
ORIGINAL PAPER

Orlicz risks for assessing stochastic streamflow environments: a static
optimization approach

Hidekazu Yoshioka1 • Haruka Tomobe2 • Yumi Yoshioka3

Accepted: 30 August 2023 / Published online: 4 October 2023
� The Author(s) 2023

Abstract
This study applies novel risk measures, called Orlicz risks, to the risk and uncertainty evaluation of the streamflow

discharge as a primary driver of hydrological and hydraulic processes of interest in civil and environmental engineering.

We consider the mixed moving average process governing the discharge whose statistics are explicitly represented as some

product of a time-scale characterizing the flow attenuation and a jump moment governing the size and frequency of jumps.

The classical Orlicz risks are extended so that not only the upper tail risk but also the lower one of the jump size and

attenuation of the discharge can be evaluated within a single mathematical framework. Further, the risk and uncertainty can

be individually quantified in a tractable manner by the proposed Orlicz risks. Computing the Orlicz risks reduces to solving

a pair of novel static optimization problems that are solvable semi-analytically. The risk and uncertainty involved in the

streamflow dynamics can be consistently evaluated by specifying few user-dependent parameters. The associated Radon–

Nikodym derivatives as the worst-case model uncertainties are obtained as byproducts. Sufficient conditions for the well-

posedness of the Orlicz risks are discussed and numerical algorithms for computing them are presented. We finally apply

the proposed framework to a statistical analysis of the streamflow discharge time series data collected at mountainous river

environments.

Keywords Stochastic streamflow � Long-memory jump process � Orlicz risks � Model uncertainty � Radon–Nikodym
derivative

1 Introduction

1.1 Research background

1.1.1 Stochastic process models for streamflow discharge

Streamflow environments are dynamically changing in

time due to stochastic forcings such as precipitation and

runoff processes (Wing et al. 2020; Shabestanipour et al.

2023). The dynamic nature of streamflow environments is

of critical importance from a variety of sustainability

aspects, such as the transport of riverbed materials gov-

erning river morphology (Lague 2014) and chemics

determining river water quality (Li et al. 2022), the life

history of freshwater fish species (Archdeacon et al. 2022;

Malone et al. 2022), the infrastructure investment for

mitigating flood risks (Hamilton et al. 2022), the reservoir

operation (Baker et al. 2022), and the hydropower gener-

ation (Ávila et al. 2021).

The streamflow discharge, which is the water volume

that passes through a river cross-section in a unit time, is

the primary variable governing streamflow environments.

The dynamically changing stochastic nature of streamflow

environments has been effectively captured by jump-driven

stochastic process models (Botter et al. 2013). The com-

mon mathematical structure of such models is that a jump

in a time series represents a flood event that attenuates in

time, and key statistics such as moments, autocorrelation

functions (ACFs), and further probability density of the

discharge are available in closed forms. These models have

been widely employed for the investigations of streamflow
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environments by taking advantages of this remarkable

property; such examples are the evaluation of hydrological

river network connectivity (Garbin et al. 2019), the

stochastic analysis of flow regulations due to human water

use (Ferrazzi and Botter 2019), the simulation of particu-

late transport in streamflow environments (Catalàn et al.

2022), the river incision analysis under climate changes

(Desormeaux et al. 2022), the macroscopic water balance

analysis in the catchment scale (Daly et al. 2019), the

drought risk evaluation (Li et al. 2023), and the streamflow

regulation aiming at the environmentally-friendly as well

as stable water supply (Yoshioka et al. 2023).

Since the stochastic process models are coarse-graining

of physical processes that govern the streamflow dynamics,

they inherently contain modelling errors in coefficients and

parameter values. The flood attenuation was originally

considered to be exponential, while the sub-exponential

ones have been found to better fit to the real discharge data,

effectively reflecting the watershed heterogeneity; the

nonlinearization (Botter et al. 2009; Dralle et al. 2018; Li

and Ameli et al. 2022) and model aggregation (Yoshioka

2022) have been discussed for resolving this issue although

these approaches are still conceptual and are not fully

physical. Properly modelling the flood attenuation is

important for ecological assessment of riparian zones

(Philipsen and Rood 2022) and the flood risk management

(Asselman et al. 2022). In addition, modeling flood events

with extremely large discharges is crucial for the hazard

prediction (Guo et al. 2022; Merz et al. 2022), while the

data to quantify such rare events is usually not abundant.

Assessing stochastic process models under the model

uncertainty is therefore a key step toward deeper under-

standing of their performance in applications.

1.1.2 Model uncertainty in stochastic process models

In economics and related research fields, the model

uncertainty, often called model ambiguity, has been rig-

orously evaluated in terms of the risk measure based on the

Radon–Nikodym derivative between benchmark and dis-

torted models (Frittelli and Gianin 2004; Föllmer and

Knispel 2013; Ben-Tal and Teboulle 2007). Namely, a risk

measure evaluates a random quantity of interest through an

expectation index distorted according to the worst-case

Radon–Nikodym derivative. Major examples of the risk

measures are the spectral risk measures including the

famous conditional Value-at-Risk (Dowd et al. 2008; Kouri

2019; Guo and Hu 2022) and entropic Value-at-Risk

(Ahmadi-Javid 2012), and their generalizations (Zou et al.

2022, 2023).

Risk measures can be systematically studied on the basis

of Orlicz spaces: Banach spaces collecting functions

equipped with certain growth and regularity conditions

(Rao and Ren 2002; Rubshtein et al. 2016). These spaces

are suited to analyzing risk measures as they deal with

functions having specific upper- and lower-tail behaviors

corresponding to extreme events. Their mathematical rigor

enables us to properly understand and quantify the model

uncertainty. A convex risk measure and its connection with

expected utility theory (Föllmer and Schied 2016) has been

widely studied, as an extension of classical Orlicz spaces.

Several risk measures including the monetary risk mea-

sures (Cheridito and Li 2008, 2009) and entropic Value-at-

Risks are defined through norms of Orlicz spaces (Ahmadi-

Javid and Pichler 2017). In particular, the Orlicz premia

and their robustification have been introduced for studying

extreme insurance and financial risks under model uncer-

tainty by directly exploiting the properties of Orlicz spaces

(Bellini et al. 2018, 2021; Kong et al. 2018). The Orlicz

space suitable for specific random variables such as sub-

exponential and sub-Gaussian variables has been studied in

Zajkowski (2020). The capital allocation has successfully

been studied using the risk measures under Orlicz spaces

(Canna et al. 2021; Gómez et al. 2022).

There have been significant advances of the risk mea-

sures in Orlicz spaces both in theory and practice as

reviewed above, while their applications to stochastic

process models of the streamflow discharge do not exist to

the best of the authors’ knowledge. Moreover, method-

ologies for efficiently computing the risk measures defined

in Orlicz spaces have not been studied well. These two

issues motivated the research objective presented below.

1.2 Objective and contribution, and structure
of this paper

We have two goals in this paper. The first goal is to for-

mulate a unified mathematical framework based on Orlicz

spaces for the statistical evaluation of the model uncer-

tainty of a stochastic process model of the streamflow

discharge. The second goal is to apply this framework to

real data. In particular, we focus on the mixed moving

average process (hereafter called MMA process) as a

nominal stochastic process model (Barndorff-Nielsen

2001) recently applied to the discharge time series data

having a long memory (Yoshioka 2022). This MMA pro-

cess is an aggregation of Ornstein–Uhlenbeck type pro-

cesses and hence generalizes a wide class of existing

stochastic process models (e.g., Botter et al. 2013). The

aggregation here means the coexistence of multiple time

scales in the flow attenuation arising from the spatial

averaging of the long- and short-distant runoff processes in

the watershed (Mudelsee 2007). The aggregation can be

understood through Markovian lifts; a function decaying

algebraically is represented as an integration of exponential

functions (Cuchiero and Teichmann 2020). The advantage
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of the MMA process in applications is that its moments and

ACF are obtained in closed forms that are efficiently

computable. This property has been inherited in the self-

exciting version of the MMA process (Yoshioka et al.

