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Abstract
Landslides pose a significant threat to human life and infrastructure, underscoring the ongoing need for accurate landslide

susceptibility mapping (LSM) to effectively assess risks. This study introduces an innovative approach that leverages

multi-objective evolutionary fuzzy algorithms for landslide modeling in Khalkhal town, Iran. Two algorithms, namely the

non-dominated sorting genetic algorithm II (NSGA-II) and the evolutionary non-dominated radial slots-based algorithm

(ENORA), were employed to optimize Gaussian fuzzy rules. By utilizing 15 landslide conditioning factors (aspect,

altitude, distance from the fault, soil, slope, lithology, rainfall, distance from the road, the normalized difference vegetation

index (NDVI), land cover, plan curvature, profile curvature, topographic wetness index (TWI), stream power index (SPI),

and distance from the river) and historical landslide events (153 landslide locations), we randomly partitioned the input

data into training (70%) and validation (30%) sets. The training set determined the weight of conditioning factor classes

using the frequency ratio (FR) approach. These weights were then used as inputs for the NSGA-II and ENORA algorithms

to generate an LSM. The NSGA-II algorithm achieved a root-mean-square error (RMSE) of 0.25 during training and 0.43

during validation. Similarly, the ENORA algorithm demonstrated an RMSE of 0.28 in training and 0.48 in validation. The

findings revealed that the LSM created by the NSGA-II algorithm exhibited superior predictive capabilities (area under the

receiver operating characteristic curve (AUC) = 0.867) compared to the ENORA algorithm (AUC = 0.844). Additionally,

a particle swarm optimization (PSO) algorithm was employed to determine the importance of conditioning factors,

identifying lithology, land cover, and altitude as the most influential factors.
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1 Introduction

Natural disasters are a prominent research issue for geosci-

entists and engineers because of their impact on human

settlements (Galli et al. 2008). Globally, landslides are typ-

ical dangerous natural disasters that frequently result in

multiple fatalities (Mandal and Mandal 2018). Landslides

murdered 66,438 people and cost roughly $10 billion in

economic losses worldwide between 1900 and 2020,

according to the Emergency Events Database (Guha-Sapir

et al. 2020). Iran is situatedwithin the seismic belt of theAlps

and Himalayas, rendering it more susceptible to a range of

natural disasters, such as landslides. Moreover, the Iranian

Plateau is situated in southwest Asia, which is recognized as

a high and mountainous region in western Asia (Farrokhnia

et al. 2011). Additionally, the western and northern regions

of the Iranian Plateau are home to the Zagros and Alborz

Mountain Ranges. According to the reported data, from

January 2003 to September 2007, Iran experienced an annual

economic loss of 12.7 billion USD, attributed to 4900 land-

slides (Dehnavi et al. 2015; Shafizadeh-Moghadam et al.

2019). Ardabil province, situated in the northernmost region

of Iran, is characterized by significant variations in altitude

and slope fluctuations (Feizizadeh and Blaschke 2013;

Hamedi et al. 2022). Moreover, due to its proximity to the

Caspian Sea and the occurrence of heavy rainfall, the pro-

vince is prone to landslides (Hamedi et al. 2022). As reported

in the study on natural resources and watersheds of Ardabil

province, over 6800 landslide points have been identified

within the province. Notably, 52.5% of these landslides are

concentrated in the Sefid-rud dam area and in Kausar and

Khalkhal towns. Given the significant concentration of

landslides inKhalkhal town, as highlighted by thementioned

cases, it is crucial to prioritize and implement effective

management strategies to mitigate and reduce the risk of

landslides in the area. Multiple variables, including severe

rainfall, earthquakes, snowmelt, volcanic eruptions, and

land-use changes undermining slope stability, typically

trigger landslides (Marjanović et al. 2011). Therefore, land-

use planners and policymakers should prioritize disaster

mitigation and contingency planning research related to

sustainable development and lowering the danger of poten-

tial landslide disasters (Kavzoglu et al. 2015).

Identifying landslide-prone areas is critical for studies

on hazard management (Kavzoglu et al. 2019). A region’s

susceptibility to landslides is affected by various geo-en-

vironmental factors, including topography, weather condi-

tions, and land properties (Guzzetti et al. 2005). Landslide

susceptibility maps (LSMs) have been constructed using

various data-driven and quantitative methods in recent

years (Guzzetti et al. 1999). Qualitative techniques, such as

the technique for order of preference by similarity to ideal

solution (TOPSIS) (Aslam et al. 2022), the analytic hier-

archy process (AHP) (Yalcin 2008), fuzzy logic (Ozdemir

2020), and the analytical network process (ANP) (Pham

et al. 2021) are based on the expert knowledge to create

LSM. Data-driven approaches include deterministic and

statistical techniques. Deterministic approaches are static

(Alvioli and Baum 2016), but statistical methods, such as

bivariate statistical analysis (Constantin et al. 2011; Hong

et al. 2018) and machine learning techniques (Merghadi

et al. 2020; Razavi-Termeh et al. 2021), rely on the cor-

relation between detected contributing factors and the

occurrence of landslides. Indeed, among the bivariate sta-

tistical methods commonly employed in LSM, two main

approaches are the frequency ratio (FR) and weight of

evidence (WOE) methods (Shirzadi et al. 2017). Recently,

several advanced machine learning techniques for con-

structing LSM have been identified, such as logistic

regression (LR) (Wang et al. 2016), decision tree (DT)

(Pradhan 2013), bagging (BA) and random subspace (RS)

(Nhu et al. 2020a, b), random forest (RF) (Taalab et al.

2018), support vector machine (SVM) (Lee et al. 2017;

Zhang et al. 2018), adaptive neuro-fuzzy inference system

(ANFIS) (Razavi-Termeh et al. 2021), AdaBoost (AB),

alternating decision tree (ADTree) (Nhu et al. 2020a, b),

and artificial neural network (ANN) (Bragagnolo et al.

2020). However, each technique for machine learning has

distinct advantages and disadvantages. To improve the

accuracy of machine learning algorithms, hybridization of

BA and logistic model trees (LMTree) (Truong et al. 2018)

and the hybridization of RS and classification and regres-

sion trees (CART) (Pham et al. 2018) algorithms have been

commonly used in creating LSM. Therefore, deep learning

approaches have recently outperformed previous machine

learning techniques and successfully created LSM (Dao

et al. 2020). Various deep learning algorithms such as

convolutional neural network (CNN) (Azarafza et al.

2021), recurrent neural network (RNN) (Ngo et al. 2021),

and long short-term memory (LSTM) (Habumugisha et al.

