

formulas, such as temperature-based and radiation-based

approaches, for ET0 estimating (Chia et al. 2020; Rahman

et al. 2020). The accuracy of machine learning models in

predicting ET0 is primarily determined by the combination

of input climatic variables (Zhu et al. 2020).

Ensemble modeling is highly appealing due of its ability

to improve model performance with low exertion (Chia

et al. 2021). The three primary categories of ensemble

learning methods are bagging, stacking, and boosting. It is

essential to have a comprehensive understanding of each

technique and to take them into account while conducting

any kind of predictive modeling (Jayshree et al. 2023).

The Penman–Monteith approach is considered the most

accurate among conventional methods for estimating ET0,

while it requires a high level of parameterization. Due to

the unavailability of some characteristics and stations in

certain regions, it is not feasible to estimate ET0 using this

approach for all regions (Fan et al. 2018a; T R et al. 2023).

To address this problem, this study utilized a heteroge-

neous ensemble method known as the super learner. This

method is a version of the stacking technique and offers

flexibility in terms of the range and number of predictive

models used to construct the super learner.

At the first part of the current study, the results of SL

model have been compared to the results of the four base

learner models over different input combinations wherein

the outcomes of all models are compared to those of the

PM model. The results based on five statistical indexes:

RMSE, MAE, R2, MAPE and MSE demonstrated that the

Super Learner model outperformed the four base learner

models across six different input combinations. The results

of this study indicate that the utilization of stacking models

for ET0 estimate is superior, which aligns with the findings

of earlier research and further strengthens this conclusion

(Wu et al. 2021a, b, c). Furthermore, the utilization of all

possible input combinations yielded the most optimal

performance across all other input combinations. This

finding supports previous research indicating that the

accuracy of the model improves as the number of inputs

increases (Fan et al. 2018b; Heramb et al. 2023; Jayshree

et al. 2023). In addition, the models which utilized four

input combinations, produced adequate estimates of ET0

that align with the findings reported in reference (Jayshree

et al. 2023). Furthermore, the suggested model, which

utilized three input combinations (namely RH, Rs, and U),

shown a higher level of accuracy in estimating ET0 com-

pared to the model that employed four input combinations

(Tmin, Tmax, Rs, and U). This finding suggests that the

former model exhibits superior accuracy in estimating ET0

while utilizing a reduced set of meteorological data. This

finding is consistent with the studies conducted by previous

scholars (Fan et al. 2018a).

Also, the findings of the study indicate that the inclusion

of relative humidity (RH) and solar radiation (Rs) signifi-

cantly affect the estimation of ET0.The argument has been

strengthened by previous research (Zhang et al. 2022). This

is evident in the results of the SL model, which demon-

strate a decrease in performance when replacing Rs in M1

inputs with H in M2 inputs. Specifically, the SL model’s

performance decreased by 81.15% based on RMSE metric,

by 84.01% based on MAE, by 4.69% based on MAPE and

by 1.56% based on R2.

Furthermore, upon the removal of RH and Rs from M1

resulting in M5 inputs, the performance of the SL model

exhibited a decrease of 91.07% in terms of RMSE, 92.17%

in terms of MAE, 10.65% in terms of MAPE and 7.15% in

terms of R2. Additionally, the inclusion of relative

humidity (RH) as an input parameter alongside temperature

and wind speed resulted in a 27.79% improvement in the

performance of the SL model as determined by RMSE.

MAE and MAPE also showed a 27.03% and 3.4%

improvement, respectively, while R2 increased by 3.58%.

Furthermore, the inclusion of Rs to M5 inputs, specifically

temperature and wind speed, resulted in a 23.20%

improvement in the performance of the SL model as

measured by RMSE, a 30.01% and 3.17% improvement as

measured by MAE and MAPE, respectively, and a 3.09%

improvement as measured by R2. These findings suggest

that the variables used are effective in estimating ET0.

In the second section of the study, a comparative anal-

ysis was conducted to assess the effectiveness of the

Table 6 Performance

comparison between our

proposed model and MLR

models in Mattar and Alazba

(2019) study based on RMSE

and MAE across different input

combinations, where the

statistical indexes of the models

that perform the best under each

input combination are

highlighted in bold

Input combinations model RMSE (mm/day) MAE (mm/day)

Tmax, Tmin, and U MLR 0.701 0.503

Our (SL5) 0.573 0.457

Tmax, Tmin, RH, and U MLR 0.502 0.411

Our (SL3) 0.414 0.333

Tmax, Tmin, Rs, and U MLR 0.668 0.478

Our (SL4) 0.440 0.320

RH, Rs, and U MLR 0.685 0.528

Our (SL6) 0.418 0.334
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proposed model. Specifically, the proposed model was

compared to two related works, namely the GEP model

utilized in Mattar (2018) and the MLR model employed in

Mattar and Alazba (2019). This comparison aimed to

determine the superiority of the proposed model over its

counterparts.

