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Abstract
We use five established, but conceptually different artificial intelligence algorithms for analysing clogging and quantifying

colloid transport at pore scale: artificial neural networks, decision tree, random forest, linear regression, and support vector

regression. We test how these algorithm can predict clogging by interpolating physics based simulation data. Our training

and test data set is based on results from Lattice Boltzmann simulations reproducing the physics of colloid transport

through a typical pore throat present in glass beads or medium sized sand. We perform hyperparameter optimization

through cross validation for all algorithms. The tree based methods have the highest Nash–Sutcliffe efficiencies among all

tested algorithms with values mostly above 0.9 for the independent test data. The event of clogging can be predicted even

with 100% accuracy. Our results indicate a non-linear, rather categorial nature of the (simulation) data. This is in contrast

to the typical use of neural network algorithms for simulation data while tree based methods are often applied to

observational data. We partly link this to the small size of our dataset. Our application of artificial intelligence in porous

media research shows that time-consuming Lattice Boltzmann simulations can be easily supplemented and extended at

small computational costs while predictability of clogging and quantitative effects of process specific parameters on

colloidal transport are given with high reliability.
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1 Introduction

Clogging of pumping wells is a phenomenon typically

observed in civil engineering, such as for drinking water

supply, groundwater remediation, or artificial recharge

systems. Van Beek et al. (2009) estimated the cost to tackle

the problem of clogging to around 5000 euro per year per

well (in the Netherlands). Thus, improving the under-

standing of clogging mechanisms and predicting clogging

can help reducing the probability of occurrence and even-

tually save costs by an increase of efficiency. From the

pore scale viewpoint, clogging is typically caused by an

accumulation of colloids at the interface between the

aquifer material and gravel pack of the pumping well.

Samari-Kermani et al. (2020, 2021) performed physics-

based pore scale simulations of colloid transport studying

the impact of hydro-dynamic forces, gravity, electrostatic

forces and van der Waals forces making use of the Lattice

Boltzmann Method (LBM).

Artificial intelligence (AI) algorithms offer an alterna-

tive to quickly study the impact of parameters by relating

input to output of existing (simulation) data. AI can

effectively substitute for physics-based models and greatly

reduce the computational time necessary for data interpo-

lation and outcome prediction.

The application of AI and machine learning became

more popular in porous media research (Tahmasebi et al.
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2020) and in hydrology (Lange and Sippel 2020) in recent

years. A typical application is the prediction of porosity

and/or permeability, e.g. from image analysis (Wu et al.

2018; Rabbani and Babaei 2019; Tembely et al. 2020),

observation of soil properties (Jorda et al. 2015; Gupta

et al. 2021; Araya and Ghezzehei 2019) or direct numerical

simulation and experiments (Jiang et al. 2021; Erofeev

et al. 2019; Tian et al. 2021). Babakhani et al. (2017) and

Goldberg et al. (2015) are examples for applications of AI

on prediction and sensitivity of colloid and nanopartilce

transport in porous media. The choice of AI algorithm

differs between applications. While studies with soil

property data showed good results with tree based algo-

rithm (linked to the nature of the categorical data), most

studies using simulation data make use of Neural Network

algorithms. The application of multiple AI algorithms is

rarely done which leaves the studies with the assumption

that the selected algorithm was well suited for the data.

The results of Samari-Kermani et al. (2020, 2021) pro-

vide an opportunity to study the application of AI to

clogging at the pore scale. We can analyse parameter

impact quickly and interpolate results to predict clogging

for parameter combinations not tested in physical simula-

tion due to the computational burden. We test multiple

established, but conceptually different AI algorithms to

identify which method is best suited for this particular kind

of data. We develop a workflow for identifying the rela-

tionship between four process parameters and four quan-

titative output values as well as the general event of pore

clogging.

2 Materials and methods

2.1 Data

We use numerically generated clogging data from Samari-

Kermani et al. (2020, 2021). They performed 162 colloid

transport simulations in a constricted tube with the Lattice

Boltzmann method (LBM) on a high resolution numerical

grid. The domain has a sinusoidal pore shape of 200 lm
length and 50 lm height which reduces to 20 lm at the

throat. It represents a typical pore throat present in glass

beads or medium-sand packs.