2023). Further, the moments of the MMA process have a

common structure that they are determined through inte-

grals of the Lévy measure (a measure governing size and

frequency of jumps) and reversion measure (a probability

measure to aggregate multiple time scales). Statistical

evaluation of the model uncertainty in the MMA process

hence reduces to investigations of these two measures.

The conventional risk measures based on Orlicz premia,

which we simply call Orlicz risks, have been designed for

the evaluation of extreme losses corresponding to upper-

tail probabilities considering the decaying speed of the tail.

Hence, they are applicable to the estimation of an upper-

bound of a statistic, while not only the upper-bound cor-

responding to flood events but also the lower-bound cor-

responding to base flows of the discharge (Bahrami et al.

2022; Naqi et al. 2022) are important. We establish a

mathematical framework based on a pair of static opti-

mization problems that can consistently cover both the

upper- and lower-bounds of statistics of the MMA process

based on Orlicz hearts (the space of random variables with

which a Orlicz risk is well-defined). The model uncertainty

in this framework is evaluated through an entropic risk

measure as a functional of a Radon–Nikodym derivative,

with which we formulate a class of risk measures to well-

define the Orlicz risks. The worst-case uncertainty maxi-

mizing/minimizing the random variable of interest would

be found from priors in a neighborhood of the benchmark

one in the sense of the relative entropy. We employ the

Tsallis relative entropy (Tsallis 2009) as a generalized

entropic risk measure used in applications ranging from

information sciences (Suyari and Tsukada 2005; Tanaka

et al. 2015), machine learning (Zimmert and Seldin 2021),

and hydrology (Singh et al. 2017); its functional shape

especially plays a key role in this paper. More specifically,

its regularity property allows us to define Orlicz risks even

under the case where the well-known Kullback–Leibler

divergence fails. The proposed Orlicz risks are advanta-

geous in applications because they can separately evaluate

risks by properly choosing parameters in the Young func-

tion and the Tsallis relative entropy.

A limitation of some conventional Orlicz risks is that

they assume bounded random variables while those of the

stochastic process models of the discharge including the

MMA process are unbounded. To overcome this difficulty,

the Orlicz heart and the admissible set of model uncertainty

are designed in this paper so that the Orlicz risks are well-

defined for unbounded random variables. The Orlicz risks

are numerically computed by using the dual representation

formula based on the Radon–Nikodym derivative (Bellini

et al. 2018). Similarities and differences between the Orlicz

risks of the upper- and lower-bounds are discussed focus-

ing on their convexity. We demonstrate that an Orlicz risk

can be approximated firstly by discretizing the probability

measure and then computing the worst-case Radon–Niko-

dym derivative by iteratively solving a nonlinear equation.

The use of the Tsallis relative entropy allows for explicitly

obtaining the Radon–Nikodym derivative, with which the

nonlinear equation can be solved efficiently. With our

mathematical framework, the risk and uncertainty involved

in the streamflow dynamics can be consistently evaluated

by specifying few user-dependent parameters. Our theo-

retical results show that the Orlicz risks can be well-defined

(Propositions 1 and 2) and admit desirable ordering prop-

erties for evaluating both the risk (Proposition 3) and

model uncertainty (Proposition 4).

The proposed Orlicz risks are finally applied to hourly

discharge times series data in streamflow environments in

Japan. Impacts of model uncertainties on the Lévy and

reversion measures are analyzed, and the statistics under

the worst-case are evaluated. Consequently, this paper

consistently contributes to formulation, analysis, and

application of the Orlicz risks with a focus on streamflow

environments. Our focus is therefore on the specific time

series data, while the framework presented in this paper

will be applicable to many other stochastic time series data

arising in engineering research fields.

The rest of this paper is structured as follows. Section 2

reviews the MMA process. Section 3 introduces our robust

Orlicz risks. Mathematical properties of the Orlicz risks are

studied and their computational algorithms are presented in

this section. Section 4 studies an application of the Orlicz

risks to the discharge data of streamflow environments in

Japan. Section 5 presents conclusions and future perspec-

tives of our study. Appendices contain proofs of Proposi-

tions that are technical and several auxiliary results.

2 Stochastic process model

2.1 Model formulation

The stochastic process model considered in this paper is the

MMA process of the Ornstein–Uhlenbeck type defined on a

usual complete probability space X;F ;Pð Þ. The formula-

tion in this paper follows that in Barndorff-Nielsen and

Stelzer (2013). The MMA process under a stationarity

assumption is given as

Xt ¼
Z t

�1

Z þ1

0

Z þ1

0

e�r t�sð Þl ds; dr; dzð Þ: ð1Þ

Here, t 2 R is the time, X ¼ Xtð Þt2R is the non-negative

scalar stochastic process, l is the Poisson random measure
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having the compensator ds� p drð Þ � v dzð Þ with the

infinitesimal time ds, the reversion measure p drð Þ as a

probability measure to aggregate the reversion rate r[ 0,

and the Lévy measure v(dz) of jump size z[ 0. In (11, the

Poisson random measure l generates jumps that are

mutually independent each other, and each jump decays

according to the exponential e�r t�sð Þ. The aggregation

(integration with respect to r) implies the coexistence of

multiple time scales as explained below.

2.2 Statistics

We focus on a long-memory case driven by bounded-

variation jumps that are relevant for the discharge time

series (Yoshioka 2022; Yoshioka et al. 2023), and hence

throughout this paper assume the followings: the reversion

measure p admits a probability density and satisfiesZ þ1

0

p drð Þ ¼ 1 and R :¼
Z þ1

0

1

r
p drð Þ 2 0;þ1ð Þ;

ð2Þ

and the Lévy measure v(dz) is absolutely continuous with

respect to the Lebesgue measure dz and satisfies
Z þ1

0

zv dzð Þ\þ1 and

Z þ1

þe
v dzð Þ\þ1 for each e[ 0:

ð3Þ

The condition (2) means that p is a probability measure of a

positive random variable and the inverse moment R is

bounded. Phenomenologically, R is a macroscopic time-

scale of the flow attenuation. The condition (3) implies that

the total number of jumps is at most countable in each

bounded time interval. If additionally v satisfies

k :¼
Rþ1
0

v dzð Þ\þ1, then each jump follows a com-

pound Poisson process whose jump intensity equals k. By
(3), the probability measure of jumps larger than a pre-

scribed size ẑ[ 0 is given by

1

kẑ
v dzð Þ ðz[ ẑÞ with kẑ :¼

Z þ1

ẑ

v dzð Þ[ 0: ð4Þ

Here, kẑ is the intensity of jumps larger than ẑ.

The stationary statistics of the MMA process X are

analytically obtained as follows with E the expectation

(e.g., Yoshioka 2022):

Mean E Xt½ � ¼ RM1; Variance E Xt � E Xt½ �ð Þ2
h i

¼ RM2

2
;

ð5Þ

Skewness
E Xt � E Xt½ �ð Þ3
h i

E Xt � E Xt½ �ð Þ2
h i1:5 ¼ 2

ffiffiffi
2

p

3

1ffiffiffi
R

p M3

M2ð Þ3=2
; ð6Þ

Kurtosis
E Xt � E Xt½ �ð Þ4
h i

� 3E Xt � E Xt½ �ð Þ2
h i2

E Xt � E Xt½ �ð Þ2
h i2

¼ M4

R M2ð Þ2
; ð7Þ

where Mk :¼
Rþ1
0

zkv dzð Þ ðk 2 NÞ are moments of the

jump size. We also have a closed-form representation of

the ACF with time lag s C 0:

q sð Þ ¼ 1

R

Z þ1

0

1

r
e�rsp drð Þ: ð8Þ

The factors related to Lévy and reversion measures are

appearing separately in (5)–(7). Further, by (8) the ACF is

free from the Lévy measure.