The initial study involved a comparison between our

proposed model and the GEP model. The results indicated

that our model exhibited a performance improvement of

2.45% in terms of R2 and 23.44% in terms of RMSE when

utilizing RH, Rs, and U inputs. Furthermore, the model we

have put out has demonstrated an enhancement in perfor-

mance by 0.46% in terms of R2 and by 7.56% in terms of

RMSE, specifically when utilizing Tmax, Tmin, Rs, and U

inputs. Furthermore, the model we proposed exhibited an

enhancement in performance of 0.04% in terms of R2 and

3.72% in terms of RMSE, when utilizing inputs of Tmax,

Tmin, RH, and U inputs. On the other hand, the utilization

of Tmax, Tmin, and U inputs in the GEP model resulted in a

performance enhancement of 0.11% in terms of R2 and

1.54% in terms of RMSE. The results of this study indicate

that the proposed model demonstrates a significant level of

precision and can be efficiently employed for the purpose

of ET0 modeling.

Conversely, in the second study, a comparison was

conducted between our proposed model and the MLR

model. The results demonstrated that SL outperformed

MLR in terms of minimizing errors, as determined by the

RMSE and MAE metrics, across all input combinations

utilized in the analysis. The performance of SL was

enhanced by 18.25% and 9.14% for RMSE and MAE,

respectively, when utilizing Tmax, Tmin, and U inputs.

Similarly, when incorporating Tmax, Tmin, RH, and U

inputs, the performance of SL was improved by 17.52%

and 18.97% for RMSE and MAE, respectively. Further-

more, the utilization of Tmax, Tmin, Rs, and U inputs

resulted in a 34.13% and 33.05% improvement in RMSE

and MAE, respectively. Finally, the incorporation of RH,

Rs, and U inputs led to a 38.97% and 36.74% improvement

in RMSE and MAE, respectively. The results of this study

demonstrate the efficiency of the SL model in enhancing

the accuracy of ET0 estimation with restricted meteoro-

logical data by minimizing the discrepancies between the

projected and observed ET0 values.

Subsequently based on the above findings, the optimal

result for estimating ET0 was observed when using the M1

input combination. The argument is additionally strength-

ened by previous research (Wu et al. 2021a, b, c; Yu et al.

2020). This observation is supported by Fig. 13, which

illustrates the optimal structure of the SL models suggested

in this study for ET0 estimation. Furthermore, we proposed

the utilization of the M3 model, which encompasses tem-

peratures, humidity, and wind speed. Additionally, we

recommended the adoption of the M6 model, which

incorporates humidity, solar radiation, and wind speed.

Moreover, we suggested the implementation of the M4

model, which comprises temperatures, solar radiation, and

Fig. 13 The optimal

configuration of SL models for

estimating ET0
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wind speed, as it has demonstrated superior performance in

accurately estimating ET0. These models were chosen due

to their exceptional performance and ability to reduce the

number of input combinations required for estimation.

6 Conclusions and future work

The Penman–Monteith (PM) method requires a greater

amount of meteorological observation data for the esti-

mation of ET0, rendering its application challenging in

countries or regions where the necessary observation

equipment is not readily accessible. Scholars have initiated

research into the integration of intelligent algorithms with

conventional estimation techniques to enhance the accu-

racy and efficiency of ET0 estimation, in light of the pro-

liferation of machine learning technology. For these

reasons this study was implemented to offer a high per-

formance ensemble learning model that has been suggested

for daily ET0 estimation using limited meteorological data.

The ensemble method which called Super Learner

technique is based on the cross-validation theory and

includes four base learner models ETR, SVR, KNN, and

ADA. According to the preceding, the Super Learner

model is a preferred technique for ET0 estimation, partic-

ularly in the situation of insufficient meteorological data,

which may be lacking in some parts of the world. However,

it is crucial to take into account the time cost associated

with big datasets when considering the cross-validation

theory. This is particularly relevant when employing mul-

tiple levels of base learners, especially if these base

learners are complicated. The aforementioned factors can

potentially restrict the effectiveness of the suggested

model. we still need to improve the results, and this can be

done in a number of ways:

Employing various input combinations in an attempt to

attain the optimal input combination that results in a

precise estimation of ET0.

Exploring alternative base learner models or scaling up

their quantity to improve the accuracy of the model is

being attempted.

The utilization of hyper parameter tuning techniques

enables the attainment of optimal parameters for indi-

vidual base learners, thereby enhancing the overall

performance of the model.

The utilization of data preparation techniques has the

potential to improve the overall performance of the

model. Furthermore, the exploration of various cross-

validation folds has the potential to enhance the ultimate

accuracy of the model.

Investigating the impact of varying dataset sizes on the

performance of the super learner model.

Investigating the efficacy of employing bio-inspired

algorithms, including Particle Swarm Optimization

(PSO), Whale Optimization Algorithm (WOA), Ant

Colony Optimization Algorithm (ACO), Artificial Bee

Colony Algorithm, and Bacterial Foraging Optimization

Algorithm (BFO), as feature selection techniques to

improve the accuracy of a super learner model.
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