The LBM is well suited to simulate the physics of fluid

flow as well as collision and streaming of particles in an

irregular geometry. This advantage, however, comes at a

substantial cost of high computational effort and long

simulation run times. Individual runs took between one and

20 days (on a regular PC, single core), depending on par-

ticle size, velocity and clogging behaviour.

Clogging behaviour is modelled at the pore scale by

allowing collision and streaming of particles. All relevant

physical processes are represented, such as hydro-dynamic

forces, gravity, buoyancy, van der Waals forces, and

electrostatic forces. This complete formulation also

accounts for the effects of inter-particle forces and pore

structure changes due to colloid retention. Input parameters

are: (i) particle diameter (D), specifying the size of the

transported colloids; (ii) mean flow velocity (U) which is

the average velocity at steady state while no particles are

inside the pore; (iii) ionic strength (IS) being the concen-

tration of ions in the solution; and (iv) zeta potential (Z) of

the particles and pore surface which specifies the electro-

static potential of the electrical double layer enclosed with

particles in solution.

Samari-Kermani et al. (2020, 2021) tested three values

for each parameter (Table 1) in all combinations to obtain

systematic results. The values for the zeta potential refer to

both, the particles and the pore surface having the same

absolute value. Particles are always negatively charged

while the surface charge determined two conditions:

(i) favorable, where the charge of the surface is positive,

thus opposite to that of particles (81 samples); and (ii)

unfavorable, where charges of surface and particles are

alike (81 samples). In case of favorable conditions, parti-

cles were easily deposited due to attractive van der Waals

forces and electric double layer interactions. In contrast,

under unfavorable conditions particles were able to roll

over the grain surface reducing the chance of clogging.

Simulations were first analysed on the event of clogging,

i.e. a total blockage of the flow through the pore throat by

agglomerates of particles. Results are quantified through

four output values: (i) The average coordination number

(CN) is the mean of all particles coordination numbers.

Each particle’s coordination number identifies the number

of other particles it is connected to (e.g. zero for single

particles or three if a particle is in contact to three others

within an aggregate). (ii) The surface coverage (SC) is the

ratio of grain surface area occupied by attached particles to

the total grain surface area. (iii) The hydraulic conductivity

(HC) relates mean velocity to the pressure gradient in the

pore before injecting any colloids. Values are non-dimen-

sionalised by the highest HC related to each of the three

fluid velocities. (iv) The void fraction (VF) is the ratio of

Table 1 Input parameter values used by Samari-Kermani et al. (2020)

Value 1 Value 2 Value 3

particle size D (um) 3 5 10

mean fluid velocity U (m/day) 1 5 10

ionic strength IS (M) 0.001 0.05 0.3

zeta potential Z (mv) �17:5 �45:56 �60
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pore volume not occupied by the particles, to total pore

volume.

The quantitative output values are linked to the event of

clogging. For instance, a very low conductivity and high

coordination number are indicators for clogging as both

suggest large agglomerates formed by the particles which

block the pore throat. Links between input and output

parameters in the context of the physical processes are

further discussed in Sect. 4.

We apply AI to two data sets based on the results of the

162 simulations of Samari-Kermani et al. (2020, 2021):

Data Set 1 relates all variations of the four input parameters

(Table 1) to each of the four output values, individually.

Data Set 2 has the same four input parameters but only one

output value for each simulation which reflects the event of

clogging. It is specified by a binary output value of 1 for

clogging or �1 for non-clogging. Both data sets are sub-

divided into favorable and unfavorable conditions, result-

ing in two times 81 samples for both data sets. We consider

the numerical LBM results as ground truth to be tested

against AI model output.

2.2 Metrics and data normalization

Where required by the AI, we normalized input data of the

coordination number (all other input parameters were

already between 0 and 1). Values are processed via

xN ¼ xi�xmin
xmax�xmin

2 ½0; 1�, where xmax and xmin refer to the

maximal and minimal occurring values.

Our standard performance measure is the Nash–Sutcliffe

model efficiency (NSE):

NSEðz~; y~Þ ¼ 1�
Pn

i¼1 zi � yið Þ2
Pn

i¼1 zi � �zð Þ2
; ð1Þ

where �z is the average of z~, which we consider as sample

value vector (ground truth) while y~ is the model output

vector.