2022) have used to create LSM.

Meta-heuristic algorithms have been used in recent

research to fine-tune model parameters and eliminate errors

to improve the performance of machine learning and deep

learning algorithms (Ranjgar et al. 2021; Razavi-Termeh

et al. 2022). So far, metaheuristic algorithms have been

used to optimize various machine/deep learning algorithms

such as ANFIS (Mehrabi et al. 2020), ANN (Mehrabi and

Moayedi 2021), CNN (), and support vector regression

(SVR) (Panahi et al. 2020) for landslide susceptibility

modeling. In establishing LSM, metaheuristic algorithms

have demonstrated acceptable accuracy when combined

with machine learning or deep learning algorithms

(Alqadhi et al. 2021; Hakim et al. 2022). One of the most

significant advantages of this fuzzy logic theory is that it
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allows for the natural explanation, in linguistic terms, of

issues that must be solved rather than in terms of precise

numerical correlations (Huang and Sun 2013). The wide-

spread use of fuzzy logic theory in geographic information

systems (GIS) is primarily motivated by its ability to deal

with complex systems straightforwardly (Yao and Jiang

2005). Fuzzy rules are used in fuzzy logic systems to infer

outputs from variables that serve as inputs. The main goal

of our study is to address the challenge of determining

accurate and appropriate fuzzy rules, typically based on

expert opinions (Bai and Wang 2006), for LSM.

We aim to fill this gap by proposing a novel approach that

utilizes multi-objective evolutionary algorithms in con-

junction with fuzzy logic. Specifically, our study focuses on

applying multi-objective evolutionary algorithms, such as

the non-dominated sorting genetic algorithm II (NSGA-II)

and the evolutionary non-dominated radial slots-based

algorithm (ENORA), to develop a classifier that optimizes

the selection of fuzzy rules for LSM. This approach repre-

sents a significant advancement in the field, as the combi-

nation of multi-objective evolutionary algorithms and fuzzy

logic has not been previously employed for LSM develop-

ment. By leveraging the strengths of NSGA-II and ENORA,

our study seeks to identify the best fuzzy rules for LSM,

thereby enhancing the accuracy and reliability of the sus-

ceptibility mapping process. Additionally, our research

contributes to the scientific literature by conducting a com-

parative analysis of NSGA-II and ENORA, exploring their

performance and effectiveness in the context of LSM. This

comparative evaluation of multi-objective evolutionary

algorithms for LSM represents a novel aspect of our study.

2 Material and methods

2.1 Data preparation

2.1.1 Study area

Khalkhal town, with an area of 2688 km2, is situated in the

Ardabil province, Iran, between the latitudes of 37� 110Nand

37� 510 N, as well as the longitudes of 48� 100 E and 48� 550 E
(Fig. 1). The altitude of the highest point of the town is 3318

m (AghDaghMountain). Due to its mountainous nature, this

town has long and very cold winters and mild and semi-arid

summers. The average temperature in this area is less than

20 �C. The coldest and hottest months of the year in this

region are January andAugust, respectively. Khalkhal has an

average annual rainfall of 350mm, with the most rain falling

in the spring. The area’s formations range from lower Pale-

ozoic rock to Quaternary alluvial sediments, with the earliest

rocks dating back to the lower Paleozoic. This town has

43,029 hectares of semi-humid and semi-dry forest. Summer

pastures cover 50 to 80% of the land cover in the town.

According to the reports of natural resources and watersheds

of Ardabil province, more than 6800 locations experiencing

landslides have been identified within the region. It is worth

mentioning that the majority, accounting for 52.5% of these

landslides, are concentrated in specific areas, namely the

Sefid-rud dam area and the towns of Kausar and Khalkhal.

Approximately 48% of the documented landslides in the

study area are classified as active landslides. Among these

active landslides, 53.5% exhibit rotational movement, while

17.3% demonstrate transitional activity. Due to various

factors such as topography, high slope gradients, loose and

non-resistant surface materials on resistant formations, and

specific climatic conditions, including spring rains and

snowfall, Khalkhal town is identified as an area with a high

potential for landslides. It is considered the most susceptible

region in Ardabil province regarding landslide occurrences.

The combination of these factors contributes to the height-

ened risk and vulnerability of Khalkhal town to landslides.

Photos of the occurrence of landslides in the study area are

shown in Fig. 2.

2.1.2 Landslide inventory map

Using an existing database of landslide occurrences, experts

can better comprehend the relationship between affective

variables and landslide occurrences in a particular region

(Tsangaratos et al. 2017). Consequently, it is of the utmost

importance to identify the location of past and present

landslides accurately. This study created the landslide

inventory map using the historical records from the National

Geoscience Database of Iran (NGDIR). The data identified

153 landslide locations (centroids) throughout the region.

The Holdout method was used to determine training and test

data (70:30 ratio). A total of 107 landslides (70%) were

randomly selected for landslide modeling, and the outcomes

were subsequently validated through the utilization of 46

additional landslides (30%) (Fig. 1). The choice to utilize a

70:30 proportion for the division between the training and

testing datasets in our research is underpinned by our aim to

cultivate a resilient model that can effectively extrapolate

insights to novel data instances. Simultaneously, this divi-

sion ensures the identification and management of potential

overfitting (Moayedi et al. 2020; Mehrabi 2021; Asadi

Nalivan et al. 2023). A random layer of 153 non-landslide

locations was also generated to train and test the modeling.

2.1.3 Landslide effective factors

It is vital to use proper landslide conditioning factors to

build an accurate susceptibility map. Therefore, based on

previous landslide susceptibility research (Pham et al.

2018; Pourghasemi et al. 2020; Razavi-Termeh et al. 2021)
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and the study in Iran, the following fifteen conditioning

factors were selected for creating LSM: aspect, altitude,

distance from the fault, soil, slope, lithology, rainfall, dis-

tance from the road, the normalized difference vegetation

index (NDVI), land cover, plan curvature, profile curva-

ture, topographic wetness index (TWI), stream power index

(SPI), and distance from the river (Table 1 and Fig. 3).

ArcGIS 10.3 and SAGA GIS 8.2.1 software created all

conditioning factors as raster with a spatial resolution of

30 9 30 m.

The digital elevation model (DEM) created altitude,

slope angle, slope aspect, profile/plan curvature, TWI, and

SPI factors. On the Google Earth Engine (GEE) platform,

shuttle radar topography mission (SRTM) images gener-

ated the DEM. TWI and SPI were computed in SAGA GIS

8.2.1 using Eqs. (1) and (2), respectively (Pham et al.

