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Abstract
Smartphone-based earthquake early warning systems implemented by citizen science initiatives are characterised by

significant variability in their smartphone network geometry. This has a direct impact on the earthquake detection capa-

bility and system performance. Here, a Monte Carlo-based simulation framework is implemented to infer relevant

earthquake detection quantities such as detection distance from the epicentre, detection delay, and warning time for people

exposed to high ground shaking levels. The framework is applied to Haiti, which has experienced deadly earthquakes in

recent decades, and to the Earthquake Network citizen science initiative, which is popular in the country. It is found that

warning times of up to 12 s for people exposed to intensities between 7.5 and 8.5 on the modified Mercalli scale are

possible starting from a relatively low involvement of citizens in the initiative (i.e., from 1 Haitian in 10,000).

1 Introduction

Since 2013, the Earthquake Network (EQN) citizen science

initiative has implemented the first earthquake early

warning (EEW) system based on smartphone networks

(Finazzi 2016). EQN uses accelerometers on board smart-

phones to measure ground shaking, detect earthquakes in

real-time, and send alerts to people not yet reached by the

damaging seismic wave. Citizens must install the EQN

smartphone app to enable seismic monitoring and to

receive alerts. The earthquake detection logic is imple-

mented on a central server that gathers data from smart-

phones. Through the use of a statistical algorithm (Finazzi

and Fassò 2017), it can determine whether an earthquake is

happening. Bossu et al. (2022) demonstrated that EQN has

comparable detection abilities to more costly EEW systems

that use scientific-grade equipment (Kohler et al. 2018).

Meanwhile, Fallou et al. (2022b) studied in detail the

reaction of EQN users under different scenarios such as a

warning for a felt earthquake, a missed warning and a false

warning.

EQN’s smartphone network geometry is extremely

dynamic. Individuals can opt-in or opt-out of the initiative

at any given time, and the number of monitoring smart-

phones demonstrates intra-day variability due to individu-

als predominantly charging their smartphones at night.

Finazzi et al. (2022) demonstrated that the number of

monitoring smartphones affects the likelihood of earth-

quake detection and the duration of detection delays. These

factors, in turn, impact the warning time for individuals

exposed to a particular shaking intensity.

In this study, a simulation framework based on the

Monte Carlo method is adopted to investigate how network

geometry affects the expected warning time for citizens

facing a life-threatening earthquake. Inputs of the simula-

tion framework are the spatial distribution of the moni-

toring smartphones, the population spatial distribution and

the spatial distribution of the earthquake intensity. The

primary result comprises the distributions of warning time

for individuals exposed to different levels of ground

shaking intensity. To enable statistical inference, all out-

puts are provided with measures of uncertainty.

The simulation study examines Haiti, a country that has

experienced two devastating earthquakes in its recent his-

tory. The first occurred on January 12, 2010 and resulted in

over 100,000 fatalities, while the second took place on

August 14, 2021 and resulted in 2248 casualties. The EQN

initiative is just one of several earthquake-related citizen

science projects already underway in Haiti (Calais et al.
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2020, 2022; Fallou et al. 2022a), and the results of this

study are expected to inform both existing and future

projects.

2 Simulation framework

The simulation framework is based on the Monte Carlo

method (Rubinstein and Kroese 2016). This choice is due

to the non-trivial nature of the links between smartphone

network geometry, detection delay, detection location, and

warning time that are difficult to formalise in equations.

Considering a major earthquake, the framework aims to:

1. Estimate the distribution of EQN detection delays with

respect to the origin time

2. Estimate the distribution of EQN detection separation

relative to the epicentre

3. Determine the distribution of warning times for

individuals who have been exposed to significant and

life-threatening levels of shaking.

Simulation inputs taken into account by the framework

include:

1. The population spatial distribution

2. The spatial distribution of the modified Mercalli

intensity (MMI)

3. The smartphone network geometry.

Inputs 1 and 2 are assumed to be deterministic while 3 is

stochastic. The network can be described as stochastic

since smartphones become active at random locations and

times, and the duration of the monitoring is also random.

Under the Monte Carlo method, earthquake detection is

simulated multiple times using the detection algorithm

outlined in Finazzi and Fassò (2017), based on a network

geometry that varies during each Monte Carlo simulation.

This process produces distributions of relevant quantities

such as detection delay, detection distance and warning

time. The variability of the distribution can be interpreted

as uncertainty on the above quantities if the same earth-

quake strikes again.