The NSE relates the variability explained by the model y~

to the total variability in the sample values z~. A value close

to 1 indicates a useful model while a value close to or

below zero indicates that the model is not well suited. Note

that the NSE reflects the coefficient of determination (R2)

for statistical models, i.e. for the model performance during

the training phase.

2.3 AI Algorithms

We applied the five AI algorithms: (i) artificial neural

networks (ANN); (ii) decision tree (DT); (iii) random forest

(RF); (iv) linear regression (LR); and (v) support vector

regression (SVR). Each algorithm has a set of internal

parameters and hyperparameters, depending on its specific

structure. While internal parameters are trained during the

learning process, hyperparameters are specified by the user

before training and affect the performance of AI models

(Wu et al. 2019). We shortly outline the applied algoritms.

For detailed information, the reader is referred to

e.g. Hastie et al. (2009), Tahmasebi et al. (2020) or Rus-

sell and Norvig (2020). We make use of the algorithms

implementation in the Python package scikit-learn

(Pedregosa et al. 2011) following their specification and

standard choices of hyperparameters.

2.3.1 Artificial neural network (ANN)

Artificial Neural Networks is a modeling technique

inspired by the working mechanism of the brain. ANN is

structured in layers each having a certain number of neu-

rons. Neurons receive signals from neurons in other layers,

process them, and forward them to neurons in the next

layer. ANN has one input layer, an output layer and a

certain number of hidden layers in between. The number of

neurons in the input and output layer are determined by the

number of input and output values, respectively. The

number of hidden layers and the number of neurons in the

hidden layers are hyperparameters. Given the limited

number of available data, we apply one hidden layer and

only tune the number of neurons NANN during hyperpa-

rameter testing.

Information propagates from the input layer through the

hidden layer(s) to the output layer. Neurons process

information through an activation function, which is also

subject of choice by the user. We used the common sig-

moid function. Other settings can be found in the accom-

panying python-scripts (Zech and Lei 2023).

2.3.2 Decision tree (DT)

Decision tree makes use of a tree-like structure of decisions

with nodes, branches and leaves. The decisions leading to

various tree branches refer to input parameters, while

leaves represent target output values. The data set is split

up into subsets relating the different input parameters to

conclusions about output values. Decisions are controlled

by conditional statements and regression to find the optimal

splitting point.

Key parameters of the algorithm (we control here) are

the maximum tree depth DDT which limits the number of

branching and the minimum sample split number mss

which limits further branching of nodes, having mss or

fewer samples. The choice of the two hyperparameters is

particularly important to avoid overfitting by having deep

trees that are likely to master too many details of the

training dataset.
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2.3.3 Random forest (RF)

Random Forest is an ensemble algorithm that combines a

certain number NRF of randomized decision trees (Breiman

2001). The training data set for each decision tree is

selected through the bagging procedure by resampling the

original training data set with random replacements. Thus,

some input samples may be used many times, while others

are ignored. The final results follow from averaging the

prediction of each tree. We test model performance for

various values of the hyperparameter tree estimator NRF

where the default value is 100 (Pedregosa et al. 2011).

2.3.4 Linear regression (LR)

Linear regression is a classical method to construct a pre-

dictive model based on fitting of input to known output

values. The linear model function reads yLR ¼ x~ � x~þ b,

where x~ is the vector of input values, x~ is the parameter

vector and b is the disturbance term. We apply LR with

Ridge regression for fitting: minx~;b MSE y~LR; y~T

� �
þ

�

ajjx~jj22Þ where jjx~jj22 is the L2 norm and a is a hyperpa-

rameter in the regularization term to avoid over-fitting.

2.3.5 Support vector regression (SVR)

Support vector regression is trained by finding a hyperplane

that separates the training data and assigns new data points

to a class based on their position within the grid of a linear

problem (Rosenbaum et al. 2013). To optimize prediction

accuracy, the algorithm fits the error within a certain

margin, either by a hard or soft margin that allows some

miss-classification. We tune the optimization parameter C,

also called penalty. It compromises between correct clas-

sification of a sample against the maximization of the

decision function’s margin. For larger values of C, smaller

margins will be preferred if this leads to better predictions.