Remark 1 We focus on the jump-driven MMA process (1),

while the ACF (8) has the same form even if we assume an

existence of the Gaussian noise (Barndorff–Nielsen 2001).

In this case, continuous noise terms will be included in (5)–

(7), which are currently under investigations by the

authors.

3 Orlicz risks

We formulate and analyze Orlicz risks in this section. All

random variables in this section are scalar and positive, and

denoted as x. In our application, this x corresponds to the

reversion rate r or jump size z. The discussion in this

section is rather from a generalized viewpoint, and its

adaptations to the specific cases will be considered later

(Sect. 3.4).

3.1 Orlicz heart and space

The Orlicz heart and space as a main ingredient of Orlicz

risks are defined following Bellini et al. (2018, 2021) (see,

also Rao and Ren 2002; Rubshtein et al. 2016). A Young

function is a continuous, strictly increasing, and convex

function U : 0;þ1½ Þ ! 0;þ1½ Þ such that

U 0ð Þ ¼ 0;U 1ð Þ ¼ 1, and U þ1ð Þ ¼ þ1. Given a proba-

bility density g : 0;þ1½ Þ ! 0;þ1½ Þ, which is a continu-

ous and measurable function with
Rþ1
0

g xð Þdx ¼ 1, and a

Young function U, the Orlicz heart Hg;U is defined as
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Hg;U :¼
�
f : 0;þ1½ Þ ! 0;þ1½ Þ :
Z þ1

0

U
f xð Þ
k

� �
g xð Þdx\þ1 for all k[ 0

�
:

ð9Þ

The Orlicz space Lg;U is defined as

Lg;U :¼
�
f : 0;þ1½ Þ ! 0;þ1½ Þ :
Z þ1

0

U
f xð Þ
k

� �
g xð Þdx\þ1 for some k[ 0

�
;

ð10Þ

and hence Hg;U � Lg;U. The Orlicz norm �k kg;U is defined

for f 2 Lg;U as

fk kg;U:¼ inf k[ 0 :

Z þ1

0

U
f xð Þ
k

� �
g xð Þdx� 1

� �
: ð11Þ

Typical Young functions U in the literature are (under the

normalization U 1ð Þ ¼ 1) xp (p C 1) and
exp uxpð Þ�1

exp u�1
(u[ 0,

p C 1) (Rubshtein et al. 2006; Zajkowski 2020). The nor-

malization U(1) = 1 is not necessary in general, while it is

important for ensuring the consistency between the Orlicz

space Lg;U and the Lebesgue space Lp in a way that (e.g.,

Bellini et al. 2018, 2021)

fk kp:¼
Z þ1

0

f xð Þð Þpg xð Þdx
� �1

p

¼ fk kg;xp : ð12Þ

This relationship will become important for dealing with

the Orlicz risks in this paper.

Remark 2 An Orlicz space as a Banach space should be

based on a convex Young function, while defining a Orlicz

heart does not require the convexity (Chapter 10. 5 of Rao

and Ren 2002). Indeed, we later consider an Orlicz heart

with a concave function.

3.2 Tsallis relative entropy

We define the Tsallis relative entropy as another ingredient

of the Orlicz risks. The Tsallis relative entropy Dq hjgð Þ
with the shape parameter q[ 0 of a probability density h

with respect to an equivalent probability density g is

defined as

Dq hjgð Þ :¼
1

1� q
1�

Z þ1

0

/ xð Þf gqg xð Þdx
� �

q[ 0; q 6¼ 1ð Þ
Rþ1
0

/ xð Þ ln/ xð Þg xð Þdx q ¼ 1ð Þ

8><
>:

for

Z þ1

0

/ xð Þg xð Þdx ¼ 1

ð13Þ

with / :¼ h=g the Radon–Nikodym derivative that is

positive for x[ 0. Each integrand in Dq is convex with

respect to / and is minimized by / xð Þ ¼ 1 (x[ 0). The

Tsallis relative entropy Dq reduces to the well-known

Kullback–Leibler divergence when q = 1. We have

Dq hjgð Þ� 0 by definition, and Dq hjgð Þ ¼ 0 if and only of

g = h for x[ 0. For the Tsallis relative entropy, a larger

q implies a stronger aversion against the model uncertainty

(e.g., Ma and Tian 2002; Tian 2023).

We define a q-exponential function and a q-logarithm

function used in the sequel:

expq xð Þ¼ 1þ 1�qð Þxð Þ
1

1�q q 6¼1ð Þ
exp xð Þ q¼1ð Þ

�
; 1þ 1�qð Þx[0

ð14Þ

and

lnq xð Þ ¼
x1�q � 1

1� q
q 6¼ 1ð Þ

ln xð Þ q ¼ 1ð Þ

8<
: ; x[ 0: ð15Þ

Both functions are increasing, and expq function is convex

while lnq function is concave like the classical exp and ln

functions, respectively.

3.3 Formulation of Orlicz risks

Upper and lower Orlicz risks serving as the main mathe-

matical tools in this paper are presented. They are formu-

lated in a symmetrical way so that both can be dealt with in

a unified manner.

3.3.1 Upper Orlicz risk

The Orlicz risk for the upper-bound, hereafter called upper

Orlicz risk, is a specific version of the robust Orlicz premia

in Bellini et al. (2018). The upper Orlicz risk Og;U;f for

f 2 H/qg;U ð/ 2 DÞ is defined as

Og;U;f ¼ inf
n
k[ 0 : sup

/2D

nZ þ1

0

U
f xð Þ
k

� �
/ xð Þf gqg xð Þdx

� wDq /gjgð Þ
o
� 1
o
;

ð16Þ

where D is an admissible set of Radon–Nikodym deriva-

tives / specified later and w[ 0 is a weighting factor.

In (16), the first term in the ‘‘sup’’ part is the Orlicz risk

premium under the probability density distorted according

to the Radon–Nikodym derivative /. The multiplication of

the integrand by /q is due to enforcing the consistency

between the risk premium and the penalization by the

Tsallis relative entropy Dq as the second term. More
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specifically, the coefficient /q implies that the first term is

evaluated under an escort distribution to resolve singular

behaviors of the integrands (Chapter 8 of Tsallis 2009): a

slow decay for x ! þ1 or a singularity at x = 0 in our

context. In the second term, the weighting factor w controls

the strength of the uncertainty aversion in a way that larger

w represents less ambiguous estimate of Og;U;f . The upper

Orlicz risk (16) thus accounts for the risk (first term) and

model uncertainty (second term) in a separable manner.

3.3.2 Lower Orlicz risk

The Orlicz risk for the lower-bound, hereafter called lower

Orlicz risk, is presented in this sub-section. The distinct dif-

ference between the upper and lower Orlicz risks is that the

former is defined via amin–max problemwhile the latter via a

max–min problem. In addition, the former uses the Young

function U that is increasing and convex, while the latter the

inverseU(-1) that is increasing and concave.The lowerOrlicz

risk Og;U;f for f 2 H/qg;U �1ð Þ / 2 Dð Þ is defined as follows:

Og;U;f ¼ sup k[ 0 :f

inf/2D

Z þ1

0

U �1ð Þ f xð Þ
k

� �
/ xð Þf gqg xð Þdxþ wDq /gjgð Þ

� �
� 1

�
;

ð17Þ

where D is an admissible set of Radon–Nikodym deriva-

tives / specified later. In (17), the first term in the left-hand

side of ‘‘inf’’ part is the Orlicz risk premium under the

probability density g distorted according to / in the escort

sense. The second term represents the penalization of

model uncertainty as in the upper Orlicz risk. The lower

Orlicz risk also accounts for the risk (first term) and model

uncertainty (second term) in a separable manner.