2018).

TWI ¼ ln
As

tan
b ð1Þ

SPI ¼ As � tanb ð2Þ

As denotes the area contributing to the slope’s gradient

and b indicates the slope angle. The limits of As will

depend on the spatial resolution and extent of the

Fig. 1 Case study location: a Iran, b Khalkhal town, and c landslide points
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Fig. 2 Photographs of

landslides occurrence within the

study region

Table 1 Specifications about criteria influencing landslides

Factors Data source Type Scale/

resolution

Rainfall Iranian meteorological organization (IMO) Data

Sheet

30 m

Digital elevation model (DEM) Shuttle radar topography mission (SRTM) images Raster 30 m

Altitude DEM Raster 30 m

Slope DEM Raster 30 m

Aspect DEM Raster 30 m

Plan curvature DEM Raster 30 m

Profile curvature DEM Raster 30 m

Topographic wetness index (TWI) DEM Raster 30 m

Stream power index (SPI) DEM Raster 30 m

Distance from the fault Geological maps of Iran Vector 1:100,000

Distance from the road National Cartographic Organization (NCO) topographic map Vector 1:50,000

Distance from the river National Cartographic Organization (NCO) topographic map Vector 1:50,000

Lithology Geological maps of Iran Vector 1:100,000

Land cover Sentinel-1 and Sentinel-2 images Raster 30 m

Soil Iran’s Natural Resources and Watershed Management

Organization

Vector 1:100,000

Normalized difference vegetation index

(NDVI)

Landsat 8 satellite imagery Raster 30 m
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Fig. 3 Criteria affecting landslides: a Altitude, b Slope, c Aspect, d Plan curvature, e Profile curvature, f TWI, g SPI, h Distance to river,

i Distance to fault, j Distance to road, k NDVI, l) Rainfall, m Soil, n Lithology, and o Land cover
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topographic data being used. In most cases, slope angles

are measured in degrees and range from 0� (flat terrain) to
90� (vertical terrain). The distances to rivers and roads

were determined using a 1:50,000 scale National Carto-

graphic Organization (NCO) topographic map. The 10-year

average rainfall data from synoptic stations in the research

area were provided by the Iranian Meteorological Organi-

zation (IMO). ArcGIS 10.3 developed a rainfall raster layer

using the kriging interpolation technique. The 1:100,000

scale geological maps of Iran were used to determine the

distribution of lithological units and faults. A land cover

map was created by analyzing Sentinel-1 and Sentinel-2

images on the GEE platform (Ghorbanian et al. 2020). The

map of land cover was created in thirteen classes. Iran’s

Natural Resources and Watershed Management Organiza-

tion provided the soil types. The soil map was prepared in

four groups. The NDVI map was created using Landsat 8

satellite imagery on the GEE platform. The NDVI was

determined using Eq. (3) (Shogrkhodaei et al. 2021).

NDVI ¼ ðNIR� RÞ
ðNIRþ RÞ ð3Þ

where NIR (band 5) represents the near-infrared and R

(band 4) represents the red.

2.2 Methods

2.2.1 Multicollinearity analysis

Multicollinearity indicates that the qualities of at least two

predicted parameters in multiple regression are substan-

tially associated with linearity (Achour et al. 2018).

Therefore, an appropriate selection of these factors is

required to establish their independence from one another

(Farahani et al. 2022). Multicollinearity findings were

evaluated objectively using the VIF (variance inflation

factor) metric. A multicollinear factor (VIF[ 10) should

be removed from modeling (Shogrkhodaei et al. 2021).

Fig. 3 continued
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2.2.2 Frequency ratio (FR) method

FR can be used to estimate the likelihood of a landslide

(Pham et al. 2021). The FR describes spatial correlations

between landslides and their causes (Razavi-Termeh et al.

2021). The FR method for each factor class was computed

using Eq. 4.

FRi ¼

A
j

iP
J
A

j

i

B
j

iP
J
B
j

i

ð4Þ

where A
j
i represents the number of landslide pixels in factor

i’s class j, and B
j
i represents the number of pixels in factor

i’s class j. To calculate the FR for a specific factor class

(i.e., factor i’s class j), the number of landslide pixels in

that class (A
j
i) is divided by the total number of landslide

pixels in all classes of factor i (
P

JA
j
i). Similarly, the

number of pixels in the factor class (B
j
i) is divided by the

total number of pixels in all classes of factor i (
P

JB
j
i).

Specific classes and values for A
j
i and B

j
i will depend on the

analyzed factors and the data used in the study. The

equation can be applied to different factors by substituting

the appropriate values for A
j
i and B

j
i for each factor class.

The values of i and j depend on the number of factors and

classes, and there is no limit to the number of these

parameters.

2.2.3 Fuzzy logic

Based on fuzzy set theory, Zadeh et al. (1996) proposed

fuzzy logic. Parameter standardization using a fuzzy

membership function is the first step in the fuzzy model. A

membership function that is normalized exists between

zero and one. A mapping between an input and an output

can be represented as fuzzy inference using fuzzy logic

(Mohebbi Tafreshi et al. 2021). The most commonly

encountered fuzzy inference approach is Mamdani fuzzy

inference. The fuzzy interface model was developed using

Mamdani’s compositional rule of inference. The following

four steps are outlined to create a Mamdani fuzzy inference

system in this research (Allawi et al. 2018; Omair et al.

2021): (1) Fuzzification: The inputs are examined with

membership functions after the collection of fuzzy rules

has been determined. The factors of linguistic ranking

assigned to corresponding fuzzy sets are high and low. The

membership function for the created fuzzy interface sys-

tem’s input variables is determined using a Gaussian dis-

tribution. (2) In the second stage, we integrate the fuzzy

inputs based on the fuzzy rules to estimate the rule strength

(fuzzy operations). A set of IF–THEN rules determines the

foundational laws of knowledge. (3) Fuzzy inference

method: The rule’s influence is finally determined in the

third step, which combines the rule’s strength with the

output function. (4) Defuzzification: The defuzzification

technique takes a fuzzy set as input (the aggregate output

fuzzy set) and produces a single integer as output.

According to the algorithm, the fuzzy numbers must be

converted to crisp numbers using Eq. (5).

x ¼
Pn

i¼1xi � liðxiÞPn
i¼1liðxiÞ

ð5Þ

In this equation, ‘‘n’’ is the total number of elements in

the fuzzy set. Each element, denoted as xi, is associated

with a membership value li.