A lower C promotes a larger margin at the cost of the

training efficiency.

SVR is adapted to non-linear problems by introducing

kernel functions which map data into higher dimensional

space. We tested SVR with linear, polynomial and radial

basis function kernel. We focus here on SVR with radial

basis (or Gaussian) function. This gives another hyperpa-

rameter c[ 0 which influences the shape of the Gaussian

kernel function.

2.4 Algorithm application

All algorithm training and testing is implemented in Python

using the scikit-learn package (Pedregosa et al.

2011). Scripts are public available on Github (Zech and Lei

2023).

The workflow is: (i) split the entire data set into the

training and test data set; (ii) identify optimal hyperpa-

rameter(s) for each AI algorithm for the training data set;

(iii) evaluate model performance on the test data set.

The data is split using a 90–10 ratio. Thus, the training

data set consists of 73 samples while the test data sets

consist of 8 samples for each of the two conditions (fa-

vorable and unfavorable). The initial split of the data set

was done randomly, but then kept the same for all algo-

rithm application.

Table 2 shows the hyperparameters we tune and the

range of tested values. We identify optimal hyperparame-

ters through a combination of cross validation and perfor-

mance on the entire training data set. Details on the

procedure and selection of hyperparameters is provided in

the SI.

After hyperparameter identification, all algorithms are

trained (again) on the entire training data set with the

optimal hyperparameters to specify the algorithms’ internal

parameters. Then, the trained models are applied to the test

data set to which they have not been exposed before.

Model performances are ranked based on the NSE

(Sect. 2.2). The run time of all algorithms for training and

testing is in the order of minutes. Hyperparameter testing

took at times a few hours due to the iterations.

For the regression task on Dataset 1, we run the training

and testing of all AI models separately for each of the four

output values coordination number, hydraulic conductivity,

surface coverage and void fraction for both conditions—

favorable and unfavorable. Thus, we have eight cases of

Table 2 Hyperparameters and

values tested for artificial neural

network (ANN), decision tree

(DT), random forest (RF), linear

regression (LR), and support

vector regression (SVR)

Algorithms Hyperparameter Values

ANN NANN—Neurons in hidden layer 2; . . .; 200

DT DDT—maximal depth 2; . . .; 19

mss—min. sample split 2; . . .; 9

RF NRF—number of tree estimator 100, 200, 300

LR a—regularization parameter 10�4; 10�3; . . .; 10; 100

SVR C—penalty 10�3; 10�2; . . .; 10; 100

c – shape 10�3; 10�2; . . .; 10; 100
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output values which all have an own set of optimal

hyperparameters for each algorithm. Motivated by the

algorithm performances for Dataset 1, we only apply ANN,

DT and RF to the classification task for Dataset 2.

3 Results

3.1 Training and hyperparameter identification

Figure 1 shows the performance of ANN as function of the

number of neurons and cross validation iterations for each

of the four output values. It shows a clear trend: with

increasing number of neurons, the NSE converges except

for the surface coverage under favorable conditions. The

optimal hyperparameter NANN is consequently chosen in

the range of 150 or higher, except for SC where the per-

formance peak is between 50 and 80 neurons. This peak in

NANN can be the result of overfitting. Selected optimal

values are listed in Table S1 (SI). Figure 1 further shows

that results do not significantly differ with the number of

iterations tested.

The model performance during cross validation is partly

poor, particularly for favorable conditions, visible in low

and/or negative NSE values in Fig. 1. We link this to the

small training data set which is further reduced during

cross validation. Nonetheless, the performances for the

entire training data set with the optimal hyperparameter are

good. NSE values are between 0.65 and 0.98 with the

lowest value for the void fraction under favorable condi-

tions which is in line with the trend seen in Fig. 1.