3.4 Mathematical analysis

The Orlicz risks are mathematically analyzed under

assumptions suitable for the application to the Lévy and

reversion measures. Propositions 1–2 concern the well-

posedness of the upper and lower Orlicz risks, while

Propositions 3–4 demonstrate their ordering properties.

3.4.1 Target cases

In this sub-section, we focus on the following specific cases

of the triplet g;U; fð Þ that will be considered in our

application. For the reversion measure p, we focus on the

Gamma density

g rð Þ¼gp rð Þ :¼ 1

C apð Þ bpð Þap r
ap�1 exp � r

bp

� �
for r[0

ð18Þ

with parameters ap [ 1 and bp [ 0, where C is the Gamma

function. We have R�1 ¼ bp ap � 1ð Þ and

q sð Þ ¼ 1þ bprð Þ� ap�1ð Þ
, the latter being an ACF of an

algebraically-decaying process. The process Xt is said to

have a long memory if q(s) is not integrable with respect to

the Lebesgue measure ds for s[ 0, which occurs if

ap 2 1; 2ð �. The Gamma density is therefore a

tractable example of the reversion measure for possibly

long-memory processes. For the reversion measure, the

function f is f rð Þ ¼ r�1 as our focus is on the inverse

moment R in (2).

For the Lévy measure v, we assume the tempered

stable one corresponding to the density

g zð Þ ¼ gv zð Þ :¼
v dzð Þ
dzRþ1

ẑ v dzð Þ

¼
Z þ1

ẑ

av
zavþ1

exp �bvzð Þdz
� ��1

av
zavþ1

exp �bvzð Þ

for z[ ẑ

ð19Þ

with parameters av[ 0, av\ 1, and bv[ 0. In this case,

the density g represents the probability density of jump

sizes larger than the prescribed threshold ẑ� 0. If av\0,

then ẑ is allowed to be zero because it corresponds to a

compound Poisson case, while If av 2 0; 1½ Þ, then ẑ must be

positive to well-define (19). The latter case corresponds to

the situation where the MMA process involves countably

infinitely many small jumps in each bounded time interval.

For the reversion measure, the function f is f zð Þ ¼ zm ðm 2
NÞ as our focus is on the jump size.

We must specify the function U for specifying the Orlicz

risks. We primary consider the power function xp (p C 1)

unless otherwise specified. In this case, the risk is con-

trolled by the power index p while the uncertainty by the

Tsallis relative entropy. With these choice, the risk and

uncertainty involved in the streamflow dynamics can be

consistently evaluated by specifying few user-dependent

parameters: the parameter p representing the ambiguity

aversion and the parameters controlling the magnitude

w and shape q of the ambiguity aversion.

3.4.2 Upper Orlicz risk

The analysis of upper Orlicz risk is based on Bellini et al.

(2018) for the robustified Orlicz risk premia and Ma and

Tian (2021) for the Tsallis elative entropy with an adap-

tation to our setting. Finding the upper Orlicz risk consists

of Problems U1 and U2.

Problem U1 Given the triplet g;U; fð Þ and parameters

(q, w), and k[ 0, solve the maximization problem
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G kð Þ :¼ sup
/2D

Z þ1

0

U
f xð Þ
k

� �
/ xð Þf gqg xð Þdx�wDq /gjgð Þ

� �
:

ð20Þ

Problem U2 Find a solution k ¼ k[ 0 to the nonlinear

equation

G kð Þ ¼ 1: ð21Þ

We consider Problems U1 and U2 in this order, and then

present the well-posedness result of the upper Orlicz risk.

We have

Z þ1

0

f xð Þg xð Þdx�
Z þ1

0

f xð Þð Þpg xð Þdx
� �1

p

¼ inf k[0 :

Z þ1

0

U
f xð Þ
k

� �
g xð Þdx�1

� �

¼Og;U;f :

ð22Þ

A similar inequality applies under uncertainties (Proposi-

tion 4).

Problem U1 is just a version of the variational problem

dealt with in Sect. 3 of Ma and Tian (2021). Their results

suggest that the maximizer / ¼ /k of (20) is given by

/k xð Þ ¼
Z þ1

0

expq
1

w
U

f xð Þ
k

� �� �
g xð Þdx

� ��1

expq
1

w
U

f xð Þ
k

� �� �
g xð Þ;

ð23Þ

and hence the worst-case Radon–Nikodym derivative /

realizing the Orlicz risk by / ¼ /k. We analyze a sufficient

condition under which /k is well-defined: i.e., the condi-

tion where the denominator of (23) is bounded. We should

find the condition under which the following Orlicz heart

exists:

Studying Problem U1 thereby reduces to the analysis of the

Orlicz heart (24). After resolving this issue, the unique

existence of the solution to Problem U2 follows based on

the argument employed in the Proof of Lemma 5 of Bellini

et al. (2018).

Proposition 1 below shows the well-posedness of the

upper Orlicz risk and further gives the functional shape of

the worst-case Radon–Nikodym derivative associated to it.

It also implies a sufficient condition for the existence of

(24).

Proposition 1 Assume the case (i) or (ii) presented below.

(i) g xð Þ ¼ gp xð Þ (x[ 0), f xð Þ ¼ x�1; p 2 1; apð Þ, and
q 2 0; 1� p

ap

� �
. The admissible set D is given by

D ¼ / : 0;þ1ð Þ ! 0;þ1ð Þj
Z þ1

0

/ xð Þgp xð Þdx ¼ 1

� �
:

ð25Þ

(ii) g xð Þ ¼ gv xþ ẑð Þ (x[0) with, p C1, and

ẑ� 0; f xð Þ ¼ xm m 2 Nð Þ. The threshold q 2 0; 1ð Þ
ẑ is allowed to be 0 only if av\0 (Compound

Poisson case). The admissible set D is given by (25)

with gp xð Þ replaced by gv xþ ẑð Þ.
Then, there exists a unique solution k ¼ k[ 0 to the

nonlinear Eq. (21). Furthermore, a maximizer of (20) for

k ¼ k is / ¼ /k.

Remark 3 Proposition 1 shows that the Orlicz heart cor-

responding to the upper Orlicz risk is well-defined if the

condition (i) or (ii) is satisfied. Importantly, the case q = 1

where the Tsallis relative entropy reduces to the Kullback–

Leibler one is not allowable in (i); indeed, we obtain

G kð Þ ¼ þ1 for all k[ 0. For the case (ii), if q = 1, then

the proof for q 2 0; 1ð Þ has to be modified because we will

need the integrability conditionZ þ1

0

exp
1

w

xm

k

� �p� �
av

xþ ẑð Þavþ1
exp �bv xþ ẑð Þð Þdx2 0;þ1ð Þ:

ð26Þ

This condition is satisfied only if m = p = 1 and k is suf-

ficiently large. However, a priori estimate of k is not

available. In this view, the use of the Tsallis relative

entropy is essential in our framework.

Remark 4 The admissible set D does not depend on w. It

does not depend on p as well for the case (i) as long as

p 2 1; apð Þ or the case (ii) in Proposition 1.

3.4.3 Lower Orlicz risk

We analyze the lower Orlicz risk. The formulation is similar

to that in the previous sub-section, but we explain it here for

H
g;expq

1
wU

f �ð Þ
kð Þð Þ :¼ f : 0;þ1½ Þ ! 0;þ1½ Þ :

Z þ1

0

expq
1

w
U

f xð Þ
k

� �� �
g xð Þdx\þ1 for all k[ 0

� �
: ð24Þ
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the sake of self-contentedness of this paper. Finding the

lower Orlicz risk consists of Problems D1 and D2.