2.2.4 Particle swarm optimization (PSO) algorithm

Based on the social behavior of birds in a flock, the PSO

algorithm simulates a population-based search algorithm

(Deng et al. 2019). One particle can represent the optimal

solution to an optimization problem in the PSO algorithm.

To find the best answer in a given search space, the particle

that represents a potential solution to the optimization issue

can fly around (Chen et al. 2017a, b). The following

equations will be utilized to adjust each particle’s velocity

(v) and position (x):

vij t þ 1ð Þ ¼ wvij tð Þ þ c1r1 pBij tð Þ � xij tð Þ
� �

þ c2r2 gBij tð Þ � xij tð Þ
� �

ð6Þ

xij t þ 1ð Þ ¼ xij tð Þ þ vij t þ 1ð Þ ð7Þ

Particle velocity and its current location in iteration j are

given by vij t þ 1ð Þ and xij t þ 1ð Þ, respectively. W repre-

sents the weight of inertia, t is the number of iterations, c1
represents the cognitive learning factor, c2 represents the

social learning factor, and r1 and r2 are random values

(Razavi-Termeh et al. 2020).

The PSO algorithm was used in this study to determine

which factors were most important. In this study, the fol-

lowing objective function (Eq. 8) was utilized to determine

a feature using the PSO algorithm:

E ¼ minð
PN

i¼1 y� y0ð Þ2

N
þ w � nÞ ð8Þ

where E represents the objective function to be minimized,

the actual value is y, the estimated value is y’, w is between

0 and 1, and n is the number of features. The percentage of

frequency of each factor was utilized to estimate its

importance.
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2.2.5 Non-dominated sorting genetic algorithm II (NSGA-II)

NSGA-II is an enhanced form of the non-dominated sorting

genetic algorithm (NSGA). The NSGA-II design is elitist

and does not require sharing parameters (Verma et al.

2021). The NSGA-II algorithm, introduced by Deb et al.

(2002), comprises three primary elements. The elements of

the NSGA-II algorithm encompass non-dominated sorting,

crowding distance, and NSGA-II operators (Cao et al.

2011; Mohammadi et al. 2015). (1) Non-dominated sorting:

The dominance relationship between vector u = (u1,-

u2,…,uk) and vector v = (v1,v2,…,vk) holds if and only if u

is partially less than v. The concept above can be mathe-

matically expressed as Eq. 9 (Cao et al. 2011).

8i 2 1; . . .; kf g; ui � vi ^ 9i 2 ui � vi ð9Þ

Solution x1 is said to dominate solution x2 when x1 is

not inferior to x2 in any of the objective functions and is

superior to x2 in at least one objective function. (2)

Crowding distance: The purpose of crowding distance is to

evaluate the density of solutions surrounding a particular

solution within a population. For a given point i, the

crowding distance represents the approximate size of the

giant cuboid that encloses point i without including any

other issues from the population. Mathematically, the

crowding distance can be represented by the following

equations (Cao et al. 2011).

d1i ¼
f1 xiþ1ð Þ � f1ðxi�1Þ

fmax
1 � fmin

1

ð10Þ

d2i ¼
f2 xiþ1ð Þ � f2ðxi�1Þ

fmax
2 � fmin

2

ð11Þ

di ¼ d1i þ d2i ð12Þ

where xi represents the solution for i, d1i corresponds to the

crowding distance of solution i in the first objective func-

tion, d2i denotes the crowding distance of solution i in the

second objective function, and di signifies the numerical

value of the crowding distance for a solution i. (3) NSGA-

II Operators: The performance of NSGA-II relies on two

fundamental operators, namely crossover and mutation. In

the crossover operator, two chromosomes are chosen, and

their genetic information is randomly exchanged to gen-

erate an improved population. Several crossover operators

exist, including one-point crossover, two-point crossover,

and others. Mutation serves as another operator in NSGA-

II, crucial for preserving the diversity of solutions. It

involves modifying one or more gene values within a

chromosome from its original state. Applying the mutation

operator can result in a different answer from the previous

one, enhancing the exploration of the solution space and

promoting diversity within the population. NSGA-II starts

by creating an initial population of solutions. Then, the

objective functions are evaluated for each answer and

combined using a weighted sum method. The number of

dominations is calculated for all solutions using non-

dominated sorting. The crowding distance is computed for

each key to measure its density. Answers are ranked based

on non-dominated sorting and crowding distance. Fitter

solutions are selected, and the next generation is created

through crossover and mutation operators. This process

continues until a stopping criterion is met, allowing the

algorithm to converge toward optimal solutions (Yusoff

et al. 2011; Cao et al. 2011).

2.2.6 Evolutionary non-dominated radial slots-based
algorithm (ENORA)

ENORA is a multi-objective evolutionary algorithm that

adopts an elitist Pareto-based approach. It employs a sur-

vival strategy known as (l ? k), where l represents the

population size, and k denotes the number of offspring

produced (Jiménez et al. 2018). The (l ? k) strategy,

initially introduced by Rechenberg in 1973 as an evolution

strategy, involved a population size of 1 and was referred

to as (1 ? 1)-ES. This approach utilized selection, adaptive

mutation, and small population size. Schwefel (1981) later

introduced recombination and populations of more than

one individual into the (l ? k) strategy. As an elitist

method, the (l ? k) technique enables the survival of the l
best children and parents in the population. In ENORA, a

(l ? k) survival strategy is employed, where l is equal to

k, representing the population size. Binary tournament

selection and self-adaptive crossover and mutation tech-

niques are utilized for multi-objective evolutionary opti-

mization (Jiménez et al. 2015). Following the initialization

and evaluation of a population P consisting of N individ-

uals, during each of the T generations, a pair of parents is

selected from the population P using binary tournament

selection. The algorithm selects the best from a pair of

random individuals based on the rank crowding better

function. In the algorithm context, an individual I is

deemed superior to an individual J if the I rank in the

population P is lower (i.e., better) than the rank of J. The

rank of an individual I in a population P, denoted as rank(P,

I), is determined by its non-domination level among the

individuals J in the population P. Suppose individual I and

individual J are assigned to the same radial slot (slot(I) =

slot(J)), which represents a specific region of the search

space. In that case, they share the same non-domination

level (Eqs. 13 and 14) (Jiménez et al. 2015).