3 Case study

The simulation framework described in the preceding

section is implemented in Haiti, where EQN functions as a

public EEW system, with approximately 10,000 daily

active users. Subsequent sections will elucidate each sim-

ulation input, along with the EQN detection algorithm.

3.1 Population spatial distribution

Population distribution in Haiti is required in order to

evaluate the population’s exposure to any particular value

of MMI and to analyse the statistical distribution of

warning time for those exposed to such MMI value. For

this study, the Gridded Population of the World collection

(CIESIN 2018), specifically the Population Count product

for the year 2020 at a 30 arc-second (approximately 1 km)

spatial resolution, is employed. The 2020 population dis-

tribution is used as a proxy for the present-day population.

3.2 Earthquakes and MMI spatial distribution

Major earthquakes are characterised by finite fault ruptures

(Böse et al. 2012; Goda 2019) and complex focal mecha-

nisms (Kagan 2017), which result in intensity fields that are

spatially anisotropic. These fields are difficult to predict

and are generally assessed a-posteriori.

Our analysis is based on two destructive past earth-

quakes that occurred in Haiti, for which intensity fields are

available. To ensure realistic EQN performance during a

major earthquake, we use this data.

The first event occurred on January 12, 2010 with a

magnitude of 7.0, and the latter event on August 14, 2021

with a magnitude of 7.2. Figure 1 showcases the spatial

distribution of the MMI (USGS 2010, 2021) for both

events, whereas Fig. 2 illustrates the MMI population

exposure when assuming the population distribution of

2020. Despite the lower magnitude, the earthquake that

occurred in 2010 had an epicentre much closer to the

metropolitan area of Port-au-Prince. Therefore, if the same

event were to happen today, a high number of people

would be exposed to high values of MMI.

3.3 Network simulation

Simulating the smartphone network at the time of the

earthquake is a critical aspect of this work since the net-

work’s geometry impacts directly on the EQN’s detection

capabilities and performance.

To create realistic network geometries, we depend on

the spatial coordinates of N = 6202 EQN users living in

Haiti, who possess a functioning EQN smartphone app

(specifically, the app has monitored earthquake activity at

least once since installation).

The N coordinates denote smartphone locations that we

utilise to model network geometry. However, the number

of smartphones monitoring is significantly less than N due

to the EQN app’s operational constraints; it only functions

when the smartphone is stationary and charging. The trend

of smartphone monitoring in Haiti during a day is depicted
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Fig. 1 Modified Mercalli Intensity maps for the M7.2 event on August 14, 2021 (left) and for the M7.0 event on January 12, 2010 (right). Source:

United States Geological Survey

Fig. 2 Histograms of the MMI

population exposure for the

M7.2 event on August 14, 2021

(left) and for the M7.0 event on

January 12, 2010 (right)

assuming the population

distribution in 2020. Red curves

give, for each MMI value, the

percentage of the population

that was exposed to an intensity

equal or higher than the MMI

value

Fig. 3 Daily trend of the

number of EQN smartphones

monitoring for earthquakes in

Haiti from January 31, 18:30 to

February 1, 18:00, 2022, Haiti

local time
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in Fig. 3. The intra-day variation is roughly 50% positive

and negative with respect to the daily average number of

monitoring smartphones.

For this reason, the simulation of network geometry is

conditioned on the number of active smartphones, which is

fixed to one of the following values: n = (300, 400, 500,

600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500,

1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400,

2500, 2600, 2700, 2800, 2900, 3000).

For a specified value of n, the network geometry is

generated through random sampling (without replacement)

of n spatial coordinates from N. For small values of n, the

network is sparse and exhibits high variability across dif-

ferent simulations. Conversely, for large values of n, the

network is dense and slightly variable. Figure 4 displays

two simulated network geometries with n values of 200 and

3000 respectively.

3.4 Earthquake detection simulation

The simulation of an earthquake detection by EQN

involves two stages. Firstly, based on the simulated

smartphone network (as detailed in the preceding section),

the detection of the earthquake by each individual smart-

phone is simulated. The following assumptions are taken

into account:

1. Smartphones detect the P wave

2. Smartphones have a random detection delay described

by a uniform distribution with support [0.5, 3.5] s

3. Smartphones have a 0.7 probability to detect the

earthquake and send the information to the EQN

server.