Problem D1 Given the triplet g;U; fð Þ and parameters

(q, w), and k[ 0, solve the minimization problem

J kð Þ :

¼ inf
/2D

Z þ1

0

U �1ð Þ f xð Þ
k

� �
/ xð Þf gqg xð Þdxþ wDq /gjgð Þ

� �
:

ð27Þ

Problem D2 Find a solution k ¼ k[ 0 to the nonlinear

equation

J kð Þ ¼ 1: ð28Þ

We consider Problems D1 and D2 in this order, and then

present the well-posedness result of the lower Orlicz risk.

Problem D1 is a minimization version of Problem U1. The

use of a concave function U �1ð Þ instead of U is due to the

Jensen’s inequalityZ þ1

0

U �1ð Þf xð Þg xð Þdx�U �1ð Þ
Z þ1

0

f xð Þg xð Þdx
� �

: ð29Þ

If U xð Þ ¼ xp (p C 1), then (29) leads to

Z þ1

0

f xð Þð Þ
1
pg xð Þdx

� �p

�
Z þ1

0

f xð Þg xð Þdx: ð30Þ

The left-hand side of (30) is the Orlicz premium without

uncertainties, given by

sup k[ 0 :

Z þ1

0

U �1ð Þ f xð Þ
k

� �
g xð Þdx� 1

� �
: ð31Þ

As Og;U;f is not larger than (31), the lower Orlicz risk

indeed gives an lower-bound of the expectation of f un-

der g.

As in the previous case, the minimizer / ¼ /
k
of (27)

should be

and hence the worst-case Radon–Nikodym derivative by

/ ¼ /
k
. We have to consider a sufficient condition under

which /
k
is well-defined: i.e., the condition where the

denominator of (32) is bounded. It means that we need to

find the condition under which the following specific

Orlicz heart exists:

H
g;expq �1

wU
f �ð Þ
kð Þð Þ :¼

�
f : 0;þ1½ Þ ! 0;þ1½ Þ :

Z þ1

0

expq � 1

w
U �1ð Þ f xð Þ

k

� �� �
g xð Þdx\þ1 for all k[ 0

�

ð33Þ

The lower Orlicz risk is finally obtained as the solution

k ¼ k to (28).

Studying Problem D1 thereby reduces to the analysis of

the Orlicz heart (33) along with a proper admissible set D.

We state the main result concerning the lower Orlicz risk.

Proposition 2 Assume the case (i) or (ii) presented below.

(i) g xð Þ ¼ gp xð Þ (x[ 0), f xð Þ ¼ x�1, p C 1, and

q C 1. The admissible set D is given by

D ¼ / : 0;þ1ð Þ ! 0;þ1ð ÞjfZ þ1

0

/ xð Þgp xð Þdx ¼ 1g ¼ D
	 


:
ð34Þ

(ii) g xð Þ ¼ gv xþ ẑð Þ (x[ 0) with

ẑ� 0; f xð Þ ¼ xm m 2 Nð Þ, p C1, and q C 1. The

threshold ẑ is allowed to be 0 only if av\0. The

admissible set D is given by (34) with gp xð Þ
replaced by gv xþ ẑð Þ.

Then, there exists a unique solution k ¼ k[ 0 to the

nonlinear Eq. (28). Furthermore, a minimizer of (27) for

k ¼ k is / ¼ /
k
.

Remark 5 Proposition 2 shows that the singularity issue

encountered at q = 1 in Proposition 1 does not occur for the

lower Orlicz risk. Instead, we must have q C 1 for its well-

posedness.

3.4.4 Ordering properties

We show that the proposed Orlicz risks serve as risk

measures under uncertainty owing to certain ordering

properties. Proposition 3 below shows that the upper and

lower Orlicz risks indeed give upper- and lower-bounds of

the random variable of interest.

/
k
xð Þ ¼

Z þ1

0

expq � 1

w
U �1ð Þ f xð Þ

k

� �� �
g xð Þdx

� ��1

expq � 1

w
U �1ð Þ f xð Þ

k

� �� �
g xð Þ; ð32Þ
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Proposition 3 The following (a) and (b) hold true.

(a) Assume that either the conditions (i) or (ii) of

Proposition 1 is satisfied. Then, for 0\w1 �w2 it

follows that

Z þ1

0

f xð Þg xð Þdx�
Z þ1

0

f xð Þð Þpg xð Þdx
� �1

p

�Og;U;f

��
w¼w2

�Og;U;f

��
w¼w1

:

ð35Þ

(b) Assume that either the conditions (i) or (ii) of

Proposition 2 is satisfied. Then, for 0\w1 �w2 it

follows that

The last theoretical results are ordering properties with

respect to the power p, showing that it serves as a

parameter controlling the risk aversion in the statistical

evaluation. Proposition4 below shows that, as a rule of

thumb, the target statistic is evaluated to be larger (resp.,

smaller) as p becomes larger than 1 (resp., smaller than 1)

irrespective to the existence or absence of the uncertainty.

Proposition 4 The following (a) and (b) hold true.

(a) Assume that either the conditions (i) or (ii) of

Proposition 1 is satisfied for p ¼ p1; p2 with

1� p1 � p2. Then, it follows that

Og;U;f

��
p¼p1

�Og;U;f

��
p¼p2

: ð37Þ

(b) Assume that either the conditions (i) or (ii) of

Proposition 2 is satisfied for p ¼ p1; p2 with

1� p1 � p2. Then, it follows that

0\min 1; w
1

q� 1

� �p2�p1
� �

� Og;U;f

��
p¼p2

�Og;U;f

��
p¼p1

:

ð38Þ

Remark 6 In Proposition 4, the factor multiplied by

Og;U;f

��
p¼p2

is due to the technical assumption, which

becomes less if the uncertainty is anticipated to be smaller

(w[ [ 1).

3.5 Numerical algorithm

We compute the Orlicz risks using an iterative numerical

algorithm explained below. We present only the algorithm

to find Og;U;f here, while that for Og;U;f can be developed in

a similar way (Algorithm 2 in Appendix C in Supple-

mentary material). Algorithm 1 below aims at computing

the upper-Orlicz risk Og;U;f and the associated worst-case

Radon–Nikodym derivative / for the specific choice

U xð Þ ¼ xp p� 1ð Þ. The super-script ‘‘(�)’’ counts the itera-

tion starting from 0. We exploit the dual representation

(e.g., Example 9 in Bellini et al. 2021)

Og;U;f ¼ sup
/2D

Rþ1
0

f xð Þð Þp / xð Þf gqg xð Þdx
1þ wDq /gjgð Þ

 !1
p

: ð39Þ

Algorithm 1

1. Set g;U; f and the weighting factor w.

2. Set the initial guess /
0ð Þ

xð Þ ¼ 1 (x[ 0) and k
0ð Þ
[ 0.

3. Set the iteration count m = 0.

4. Compute

/
mþ1ð Þ

xð Þ ¼
Z þ1

0

expq
1

w

f xð Þ
k

mð Þ

� �p� �
g xð Þdx

� ��1

expq
1

w

f xð Þ
k

mð Þ

� �p� �

.

5. Compute

k
mþ1ð Þ ¼

Rþ1
0

f xð Þð Þp /
mþ1ð Þn oq

g xð Þdx

1þ wDq /
mþ1ð Þ

g
���g

� �
8<
:

9=
;

1
p

.

6. If /
mþ1ð Þ � /

mð Þ
���

����Err, then output k
mþ1ð Þ

as the

approximation of Og;U;f and /
mþ1ð Þ

as the approxima-

tion of /, and go to 7. If it is not, set m ! mþ 1 and

go to 4.