Stochastic Environmental Research and Risk Assessment

123



slot Ið Þ ¼
Xn�1

j�1

dj�1 d
a0j
p=2

� �

ð13Þ

a
0

j ¼

p
2
ifh

0

j ¼ 0

arctan
h

0

jþ1

h
0
j

 !

ifh
0

j 6¼ 0

8
>><

>>:
ð14Þ

In the given Equation, d ¼
ffiffiffiffi
Nn�1

p� �
represents the

number of objectives in the optimization problem while hj0
referring to the objective function f j0 normalized within the

range [0, 1]. When two individuals, I and J, share the same

rank in the population, the best individual is determined

based on their crowding distance within their respective

fronts. The individual with the greater crowding distance is

considered the superior one (Jiménez et al. 2018). The

algorithm selects parent individuals, performs crossover

and mutation, evaluates the offspring, and adds them to an

auxiliary population Q. This process repeats until Q

reaches size N. P and Q are then merged to create the

additional population R. Ranks are assigned to individuals

in R based on their non-domination levels. Finally, the N

best individuals in R, determined by the rank crowding

better function, survive to the next generation (Jiménez

et al. 2015).

2.2.7 Optimization model

This study employed the Gaussian fuzzy membership

function with two parameters, the standard deviation and

the center (Eq. 15) (Jiménez et al. 2014).

lAijðxjÞ ¼ exp � 1

2
ðxj � cij

rij
Þ
2

	 


ð15Þ

where cij represents the center and rij represents the stan-

dard deviation. Equation 15 lAijðxjÞ represents the degree

of membership of a value xj to the fuzzy set Aij.

We assess three primary criteria: accuracy, trans-

parency, and compactness. Suitable objective functions

must be used to define quantitative metrics for these

objectives (Jiménez et al. 2008). (1) Accuracy: The root

means squared error (RMSE) was used to measure model

accuracy:

RMSE ¼ 1

N

XN

i¼1
ðyi � tiÞ ð16Þ

where yi represents the model’s output, ti represents the

desired output, and the number of samples is N. (2)

Transparency: The similarity function was used for trans-

parency. Equation 17 measures the similarity between two

distinct fuzzy sets (A and B).

SðA;BÞ ¼ max
A \ Bj j
Aj j ;

A \ Bj j
Bj j

� �

ð17Þ

(3) Compactness: For the compactness of a fuzzy model,

the model’s rule count (M) and the number of different

fuzzy sets (L) are indicators. Based on the previous dis-

cussion, the following multi-objective constrained opti-

mization model is proposed (Eq. 18).

Minimizef1 ¼ RMSE
Minimizef2 ¼ M
SubjecttoS\gs

8
<

:
ð18Þ

where gs [0, 1] is a similarity criterion defined (gs = 0.4).

2.2.8 Evaluation metrics

In this study, the RMSE index (Eq. 16) was used to eval-

uate the performance of the models. The LSM was tested

for accuracy using the receiver operating characteristic

(ROC) curve. The ROC curve is computed utilizing two

TPR (true positive rate) and FPR (false positive rate)

indices (Eqs. 19–20) (Razavi-Termeh et al. 2020).

TPR ¼ TP

TPþ FN
ð19Þ

FPR ¼ FP

TNþ FP
ð20Þ

The four parameters for determining ROC are true

positive (TP), false positive (FP), true negative (TN), and

false negative (FN) pixels (Farhangi et al. 2022). There is a

y-axis and an x-axis to the ROC curve, representing TPR

and FPR. According to a statistical measure called the area

under the curve (AUC), an LSM accuracy can be deter-

mined by its value. The AUC index is calculated based on

Eq. (21) (Pourghasemi et al. 2020).

AUC ¼
Z 1

0

ROCðtÞ ð21Þ

where t represents a threshold value, AUC values less than

0.5 denote poor model performance, whereas values near 1

denote great model accuracy (Farahani et al. 2022).

2.2.9 Methodology

The methodology used in this study to model landslide

susceptibility is shown in Fig. 4. The procedure begins

with creating a landslide inventory and 15 conditioning

factor maps. In the following stage, the input data were pre-

processed using multicollinearity analysis, FR method, and

PSO algorithms. The fuzzy rules were optimized using

multi-objective evolutionary algorithms in the following

step. Finally, the landslide susceptibility map was created
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Fig. 4 The methodology used in the research

Stochastic Environmental Research and Risk Assessment

123



using the NSGA-II and ENORA algorithms and evaluated

using metric indicators.

3 Result

3.1 Analysis of the multicollinearity
of the effective factors

Multicollinearity tests were conducted on the landslide

conditioning factors. The results demonstrate that rainfall

(1.052) has the lowest variance inflation factor (VIF) value

of landslide conditioning factors, while slope has the

highest VIF value of 1.837. (Table 2). The VIF values of

landslide conditioning factors are less than 10, indicating

no collinearity among these factors. As a result, the 15

landslide conditioning factors chosen are suitable for

modeling.

3.2 Importance of factors using the PSO
algorithm

The significance of effective factors was determined uti-

lizing the PSO algorithm. Table 3 presents the parameters

used by the PSO algorithm. Considering that in this

research, 15 effective criteria on landslides are considered,

the PSO algorithm is run in 15 separate steps to determine

the importance of the criteria. In the initial run, this algo-

rithm computes the value of the objective function (Eq. 8)

using a single criterion. Subsequently, in the following run,

the algorithm calculates the objective function using a

combination of two criteria. This procedure is repeated

sequentially up to the 15th run, where the objective func-

tion is evaluated using a combination of 15 different cri-

teria. Factors with the highest percentage of repetition in 15

different runs were of greater importance in landslide

modeling. Figure 5 shows the objective function conver-

gence diagram. The best value of the objective function in

this algorithm was 0.133. The importance of effective

criteria in this research is shown in Table 4. According to

the findings, lithology, land cover, and altitude are the most

significant factors, accounting for 93.3%, 86.6%, and

Table 2 Analysis of the

multicollinearity
Factors VIF

Altitude 1.240

Aspect 1.287

Distance to fault 1.192

Land cover 1.104

Lithology 1.275

NDVI 1.152

Plan curvature 1.120

Profile curvature 1.115

Rainfall 1.052

Distance to river 1.103

Distance to road 1.337

Slope 1.837

Soil 1.152

SPI 1.445

TWI 1.594

Table 3 Parameters used in

PSO algorithm
Parameters

Population = 100

Iteration = 50

W = 1

C1 = 1

C1 = 2

Fig. 5 Convergence diagram of PSO algorithm

Table 4 Importance of factors using PSO algorithm

Factors Number of frequency Importance (%)

Distance to river 9 60

Distance to road 7 46.6

Lithology 14 93.3

Altitude 10 66.6

NDVI 7 46.6

Land cover 13 86.6

Slope 7 46.6

Aspect 9 60

SPI 7 46.6

Profile curvature 5 33.3

TWI 9 60

Plan curvature 6 40

Rainfall 6 40

Soil 8 53.3

Distance to fault 2 13.3
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66.6%, respectively. Also, according to the results, the

distance from the fault with, 13.3%, is the least important.