Assumption 1 is derived from Bossu et al. (2022) study,

indicating that the P wave is detected by EQN for earth-

quakes with a magnitude greater than 5. Assumption 2 is

contingent upon the detection algorithm employed on the

smartphone and the latency of the Internet connection,

while Assumption 3 recognises that smartphones may fail

to sense an earthquake or transmit data to the server during

an earthquake.

The output of the first stage comprises the list of

smartphones that detected the earthquake. Each list entry

includes the smartphone coordinates (latitude and longi-

tude) and the smartphone detection time.

At the second stage, the EQN detection algorithm

(Finazzi and Fassò, 2017) is executed on the output of the

first stage. The outcome of the second stage provides the

location of the detection (which is a preliminary estimate

of the epicentre of the earthquake) and the time at which

the detection occurred.

Detection location and detection time directly depends

on the network geometry at the time of the earthquake. By

simulating a large number of random network geometries,

we are able to study how location and time change, to

estimate the expected location and time, and to provide

confidence intervals on both estimates.

4 Simulation results

Simulation results presented in this section are based on a

Monte Carlo simulation with 1000 replicas (of random

network geometry) for each network size n and each of the

two seismic events.

The first simulation result discussed here is the EQN

detection delay and detection distance with respect to the

number of monitoring smartphones (Figs. 5 and 6). In

general, the higher the number of smartphones the lower

the detection delay and detection distance. Nonetheless,

after around 1200 monitoring smartphones the gain is little.

Note that 1200 monitoring smartphones is three times the

minimum value of the graph of Fig. 3, meaning that, on

February 1, 2022, the EQN app penetration in Haiti was

Fig. 4 Simulated EQN network geometry with 300 smartphones (left panel) and with 3000 smartphones (right panel). Each dot represents the

simulated location of a monitoring smartphone
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three times lower than an ideal penetration that would have

guaranteed a nearly stable EQN performance over the 24 h

of the day.

Figures 7 and 8 illustrate the results of the Monte Carlo

simulations in relation to the spatial variation of the

detection location, assuming the epicentres of the August

14, 2021 and January 12, 2010 seismic events, respectively.

Given a network geometry comprising 300 and 3000

monitoring smartphones, the 1000 detection locations

obtained from the Monte Carlo replicas were employed to

estimate the spatial density function, which characterises

the likelihood of an EQN detection taking place in a

Fig. 5 EQN detection distance

and detection delay vs number

of monitoring smartphones

assuming the earthquake

epicentre of the August 14, 2021

event. Solid lines are the Monte

Carlo averages while the

coloured areas depict the Monte

Carlo 95% confidence bands

Fig. 6 EQN detection distance

and detection delay versus

number of monitoring

smartphones assuming the

earthquake epicentre of the

January 12, 2010 event. Solid

lines are the Monte Carlo

averages while the coloured

areas depict the Monte Carlo

95% confidence bands

Fig. 7 Spatial density functions

of the EQN detection location

assuming a network geometry

with 300 monitoring

smartphones (left panel) and

with 3000 monitoring

smartphones (right panel)

assuming the epicentre (red star)

of the August 14, 2021 event
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specific area. The density function occupies less space in

the event that smartphones are large in number, and there is

little variability in network geometry. This infers that when

smartphones are many, the EQN network operates in a

more predictable manner.

Figures 9 and 10 show, for different ranges of MMI, the

histograms of the warning time distribution among the

Haitian population if the two earthquake events are

detected by EQN at the expected detection locations

(namely the modes of the spatial density functions shown

in Figs. 7 and 8). Note that the warning time in the his-

tograms of Figs. 9 and 10 varies significantly. This is

mainly due to the MMI spatial distribution being highly

anisotropic. Individuals who are subjected to the same

MMI are not necessarily at the same distance from the

epicentre. Specifically, for a particular MMI, those residing

Fig. 8 Spatial density functions of the EQN detection location assuming a network geometry with 300 monitoring smartphones (left panel) and

with 3000 monitoring smartphones (right panel) assuming the epicentre (red star) of the January 12, 2010 event

Fig. 9 Warning time distribution over the Haitian population assuming the MMI spatial distribution of the August 14, 2021 event and an EQN

detection at the expected detection location when the number of monitoring smartphones is 3000
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in the direction of the fault rupture have a higher advantage

in terms of receiving a greater warning time.