7. Terminate the algorithm.

Algorithm 1 is a simple fixed-point iteration. Implemen-

tation of Algorithm 1 requires some numerical quadrature

for the integrals. We use the adaptive quantile discretiza-

tion (Yoshioka and Yoshioka 2023) and Step 6 is evaluated

at all grid points with the degree-of-freedom of

217 ¼ 131; 072. The error threshold Err is 10-9. In Sect. 4,

each computation of an Orlicz risk terminates with less

0\Og;U;f

��
w¼w1

�Og;U;f

��
w¼w2

�
Z þ1

0

f xð Þð Þ
1
pg xð Þdx

� �p

�
Z þ1

0

f xð Þg xð Þdx: ð36Þ
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than 10 iterations of Steps 5 through 7 in Algorithm 1 in

most cases. The computational time of each computation

for an Orlicz risk with a common laptop is less than one

second. These algorithms further benefit from the closed-

form availability of /k;/k
that are with which each integral

can be evaluated efficiently.

4 Applications

4.1 Study site

The study site for the application of the Orlicz risks is the

Tedori River in Ishikawa Prefecture, Hokuriku Region,

Japan (Fig. 1). The explanation of the Tedori River follows

Yoshioka et al. (2020) who studied the regional hydro-

logical characteristics around this river. The upstream-end

of the Tedori River is in the Hakusan Mountains at the

maximum elevation of 2702 (m) and the river pours to the

Sea of Japan. The length of the main branch of the Tedori

River is 72 (km) and its watershed area is 807 (km2). There

exists a fan area with the area of 191 (km2) and the apex

height of 80 (m) in the downstream part of the Tedori

River. This fan area is a major rice-producing area in Japan

whose irrigation water depends on the flowing water of the

Tedori River and the groundwater in the shallow aquifer

extending around the river. Evaluation of the streamflow

environments of the Tedori River as a source of water for

the agriculture and regional water environment is therefore

an important engineering topic. Moreover, the Tedori River

has a series of cascading dams consisting of the Tedori

Dam whose operations have been discussed for the flood

control (Yuhi 2008), suggesting that studying the river is

also important from the viewpoint of disaster management.

In this paper, we also consider the data of the Dainichi

River as a southern branch of the Tedori River also having

a dam called Dainich-gawa Dam for irrigation, hydropower

generation, and flood control. This is because the data at

the main branch of the Tedori River and the Dainichi River

turn out to be qualitatively different from each other in

view of the reversion measures as shown later.

Fig. 1 Map of the study area (up) and photos around Kazarashi (bottom left) and Shimono (bottom right) taken on March 14, 2023 by Hidekazu

Yoshioka
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4.2 Identification of the nominal model

The hourly time series data of the streamflow discharge is

available at several points in the Tedori River system in the

public database provided by Ministry of Land, Infrastruc-

ture, Transport and Tourism (2023). We have chosen the

two observations stations in this paper, which are Kazara-

shi (136�3705500 E, 36�1000400 N) in the main branch of the

Tedori River and Shimono (136�3601000 E, 36�2205000 N) in
the Dainichi River. Both stations are in the mountainous

region of the watershed of the Tedori River (Fig. 1). Both

observation stations are in the major recreational fishing

area in the Hakusan Mountains, hence analyzing their

hydrological characteristics are also of importance from

fisheries standpoints. We use the four-year (1461 (day) or

equivalently 35,064 (hour)) latest available data set from

January 1 2018 01:00:00 JST to December 31 2021

24:00:00 JST (Fig. 2). The total number of the hourly data

available at Kazarashi and Shimono during the target per-

iod are 35,063 and 34,886, respectively, except for the

missing values.

We identify the MMA process, namely the Lévy and

reversion measures at the two observation stations. The

dentification method used here is based on the moment

matching method of Yoshioka (2023) assuming a station-

ary state of the discharge, while the seasonality including

the snow-induced runoffs and typhoon-induced floods exist

in the study area (Noto et al. 2013). We therefore extend

their method to the time series having a seasonality. The

discharge data at time t is denoted as Qt. We assume that

there is a positive and time-periodic deterministic quantity

st having the period T (365.25 (day)), such that there exists

an MMA process Xt satisfying

Qt ¼ StXt or equivalently lnQt ¼ ln St þ lnXt: ð40Þ

The left-hand side of (40) is available as it is the time series

data itself, while the left-hand side is not. This parame-

terization effectively preserves the statistical characteristics

(5)–(8) of the MMA process Xt into the discharge Qt

because St is deterministic and varies slowly compared to

Xt, and the relationship (40) is a simple multiplication.

We firstly identify St (t = 0 is January 1 2018 01:00:00

JST) by applying the classical least-squares method to

minimize the empirical time average

1

N

XN
i¼1

lnQt � ln Stð Þ2; ð41Þ

where N is the total number of data points. We parame-

terize St as follows, which has preliminary been found to

work reasonably well:

ln St ¼ Aþ g1 sin
2pt
T

þ h1

� �
þ g2 sin

3 2pt
T

þ h2

� �
ð42Þ

with parameters A; g1; g2; h1; h2 and non-italic p in (42) is

the circle ratio (3.14159…). After identifying St, we

recover Xt as Xt ¼ Qt=St, and apply the identification

method of Yoshioka et al. (2023) to this Xt; i.e., the

Fig. 2 Hourly streamflow

discharge data at Kazarashi

(red) and Shimono (blue)

Table 1 Parameters of the seasonal component St (h1; h2 are 0; 2p½ Þ
(rad))

Kazarashi Shimono

A (m3/s) 1.313 1.657

g1 (m
3/s) - 0.6341 - 0.4406

g2 (m
3/s) - 1.601 - 0.8762

h1 (rad) 0.9840 0.4636

h2 (rad) 2.920 3.134

Table 2 Parameters of the Lévy and reversion measures of Xt

Kazarashi Shimono

av (1/h) 0.006808 0.009774

av (–) 0.05886 0.2770

bv (–) 0.01928 0.07380

ap (–) 1.716 2.105

bp (1/h) 0.09368 0.04616

R (h) 14.90 19.61
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reversion measure p is identified by a least-square fitting

between empirical and theoretical ACFs, and then the Lévy

measure v by a minimization of the sum of the squares of

the relative errors of the average, variance, skewness, and

kurtosis between empirical and theoretical ones.

Tables 1 and 2 show the fitted parameter values of the

seasonal component St and MMA process Xt at each sta-

tion, respectively (see, also Appendix B in Supplementary

material). Table 3 compares the empirical and theoretical

average, variance, skewness, and kurtosis. According to

Table 3, moments of the MMA process are reproduced

within the relative error at most few % by the fitted model;

in particular, the relative errors of the mean and variance

are less than 1% for both stations. Figure 3 demonstrates

that the reversion measure of the Gamma type (18) is

suitable for the streamflow discharge data. The parameter

values of the MMA process in Table 2 suggest two dif-

ferences between the two stations. Firstly, on the Lévy

measure v, the driving jumps at Kazarashi are closer to

compound-Poisson type having finite activities (av C 0 but

av ’ 0), while that at Shimono have infinite activities (av-
C 0). Secondly, on the reversion measure p, the MMA

process at Kazarashi has a long memory (ap 2 1; 2ð �),
while that at Shimono is not (ap 2 2;þ1ð Þ). The fitted

models thus suggest that the streamflow discharge at

Kazarashi is driven by less frequent floods that persist

longer than that at Shimono. This difference is considered

due to that the Kazarashi and Shimono have different

catchments with each other because the former is at the

main branch of the Tedori River, while the latter at its

tributary. More detailed discussion would require deeper

hydrological analysis of the groundwater and surface water

of these watersheds that is beyond the scope of this paper.