Fig. 1 Performance of hyperparameter testing for ANN as function of

number of neurons and test iterations (colored lines) based on NSE

evaluated for the coordination number, surface coverage, conductivity

and void fraction (columns) for favorable (upper row) and unfavor-

able (lower row) conditions

Fig. 2 Performance of hyperparameter testing for DT as function of

minimum sample split mss and test iterations (colored lines),

including full training data set evaluated for the coordination number,

surface coverage, conductivity and void fraction (columns) for

favorable (upper row) and unfavorable (lower row) conditions. The

tree depth D is kept at the optimal value
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Cross validation for the two hyperparameters of DT,

maximum depth D and minimum sample split mss, pro-

vided ranges of good results. Values were selected based

on the performance on the entire training data set. Details

are provided in Figure S2 and Table S2 (SI).

Figure 2 displays the performance for various values of

mss (with fixed optimal DDT) for the entire training data

set and for cross-validation. The high NSEs for most

parameter combinations and particularly for the full train-

ing data set (often close to one) indicate that the specific

choice of hyperparameters is of minor relevance for DT.

For RF, the default number of tree estimator NRF ¼ 100

is the best choice. The cross validation with NRF ¼
100; 200 and 300 did not show significant differences for

all four output values (Figure S3, SI). The same holds when

evaluating the hyperparameter performance for the entire

training data set. In general, the model performance was

very good with NSE values between 0.936 and 0.996 for all

eight cases.

Hyperparameter optimization on a for the LR Ridge

algorithm provided ranges of similarly performing values.

From that range, we decided for the a value which showed

the highest score for the entire training data set. We see that

the performance of LR is already worse (compared to the

other algorithms) for the training data set with NSE values

between 0.01 and 0.62 (Table S4, SI).

SVR showed best performances for the combination of

c ¼ 1 and C ¼ 10 or C ¼ 100 with a few minor deviations

(Figure S5 and Table S5, SI). NSE values for the entire

training data set range between 0.1 and 0.94.

3.2 Algorithms’ performance analysis

Figure 3 summarizes the performance of all algorithms on

Dataset 1 in terms of NSE for the test data using the

optimal hyperparameters. Most NSE values are above zero,

many even close to one, indicating a good predictability of

output values by the AI algorithms.

The algorithms performing best are DT and RF. They

outperform all other algorithms, except for surface cover-

age under unfavorable conditions where ANN is the best

model. While RF has the highest score in most cases, DT

has the highest NSE in average. NSE values are for most

cases very close to one. We relate the mediocre results of

ANN to the small training data set (less than 100 samples),

as ANN is typically best suited for very large data sets

(Alwosheel et al. 2018). LR and SVR are the algorithms

with poor performances.

Figure 3 furthermore shows that almost all output values

can be predicted with decision tree and partly random

forest at a very high precision level, i.e. NSE value very

close to one. The only exceptions are the coordination

number under favorable conditions (NSEDT ¼ 0:8) and

the surface coverage under unfavorable conditions

(NSEDT ¼ 0:69), indicating a complexity of input

parameter to output value relation which cannot be cap-

tured easily by neither of the algorithms.

Fig. 3 Model performances (NSE) on test data set using optimal

hyperparameters for all four output parameters (columns) under

favorable (upper row) and unfavorable (lower row) conditions.

Algorithms are color coded: red—artificial neural network (ANN),

blue—decision tree (DT), green random forest (RF), orange—linear

regression (LR), brown - support vector regression (SVR). Values can

be found in the Supporting Information
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3.3 Predicting clogging

We trained ANN, DT and RF (based on their good per-

formance for Dataset 1) for predicting the event of clog-

ging (Dataset 2). The identified hyperparameter during

training are ’small’ being in line with the relative simple

classification task: ANN uses 5 and 4 neurons in a single

hidden layer under favorable and unfavorable condition,

respectively; DT was trained to an optimal minimum

sample split of mms ¼ 2 (reasonable for a two value

classification) and an optimal maximum depth DDT of 5

and 3 for favorable and unfavorable conditions, respec-

tively. For RF we made use of the standard input param-

eters. Hyperparameter performance is summarized in

Fig. S7 (SI). All three algorithms were capable of perfectly

predicting the clogging for the test data set for both con-

ditions; i.e. with a NSE of one.

4 Discussion

From the performance of the different algorithms, we can

infer information on the process-based nature of the data.

The poor performance of LR and SVR show that the

physical relationship between the input parameter and

output variables for the clogging phenomena is neither

linear nor can it be described with the Gaussian kernel.

Methods such as ANN, DT, RF that accommodate non-

linear structures are more suitable for the described

problem.