3.3 Calculate spatial relationships using the FR
method

Table 5 presents the FR value for each factor that influ-

ences the likelihood of a landslide. A value close to or

completely 0 for FR suggests low landslide susceptibility,

whereas a value greater than 1 indicates greater. The alti-

tude class between 1600 and 2000 m has an FR value of

1.67. With a weight of 1.31, the slope angle class 0–10

degrees has the highest FR values. North-facing slope

aspect has the highest FR values in this investigation

(1.76). The result indicates that the FR value of the[
0.001 class for plan curvature was 1.04. Class -

0.0006–0.002 has a higher FR weight for profile curvature,

with a value of 1.14. The association between TWI and

landslide occurrence revealed that class 4.8–5.7 has a high

FR weight of 1.74. Regarding the SPI factor, the 0–200

class has the greatest FR value (2). Based on the distance

from the river, the most likely place for landslides to

happen is between 400 and 600 m (FR = 1.67). According

to the distance from the fault criterion results, the

class[ 1200 m has the highest FR value (1.11). The value

of the FR in the distance from the road criterion indicates

that landslides are more frequent in lower values of this

criterion (with the highest FR value = 2.75). The NDVI

criterion results show that the greatest FR (2.59) is asso-

ciated with a class[ 0.46. According to the rainfall crite-

rion findings, the middle class (540–640 mm) has a higher

FR value (1.2). The soil criterion results show that the

highest FR (1.55) is associated with the Mollisols class.

The association between landslide frequency and lithology

reveals that the Plms class is the most frequent, with an FR

value of 3.26. According to the land cover results, the

farmland class has the highest weight value of FR (1.51).

3.4 Development of evolutionary multi-
objective fuzzy algorithms

The NSGA-II and ENORA hybrid algorithms were devel-

oped for landslide susceptibility analysis. A holdout sam-

pling strategy was used to create training and test sets.

Seventy percent of the landslide data (107 points) were

used for model training and thirty percent for model testing

Table 6 Parameters utilized by multi-objective evolutionary algorithms

Crossover operators General parameters Mutation operators

Crossover rate: 0.19 Number of generations: 180 Mutate rate: 0.14

Rule crossover: 0.35 Population size: 100 Gaussian set center mutation: 0.2

Rule incremental crossover: 0.21 Minimum variance parameter: 30.0 Gaussian set variance mutation: 0.2

Fuzzy set crossover: 0.25 Maximum variance parameter: 2.0 Fuzzy set mutation: 0.2

Minimum number of rules: 2 Rule incremental mutation: 0.26

Maximum number of labels: 2 Amplitude for Gaussian set center mutation: 0.531

Normalized non-dominated space ratio: 0.6193 Amplitude for Gaussian set variance mutation: 0.4693

Fig. 6 Multi-objective evolutionary algorithms convergence diagram

Table 7 Optimal values of the fuzzy Gaussian membership function

Factors High Low

Center S.E. Center S.E.

Rainfall 1.044 0.345 0.357 0.306

Plan curvature 1.028 0.022 0.987 0.004

TWI 1.625 0.378 0.94 0.187

Profile curvature 1.032 0.278 0.433 0.201

SPI 1.786 0.436 0.975 0.223

Aspect 1.657 0.393 0.835 0.284

Slope 1.797 0.3 0.47 0.242

Land cover 1.32 0.551 0.225 0.387

NDVI 2.443 0.634 1.29 0.345

Altitude 1.563 0.454 0.543 0.403

Lithology 2.988 0.925 1.135 0.734

Soil 1.548 0.225 1.123 0.068

Distance to road 2.51 0.7 1.24 0.522

Distance to fault 0.963 0.336 0.207 0.127

Distance to river 1.473 0.291 0.833 0.207
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(46 points). There were 153 non-landslides chosen ran-

domly for the training and testing datasets, combined to

form the training and testing datasets. The Waikato Envi-

ronment for Knowledge Analysis (WEKA 3.9.5) and

MATLAB R2017b software created evolutionary multi-

objective fuzzy algorithms. The weights obtained in the FR

method for the effective criteria were used as modeling

input. Table 6 presents the parameters in the development

of multi-objective evolutionary fuzzy algorithms.

The convergence function of multi-objective evolu-

tionary fuzzy algorithms in 1000 iterations is shown in

Fig. 6. Given that the objective function is to minimize the

RMSE value, the values of this index for the NSGA-II and

ENORA algorithms are 0.4377 and 0.4534, respectively.

According to the results, the NSGA-II algorithm demon-

strated a lower cost than the ENORA algorithm.

The optimal values for the mean and standard error of the

fuzzy Gaussian function were calculated during the devel-

opment of multi-objective evolutionary fuzzy algorithms.

The optimal values of the fuzzy Gaussian membership

function are summarized in Table 7 and were used to

determine the best rules in modeling. In this research, two

labels, high (high probability of landslide occurrence) and

low (low probability of landslide occurrence), were used in

the Gaussian membership function. Figure 7 shows the

Gaussian fuzzymembership function diagram for all criteria.

Fig. 7 Diagram of the Gaussian fuzzy membership function
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The optimal combination rules in Mamdani’s fuzzy

technique are determined using evolutionary multi-objec-

tive algorithms based on the constructed Gaussian mem-

bership function. Based on the results, the NSGA-II

algorithm gave ten rules for integrating fuzzy membership

functions, whereas the ENORA algorithm presented four

rules. The rules optimized by NSGA-II and ENORA

algorithms are summarized in Tables 8 and 9, respectively.

Table 10 presents the performance of the multi-objective

evolutionary fuzzy algorithms during training and testing

datasets. The NSGA-II and ENORA algorithms generated

RMSE (0.25, 0.28) in the training phase and RMSE (0.43,

0.48) in the validation phase, respectively, according to

Table 10. In modeling, the NSGA-II algorithm outper-

formed the ENORA algorithm. The predictive ability of

these two algorithms is shown in Fig. 8, utilizing the

training and test datasets.

3.5 Creation of maps of landslide susceptibility

After optimizing fuzzy rules using multi-objective evolu-

tionary fuzzy algorithms, the fuzzy rules obtained were

integrated using the fuzzy Mamdani approach. In an Arc-

GIS 10.3 platform, LSM for the two algorithms was

Fig. 7 continued
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Fig. 8 Graph of prediction ability of algorithms during training and testing datasets

Fig. 7 continued
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created. LSM was produced on each grid cell using two

algorithms. We divided all susceptibility maps into five

categories using the natural breaks (Razavi-Termeh et al.