Figure 4 compares the empirical and fitted stationary

probability density functions (PDFs) of the MMA process

at each station to check the performance of the identified

models. The PDFs of the fitted model were computed by

the Monte-Carlo method (Yoshioka et al. 2022). The

empirical and fitted result agree reasonably well at both

Table 3 Empirical and fitted

statistics of the MMA process Xt
Kazarashi Shimono

Empirical Fitted Relative error Empirical Fitted Relative error

Average 4.3333 4.3277 0.0013070 1.6076 1.5937 0.0086696

Variance 105.54 105.61 0.00065220 7.7728 7.8061 0.0042792

Skewness 6.5914 6.5303 0.0092631 6.0522 5.5706 0.079574

Kurtosis 72.407 72.691 0.003920943 53.496 55.173 0.031351

Fig. 3 Comparison between empirical and theoretical ACFs:

a Kazarashi and b Shimono. The empirical and fitted values are

represented by black and blue, respectively

Fig. 4 Comparison between empirical and theoretical PDFs in an

ordinary scale: a Kazarashi and b Shimono. The empirical and fitted

values are represented by black and blue, respectively
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stations. Figure 5 for the PDFs in the logarithmic scale

demonstrates that the fitted models capture the tails of the

empirical results. The scattering of the tails of the PDFs for

large X is due to that the data of flood events rare limited,

implying that this part contributes to the model uncertainty.

Note that Yoshioka and Yoshioka (2023) also pointed out

the long-memory property of the discharge at Kazarashi,

but their method assumed the stationarity (St = 1 in our

context). Our results suggest that the proposed de-season-

alization method (40) preserves these properties of the

original data.

4.3 Orlicz risks

Upper and lower Orlicz risks are computed at the two

observation stations. We especially focus on the two

aspects of the streamflow discharge. The first aspect is the

base flow and the flow attenuation or persistence, which

can be captured by the reversion measure p. The lower

Orlicz risk then serves as a lower-bound of the based flow

and the attenuation speed. The second aspect is the size and

frequency of floods shaped by the Lévy measure v. The

upper Orlicz risk then serves as an upper-bound of the size

or frequency of floods conditioned on jumps larger than the

threshold value ẑ. In what follows, the subscript ‘‘g;U; f ’’ is
omitted from the Orlicz risks Og;U;f and Og;U;f for sake of

simplicity. The Tsallis relative entropy with / ¼ / and

/ ¼ / are denoted as D and D in what follows. We then

discuss the pareto frontier by using the couple D;O
	 


¼

D wð Þ;O wð Þ
	 


or D wð Þ;O wð Þð Þ with the weighting factor

w being a parameter.

Figure 6 shows the pareto frontiers D wð Þ;O wð Þð Þ at

Kazarashi (Fig. 6a) and Shimono (Fig. 6b) with

g;U; fð Þ ¼ p; xp; x�1ð Þ. We examine p = 1 and p = 2 to

analyze impacts of the risk aversion. Figure 7 plots the

corresponding worst-case Radon–Nikodym derivatives /

at Kazarashi. The shape parameter q is set as 1.5. The

worst-case Radon–Nikodym derivatives at Shimono are not

presented here because these are similar to that presented in

Fig. 7. In the present cases, the lower Orlicz risk O cor-

responds to the lower estimate of the time scale R of the

flow attenuation.

Figure 6 implies that, at both stations, the lower Orlicz

risk O for R decreases as the Tsallis relative entropy D,

namely the model uncertainty increases. This result is

intuitive as anticipating a larger uncertainty would give a

more pessimistic result. Comparing the pareto frontiers

between p = 1 and p = 2 shows that the frontier with p = 2

is placed below that with p = 1 and they do not intersect

with each other. This is the consequence of the stronger

risk aversion with p = 2 than p = 1, while it should also be

pointed out that the relative entropy D is smaller for the

more risk-averse case p = 2 at both stations. This finding

implies an interaction between the risk and uncertainty that

the more-risk averse estimation of the Orlicz risk would

associates a smaller maximum uncertainty possibly due to

the stronger precautionary behavior inherent in the Orlicz

Fig. 5 Comparison between empirical and theoretical PDFs in a

logarithmic scale: a Kazarashi and b Shimono. The empirical data

and model result are represented by black and blue, respectively

Fig. 6 Pareto frontiers D wð Þ;O wð Þð Þ at a Kazarashi and b Shimono
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risk. Another interesting finding is that the right-end of the

pareto frontier of p = 1 is placed below that of p = 2; e.g.,

4:94¼ Ojp¼1;w¼10�4\Ojp¼0:5;w¼10�4¼ 6:22 at Kazarashi. In

fact, we empirically found that there exists a lower-bound

of the Tsallis relative entropy lim
w!þ0

D, which is almost

attained at w = 10-4 in our computational experiment. The

obtained results imply that a smaller uncertainty is allowed

to exist for a more risk-averse estimation when the

uncertainty is evaluated through the Tsallis relative

entropy.

A comparison between Fig. 6a, b implies the larger

uncertainty in terms of the Tsallis relative entropy at

Kazarashi than Shimono, the former admits a longer

memory structure and hence a stronger persistence of

fluctuation in the time series data. We focus on the model

at Kazarashi having the long memory, and analyze how the

ACF can be distorted. Figure 7 shows the worst-case

Radon–Nikodym derivatives against different values of p.

The growth speed of / is at most polynomial and saturates

at high r as theoretically inferred from the representation

(32). Figure 8 shows the corresponding ACF distorted by

the worst-case Radon–Nikodym derivative, which is

defined as

q sð Þ ¼
Z þ1

0

1

r
/ rð Þ
n oq

p drð Þ
� ��1Z þ1

0

1

r
e�rs / rð Þ

n oq

p drð Þ

ð43Þ

because the reversion measure p is distorted by /. Figure 8

suggests that the lower estimation of the time scale R

results in the faster decay of the ACF, meaning that the

flow attenuation is estimated to be faster. This is due to the

more variable / for the case p = 1 than p[ 1 as visually

Fig. 7 Worst-case Radon–Nikodym derivatives at Kazarashi: a p = 1

and b p = 2. The values of the weight are w ¼
102�4i=10 i ¼ 0; 1; 2; . . .; 10ð Þ (see the arrow in the figure)

Fig. 8 The ACFs distorted by the worst-case Radon–Nikodym

derivative at Kazarashi: a p = 1 and b p = 2. The values of the

weight are w ¼ þ1 (no uncertainty) and w ¼
102�4i=10 i ¼ 0; 1; 2; . . .; 10ð Þ (see the arrow in the figure)

Fig. 9 Pareto frontiers D wð Þ;O wð Þ
	 


at a Kazarashi and b Shimono.

Here, the legends A through D in each figure panel represent the

couple p; ẑð Þ as follows: A (1, 10), B (1.5, 10), C (1, 20), and D (1.5,

20)
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implied in Fig. 7. Consequently, for the same value of the

weight w, the impacts of the model uncertainty on the ACF

are larger for the smaller p.

Figure 9 shows the pareto frontiers D wð Þ;O wð Þ
	 


at

Kazarashi (Fig. 9a) and Shimono (Fig. 9b) with

g;U; fð Þ ¼
I x[ ẑð Þv dxð ÞRþ1
ẑ v dxð Þ

; xp; x

 !

. We examine p = 1 and p = 1.5 to analyze the impacts of

the risk aversion. Figure 10 plots the corresponding worst-

case Radon–Nikodym derivatives / at Kazarashi. The

shape parameter q is set as 0.8. In the present case, the

upper Orlicz risk O corresponds to the upper estimate of

the average of jump size conditioned on jumps larger than

ẑ. Considering the parameter values A; g1; g2 in Table 1, the
magnitude of St is around O 100ð Þ to O 101ð Þ (m3/s). The

threshold values ẑ ¼ O 101ð Þ are therefore analyzed in this

paper as it corresponds to floods with the discharge O 101ð Þ
to O 102ð Þ (m3/s) moderately observed in the real data while

significantly larger than the base flow (1–2 (m3/s)) at both

stations.