The performance of AI algorithms also depends on the

relation of (training) data to the domain of interpolation.

For predicting clogging, the latter is small (actually

bimodal), explaining the good performance of all algo-

rithms despite the small amount of input training data of 73

samples. The parameter space for the output parameters

CN, SC, HC and VF is larger given the continuous range of

potential values. Again, the poor performance of LR for

most cases (Fig. 3) shows that the relation between inputs

and outputs is not linear.

The non-linear relation between input and output can be

linked to the physics of clogging. An increase of the ionic

strength leads to the formation of bigger agglomerates,

represented by a higher coordination number. At the same

time, an increase of the flow velocity counteracts on that as

higher hydrodynamic forces lead to detachment and split

off of agglomerates. This is also supported by correlation

coefficients between input and output parameters provided

in Figure S8 (SI).

All algorithms had most problems predicting surface

coverage under unfavorable conditions (Fig. 3). Here, the

presence of a secondary energy minimum, led to rolling of

colloids on the grain surface rather than attachment. Con-

sequently, the surface coverage is high while not resulting

in a clogged pore which counteracts the usual pattern of

input to output relation.

Comparing our work to other studies of AI application

to pore-scale related process data shows surprising results

with regard to the type of suited algorithms. While neural

network algorithms are typically used in studies based on

simulation results, such as Babakhani et al. (2017), Wu

et al. (2018), Rabbani and Babaei (2019), Tembely et al.

(2020) and Jiang et al. (2021), we see that ANN does not

perform best. Instead, the tree like algorithm are better

suited for our data, which we partly relate to the small

amount of training data which can be better handled by DT

and RF. At the same time, the very good performance of

DT and RF indicates that the relation between input and

output data is of categorial nature. Araya and Ghezzehei

(2019) found a similar trend of tree-based AI algorithms

performing best for predicting saturated hydraulic

conductivity.

5 Summary and conclusion

We applied five machine learning algorithms (Artifical

Neural Networks, Decision Tree, Random Forest, Linear

Regression and Support Vector Regression) for regression

and classification tasks associated with the clogging phe-

nomenon in porous media. As ground truth, we used results

from Lattice Boltzmann simulations mimicking the physics

of colloid transport at pore scale (Samari-Kermani et al.

2020, 2021). The process input parameters particle size,

mean flow velocity, ionic strength and zeta potential were

related to quantitative output values of coordination num-

ber, surface coverage, hydraulic conductivity, and void

fraction as well as the general event of pore clogging.

In contrast to highly time-consuming Lattice Boltzmann

simulations (days to weeks), the application of AI (order of

minutes) allows us to quickly predict clogging through data

interpolation. Furthermore, the quantitative effect of pro-

cess specific parameters on colloidal transport can be

extended from a few values to a continuous parameter

range at small computational costs. However, AI is not

suited for extrapolation, i.e. predicting clogging outside of

the parameter range tested with LBM simulations.

The small training and test data set also causes some

limitations. The capability of algorithms to learn and pre-

dict is restricted which can be resolved by a broader range

of tested input parameters (in the simulations). However, as

shown, some AI algorithms are able to handle even this

small amount of training data for providing reliable inter-

polation results with little effort on hyperparameter tuning.

From our results we conclude:
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• Clogging and colloid transport quantifiers can be well

interpolated with artificial intelligence algorithms when

trained with a relatively small data set from physical

simulations.

• Decision tree and random forest are best suited as they

can be trained already on small data sets. Furthermore,

their algorithm structure fits to the physical non-linear

relation between input values and simulation results.

• Combining AI with a few (time-consuming) physics-

based simulations (e.g. from Lattice Boltzmann) is a

quick and computationally cost-effective way to extend

data sets on predicting the quantitative effect of

parameters.

As application of AI in porous media research, our work is

an example for developing (simple) model emulators based

on process-based models. On the one hand, our results

supplements and extends the work of Samari-Kermani

et al. (2020, 2021) providing additional data on pore scale

clogging. On the other hand, the procedure can be applied

to other data sets (subject to similar physics) giving indi-

cation on the choice of algorithms and hyperparameter

tuning.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00477-

023-02551-9.
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