2021) approach. The landslide susceptibility maps gener-

ated by two multi-objective evolutionary fuzzy algorithms

are shown in Fig. 9. The spatial distribution of the two

algorithms is similar.

The percentage of different categories of landslide sus-

ceptibility maps produced with two algorithms is summa-

rized in Fig. 10. The five landslide susceptibility classes of

very low, low, medium, high, and very high in the NSGA-

II covered 10.96%, 35.51%, 32.78%, 15.34%, and 5.4% of

the district area, respectively. In the ENORA algorithm, the

five landslide susceptibility groups of very low, low,

medium, high, and very high included 17.86%, 35.99%,

27.86%, 13.65%, and 4.6%, respectively. The spatial

results of LSM using NSGA-II revealed that 20.7% of the

overall region exhibited susceptibility ranging from high to

very high. Furthermore, the ENORA result showed that

18.3% of the general area had high to very high

susceptibility.

3.6 Validation and comparison of algorithms

The susceptibility prediction probability was computed

using the testing dataset, AUC, and statistical evaluation

metrics. Figure 11 and Table 11 show the overall perfor-

mance of two multi-objective evolutionary landslide sus-

ceptibility algorithms using the AUC. The AUC findings

show that the NSGA-II algorithm has the greatest AUC

value (0.867), followed by the ENORA algorithm (0.844).

It was evident that all algorithms possess a strong capa-

bility for prediction.

The Friedman test was used at a 5% significance level to

examine statistically significant differences between the

Table 8 Results of rules optimized by NSGA-II

Factors Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 Rule 9 Rule 10

Rainfall High High High Low High High High Low High Low

Plan curvature Low Low High High High High High High High Low

TWI High High High Low Low High High High High High

Profile curvature High High High Low Low High High High High High

SPI High High High High Low Low High High High High

Aspect Low Low High High Low High High High High High

Slope Low Low Low High High High Low High High High

Land cover Low Low Low High High High High High High High

NDVI Low High Low High Low Low Low Low Low High

Altitude Low Low High Low Low High High High High High

Lithology High High Low High Low Low Low High High High

Soil High Low High High High High High High High High

Distance to road Low Low Low High High High High High High High

Distance to fault High High High High High Low High High High High

Distance to river Low Low High High Low High High High High High

Landslide occurrence No No No No No No Yes Yes Yes Yes

Table 9 Results of rules optimized by ENORA

Factors Rule 1 Rule 2 Rule 3 Rule 4

Rainfall High High High High

Plan curvature High High High High

TWI Low Low High Low

Profile curvature High High High High

SPI High High High High

Aspect High Low High High

Slope High High High High

Land cover Low Low High Low

NDVI High High High High

Altitude High High High High

Lithology Low High High High

Soil Low Low Low High

Distance to road High High High High

Distance to fault High Low High High

Distance to river Low High High Low

Landslide occurrence No No Yes Yes

Table 10 Results of modeling

during training and testing

datasets

Algorithms RMSE

Train Test

NSGA-II 0.25 0.43

ENORA 0.28 0.48
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two landslide susceptibility algorithms. With significance

and chi-square values of 0.00001 (\ 0.05) and more than

66.18, the Friedman test findings in Table 12 show that the

null hypothesis was rejected.

Because the Friedman test results only show significant

differences in algorithm performance, the results cannot

provide comparisons between some algorithms. As a result,

the Wilcoxon signed-rank test was used to determine the

statistical significance of the algorithms. When the p-value

is less than 0.05, and the z-value exceeds the crucial

thresholds (1.96 and ? 1.96), as shown in Table 13, then

the Wilcoxon signed-rank test yields positive results. The

results showed that the performance difference between

each set of algorithms is statistically significant.

Fig. 9 Landslide susceptibility mapping (LSM) of the study area by: a NSGA-II algorithm, and b ENORA algorithm
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Fig. 10 Diagram of the percentage of different categories of LSM
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Fig. 11 ROC curve outputs for multi-objective evolutionary

algorithms

Table 11 Result of AUC for multi-objective evolutionary algorithms

Algorithms AUC SE 95% CI

NSGA-II 0.867 0.0369 0.779–0.930

ENORA 0.844 0.0408 0.753–0.912

Table 12 Friedman test result for multi-objective evolutionary

algorithms

Algorithms Mean rank Chi-square P-value

NSGA-II 1.71 66.18 0.00001

ENORA 1.28
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4 Discussion

4.1 Assessment of conditioning factors

Data pre-processing was performed before modeling and

LSM preparation utilizing multicollinearity analysis, the

FR method, and the PSO algorithm. According to multi-

collinearity analysis, 15 factors were independent and can

be considered in the modeling. Using the PSO algorithm,

the importance of criteria revealed that the lithology, land

cover, and altitude criteria were the most important in

modeling. One of the most notable effects of lithology is its

ability to increase the hardness of rocks and speed up

weathering (Pourghasemi and Rahmati 2018). The con-

clusions of this study are consistent with the findings of

Pourghasemi et al. (2020) and Wang et al. (2019) on the

significance of lithology. Slope stability and landslide

occurrence are impacted by land cover via various root

system mechanisms (Miller 2013). This study’s findings on

the importance of land cover are consistent with those of

Pourghasemi et al. (2020) and Wang et al. (2019). Even

though geomorphological processes and weather condi-

tions can be affected by altitude, altitude has no direct

effect on landslides (Youssef and Pourghasemi 2021). The

findings of Achour and Pourghasemi (2020) and Pour-

ghasemi and Rahmati (2018) about the significance of

altitude align with this research’s results.

Using the FR technique, it was found that landslides

were most likely to occur at an altitude of 1600–2000 m.

This is primarily due to rising rainfall and, thus, soil

moisture with altitude (Bamutaze 2019). The results of the

altitude criterion were consistent with the research of Pham

et al. (2021). Lower slopes were found to be associated

with the occurrence of landslides. The contact horizon

between the overlying loess and the underlying mudstone

is particularly prone to landslides; this weak plane typically

has an angle of 10� to 20� (Derbyshire 2001). The slope

criterion results were consistent with Wu et al. (2020). One

explanation for the north aspect’s higher FR value is that it

receives less solar energy than other aspects, which may

account for most of the wetness (Pham et al. 2017). The

results of the aspect criterion were in line with those of

Nohani et al. (2019). Regarding plan curvature, convex had

the highest FR value, particularly when combined with

faulty road design, resulting in failure slopes (Nohani et al.