Figure 9 suggests that the higher-risk aversion with

higher p results in a larger upper Orlicz risk O given the

uncertainty D. This observation applies to the different

values of the threshold ẑ at both stations. The conditional

Jump sizes are larger at Kazarashi than at Shimono for both

threshold values ẑ ¼ 10 and ẑ ¼ 20, while it should be

noted that the jumps are now non-dimensional because the

MMA process is a non-dimensionalized as well as de-

seasonalized quantity as shown in (40). Figure 10 shows

the worst-case Radon–Nikodym derivative for ẑ ¼ 20

against different values of p, demonstrating that they

increase sharply with respect to z for the larger p being

consistent with the formula (23).

We now focus on the model at Shimono and analyze

how the frequency of the event z[ ẑ is distorted due to the

Radon–Nikodym derivative. Here, the frequency of the

event z[ ẑ subject to the distortion, simply denoted as k, is

k ¼
Z þ1

ẑ

/ zð Þ
� q

v dzð Þ: ð44Þ

This k under no uncertainty and no risk aversion is 13.7 (1/

year) for ẑ ¼ 10 and 3.52 (1/year) for ẑ ¼ 20. Figure 11

shows the frequency k computed according to (44),

showing that k decreases as the weight w decreases or

equivalently as the uncertainty D increases. This finding

combined with Fig. 9 shows that under the risk-aversion

and/or model uncertainty, the flood frequency decreases

while the flood size increases. The degree of the decrease

of the flood frequency is bounded from below even when

the weight w becomes small due to the boundedness of the

uncertainty D. Both stations have similar shapes of the

pareto frontier, while that of Kazarashi results in the larger

Orlicz risk reflecting the more frequent as well as larger

jumps as shown in Fig. 2.

As demonstrated in the application study of this paper,

the proposed Orlicz risks themselves and the associated

statistical quantities such as the worst-case Radon–Niko-

dym derivative and the Tsallis relative entropy can be

effectively utilized for the evaluation of the streamflow

discharge in a mathematically rigorous as well as compu-

tational feasible way.

As an advanced topic, we finally apply the Orlicz risks

with a non-polynomial U xð Þ ¼ exp uxð Þ�1

exp u�1
with the parameter

of risk aversion u[ 0 to demonstrate that our framework is

Fig. 10 Worst-case Radon–Nikodym derivatives at Shimono: a p = 1

and b p = 1.5. The values of the weight are w ¼
102�4i=10 i ¼ 0; 1; 2; . . .; 10ð Þ from the top to the bottom

Fig. 11 The frequency k subject to the distortion at Shimono. Here,

the legends A through D represent the couple p; ẑð Þ as follows: A (1,

10), B (1.5, 10), C (1, 20), and D (1.5, 20). ‘‘NomD’’ in the figure is

the normalized D valued in [0, 1] given by NomD ¼ D=D
��
w¼10�4
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applicable to U other than xp. We compute the upper and

lower Orlicz risks for the triplet g;U; fð Þ employed in the

previous sub-section to compute the distorted jump size at

Shimono. We use ẑ ¼ 10 and u = 0.1 or u = 1. The

exponential Young function grows more rapidly than the

polynomial one, and hence incurs a stronger risk aversion.

Indeed, in this case, the Orlicz space and Orlicz heart are

not identical with each other due toZ þ1

0

U
f xð Þ
k

� �
g xð Þdx ¼

Z þ1

0

exp ux
k

	 

� 1

exp u� 1
gv xð Þdx

¼ þ1
if

u

k
[ bv:

ð45Þ

This is contrasting to the case U xð Þ ¼ xp studied above

where the left-most side of (45) is bounded for all k[ 0.

Algorithms 1 and 2 do not apply in the present case

because the analytical formula like (39) is not available.

We therefore employ Algorithms 3 and 4 presented in

Appendix C Supplementary material, which do not rely on

(39) but employ an additional loop to iteratively update the

optimal k; k. The computational costs thereby increase in

this case, while its efficiency improvement is beyond the

scope of this paper. Figure 12 demonstrates that both the

upper and lower Orlicz risks are computed as in the pre-

vious cases. For the lower Orlicz risks, the results with

u = 0.1 and u = 1 overlap although the latter results in the

smaller estimate along with the larger uncertainty. By

contrast, for the lower Orlicz risks, the two cases u = 0.1

and u = 1 are clearly separated. In particular, the right-end

of the curve ‘‘D’’ in Fig. 12 reaches the higher risk than the

curves ‘‘A’’ and ‘‘B’’ in Fig. 9b for the polynomial U,
suggesting the larger risk aversion of the present expo-

nential one. Other choices of U would work as well, while

choosing a very rapidly increasing U fails the convergence

of Algorithm 3, also highlighting its stability restriction.

5 Conclusion

We proposed Orlicz risks under model uncertainty with a

focus on their applications to stochastic process models of

the streamflow discharge. The proper conditions to well-

define the upper and lower Orlicz risks were obtained along

with their ordering properties. The application of the Orlicz

risks to the streamflow discharge data at observation sta-

tions in a river system in Japan suggested that they

potentially serve as effective risk measures to statistically

evaluate the MMA process. Due to the generality of the

presented framework, it can also be applied to the other

stochastic phenomena such as the rainfall as a point process

(Hottovy and Stechmann 2023) with a proper modification

of the system dynamics.

Our application concerned the risk evaluation of static

random variables, while dynamic ones are also of great

importance in real problems. The dynamic Orlicz risks

(Bellini et al. 2021) would be a good starting point to deal

with such an extended problem. Comparison of the robus-

tified Orlicz risks against other risk measures, such as the

conditional Value-at-Risk and spectral risk measures as its

generalization (Wei et al. 2022; Wang and Chapman 2022)

in the dynamic case will be an interesting topic. Investi-

gations of the Orlicz risks with more generic Young func-

tions will also be interesting, where the development of an

efficient computational method will become a key issue as

the analytical formulae used in our algorithms may not

apply. In particular, the asymptotic behavior of Young

functions should be carefully analyzed depending on the

problems of interest. We are currently investigating a

dynamic Orlicz risk suited to a sustainability assessment of

an environmental restoration problem of river environ-

ments, which will involve the statistical evaluation of both

streamflow discharge and associated physical, chemical,

and biological transport phenomena.
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supplementary material available at https://doi.org/10.1007/s00477-

023-02561-7.
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and D D wð Þ;O wð Þ
	 


with u = 1

248 Stochastic Environmental Research and Risk Assessment (2024) 38:233–250

123

https://doi.org/10.1007/s00477-023-02561-7
https://doi.org/10.1007/s00477-023-02561-7


Declarations

Conflict of interest The authors have no known Conflict of Interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Ahmadi-Javid A (2012) Entropic value-at-risk: a new coherent risk

measure. J Optim Theor Appl 155:1105–1123. https://doi.org/10.

1007/s10957-011-9968-2

Ahmadi-Javid A, Pichler A (2017) An analytical study of norms and

Banach spaces induced by the entropic value-at-risk. Math

Financ Econ 11(4):527–550. https://doi.org/10.1007/s11579-

017-0197-9

Archdeacon TP, Gonzales EJ, Thomas LI (2022) Movement of Red

Shiner during a regulated, intentional surface-flow recession. Ecol

Freshw Fish 31(2):358–368. https://doi.org/10.1111/eff.12635

Asselman N, de Jong JS, Kroekenstoel D, Folkertsma S (2022) The

importance of peak attenuation for flood risk management,

exemplified on the Meuse River, the Netherlands. Water Secur

15:100–114. https://doi.org/10.1016/j.wasec.2022.100114
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Föllmer H, Schied A (2016) Stochastic finance, 4th edn. De Gruyter,

Berlin, pp 506–526

Frittelli M, Gianin ER (2004) Dynamic convex risk measures. In:
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