The warning time distributions depicted in Figs. 9 and

10 relate to the detection of an EQN at the designated

detection location and pertain to a smartphone network

comprising of 3000 monitoring smartphones. Our aim is to

comprehend alterations in these distributions when changes

are made to the number of smartphones and the detection

location. To summarize the time distributions for warnings

in an easily interpretable way, we examine, for each dis-

tribution (histogram), the 2.5th percentile, the average, and

the 97.5th percentile of the distribution. The average for

each MMI range represents the average amount of warning

time for individuals exposed to a MMI in that range. The

2.5th percentile denotes the warning time for individuals

who are subjected to high MMI with low (or negative)

warning times, whilst the 97.5th percentile represents the

warning time for people who experience high MMI but

also high warning times. Figures 11 and 12 depict how

these variables evolve with the number of monitoring

smartphones for certain MMI ranges and their variability

due to changes in detection location.

5 Discussion and conclusions

Smartphone-based EEW systems are characterized by a

dynamic network in terms of the number of smartphones

and their spatial distribution. This impacts the capacity of

the system to detect and provide adequate warning time. To

analyse the impact of network geometry on the warning

time distribution for individuals exposed to high ground

shaking, this study developed a simulation framework

within the context of inferential statistics.

The framework was applied to Haiti, considering two

previous destructive earthquakes as a reference point, for

which the known intensity spatial distribution was utilised.

It was found that:

1. If comparable seismic events with the same magnitude

and epicentre were to occur in present times, EQN

Fig. 10 Warning time distribution over the Haitian population assuming the MMI spatial distribution of the January 12, 2010 event and an EQN

detection at the expected detection location when the number of monitoring smartphones is 3000

Stochastic Environmental Research and Risk Assessment (2024) 38:147–156 153

123



Fig. 11 2.5th percentile (left panel), average (centre panel) and 97.5th

percentile (right panel) of the warning time for people exposed to a

MMI in the range (8.5, 9], (8, 8.5] and (7.5, 8] for different numbers

of monitoring smartphones assuming the MMI spatial distribution of

the August 14, 2021 event. Solid lines are the Monte Carlo averages

while the shaded areas depict the 95% confidence bands

Fig. 12 2.5th percentile (left panel), average (centre panel) and 97.5th

percentile (right panel) of the warning time for people exposed to a

MMI in the range (8.5, 9], (8, 8.5] and (7.5, 8] for different numbers

of monitoring smartphones assuming the MMI spatial distribution of

the January 12, 2010 event. Solid lines are the Monte Carlo averages

while the shaded areas depict the 95% confidence bands
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would be capable of generating alerts that offer people

exposed to dangerous shaking levels (e.g. exceeding

intensity 7.5) a warning time of up to 12 s

2. EQN performance stabilises when the number of

monitored smartphones in Haiti exceeds approximately

1200, which is equivalent to around 1/10,000 of the

Haitian population

3. Within any particular intensity category (e.g. 7.5 B

MMI\ 8.0), the warning time distribution varies

considerably. This is due to the anisotropy of the

intensity distribution in space combined with the

distribution of the population

4. For a given number of monitored smartphones, the

actual spatial distribution of them does not largely

affect the uncertainty on the warning time (confidence

intervals in Figs. 11 and 12 are in fact relatively small).

These findings suggest that, in Haiti, robust low-cost

smartphone-based EEW can be established even with low

adoption rates of the EQN smartphone application by the

general public. On the other hand, the effectiveness of an

EEW system is maximised only if the alert covers all or

most of the population. The EQN initiative does not have

this objective and the alert dissemination should ideally be

coordinated with local authorities using multiple channels

including smartphones, radio, TV and possibly warning

sirens in major cities.

Finally, the statistical framework developed in this study

can be easily applied to any country covered by the EQN

EEW system or where a smartphone-based system is

expected to be implemented. For example, the EQN system

detected in real time (Aiello et al. 2023) the destructive

Turkish-Syrian earthquake of February 6, 2023, which

killed nearly 60,000 people (Dal Zilio and Ampuero 2023).

Preliminary analysis (not reported here) on the detection

delay and the warning time offered to EQN app users are

consistent with the simulation results of this work.
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Calais E, Boisson D, Symithe S, Prépetit C, Pierre B, Ulyse S, Hurbon

L, Gilles A, Théodat JM, Monfret T, Deschamps A (2020) A

socio-seismology experiment in Haiti. Front Earth Sci 8:542654

Calais E, Symithe S, Monfret T, Delouis B, Lomax A, Courboulex F,

Ampuero JP, Lara PE, Bletery Q, Chèze J, Peix F (2022) Citizen
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