2019). This criterion’s results were consistent with Pham

et al. (2021). The findings revealed that the risk of land-

slides increases with decreasing profile curvature (Pour-

ghasemi et al. 2020). Based on the findings of this study,

the lowest TWI and SPI values had the highest FR weight.

Lower TWI values at higher elevations show that water

penetrates soils through slopes (Achour and Pourghasemi

2020). The results showed that landslides were more likely

to occur at shorter distances from the river. Slope insta-

bility is likely to occur due to the proximity of small vil-

lages to large river valleys and the accompanying lateral

river erosion (Zhang and Liu 2010). According to the

findings, the likelihood of a landslide rose with distance

from the fault. Furthermore, according to the PSO algo-

rithm, this criterion needed to be more important. The

results of the distance from the fault in this research dif-

fered from other research, which may be due to the geo-

graphical conditions of the study area. The distance from

the road revealed that landslides were more likely to occur

at shorter distances. Due to human engineering activity,

Loess slopes’ stress balance has been altered to favor

landslides near roads (Wu et al. 2020). This outcome is

consistent with previously reported research (Pham et al.

2021). The results showed that in higher NDVI values, the

probability of landslide occurrence was higher. This find-

ing is consistent with previous studies (Wang et al. 2019).

Rainfall is an important factor in landslide occurrence since

it affects soil structure. Landslides are more likely when

there has been a lot of rain, which is in line with other

studies (Wang et al. 2019; Razavi-Termeh et al. 2021). The

Mollisols class of soil and Plms class of lithology unit had

a higher landslide probability. The results of these two

criteria show that the classes in the area with higher FR

values of these two criteria are affected by other factors.

The findings revealed that the probability of a landslide

occurring was higher in the farmland class. This is due to

increased soil moisture from cultivated land. Slope mate-

rial weight and pore water pressure increased in lockstep

with changes in soil moisture on the slope (Wubalem

2021).

The prepared susceptibility map showed that the high-

risk areas in the study area mostly correspond to the criteria

of distance from the road, distance from the river, altitude,

and land cover. These criteria seem to be more effective

factors in the occurrence of landslides in the study area.

4.2 Assessment of modeling algorithms

Utilizing the PSO algorithm, the importance of factors was

determined. So far, this algorithm has yet to be used to

assess the significance of landslide-related factors. How-

ever, multiple studies have verified that when the PSO

algorithm is used with machine learning algorithms, it

produces satisfactory accuracy in creating LSM. These

Table 13 Wilcoxon signed-rank test result for multi-objective evo-

lutionary algorithms

Pairwise comparison Z-value P-value Significance

NSGA-II versus ENORA 7.04 0.0001 Yes
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studies have explored the effectiveness of combining the

PSO algorithm with various machine learning algorithms

such as ANN (Moayedi et al. 2019), SVM (Zhao and Zhao

2021), ANFIS (Chen et al. 2017a, b), deep belief networks

(DBN) (Li et al. 2022), random trees (RT) (Saha et al.

2022), and multi-layer perceptrons (MLP) (Li et al. 2019)

in creating LSMs. The PSO algorithm contains a memory,

which allows all particles to retain the knowledge of rea-

sonable solutions. In other words, each particle in the PSO

algorithm benefits from its previous information, but sim-

ilar behavior and features do not exist in different evolu-

tionary algorithms (Wang et al. 2007). One significant

disadvantage of fuzzy logic systems is that they depend

entirely on human knowledge and expertise (Tikk and

Baranyi 2000). As a result, in this study, two multi-ob-

jective evolutionary algorithms (NSGA-II and ENORA)

were employed to optimize fuzzy rules. One of their key

advantages is that they are population-based, allowing

them to uncover multiple intriguing solutions in a single

run. Another advantage is that no preconceived notions

about the nature of the problem are entertained (Pilát

2010). The results showed that these algorithms had

acceptable accuracy in preparing the LSM. Based on the

results, the NSGA-II algorithm was more accurate than the

ENORA algorithm in optimizing the fuzzy rules and

preparing the LSM. The NSGA-II algorithm’s advantages

include non-penalty constraint handling, rapid and efficient

convergence, searching in an extensive range, and dealing

with problems that begin with non-feasible solutions

(Subashini and Bhuvaneswari 2012).

4.3 Future suggestion

In terms of future research directions, a dynamic approach

to susceptibility mapping that considers temporal fluctua-

tions in variables such as rainfall intensity, alterations in

land cover, and urbanization dynamics can augment the

model’s flexibility and adaptiveness. The imperative of

addressing uncertainty is underscored; therefore, conduct-

ing a comprehensive analysis of uncertainty that encom-

passes the reliability of input data, variations in model

parameters, and the convergence behavior of the algorithm

can yield insights into the resilience and stability of sus-

ceptibility mapping results. Integrating remote sensing

data, encompassing resources like satellite imagery and

LiDAR data presents an avenue with the potential to

enhance the caliber of input data, thus refining the preci-

sion exhibited by the susceptibility model. Furthermore,

delving into exploring and establishing a susceptibility

assessment framework that extends its purview to encom-

pass multiple hazards, such as floods or earthquakes, could

furnish a holistic comprehension of the susceptibilities

inherent in the landscape’s fabric.

5 Conclusion

The primary goal of this research is to create and compare

two multi-objective evolutionary fuzzy algorithms for

LSM. By optimizing fuzzy rules, the proposed algorithms

can reduce the uncertainty of LSM. The following con-

clusions can be made from the experiment results:

1. The PSO algorithm determined that lithology, land

cover, and height were the most important determi-

nants of landslides in the research area.

2. Based on the FR method, high altitude, low slope,

north aspect, concave curvature, low TWI, low SPI,

high NDVI, high rainfall, Mollisols soil type, Plms

lithology unit, and land farm class of land cover were

most related to the occurrence of landslides in the study

area.

3. The proposed algorithms optimized ten and four rules

of Gaussian fuzzy using NSGA-II and ENORA,

respectively.

4. The proposed algorithms achieved good accuracy in

LSM. For example, the prediction performance of the

NSGA-II and ENORA algorithms produced AUC

values of 0.867 and 0.844, respectively.

5. In LSM, the NSGA-II algorithm outperformed the

ENORA algorithm in accuracy.

6. The information obtained from this study could be

helpful for policymakers and decision-makers in areas

prone to landslides.
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