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Abstract
Several classes of space-time correlation models have been proposed by various authors in the last years. However, most of

these families utilize non negative covariance functions to be adapted to different case studies: indeed, the traditional

classes of covariances, such as the Whittle–Matern class and the several families constructed by applying the classical

properties are not so flexible to describe covariance functions characterized by negative values. A recent analysis,

regarding the difference between two isotropic covariance functions, has underlined that these new families of models are

more flexible than the traditional ones because the same models are able to select covariance functions which are always

positive in their domain, as well as covariance functions which could be negative in a subset of their field of definition.

Moreover, within the same class of models, it is possible to select covariance models which present different behaviours in

proximity of the origin. In this paper several families of isotropic space-time covariance functions, among the ones

proposed in the literature, have been reviewed in order to enrich the same families including models characterized by

negative values in a subset of their domain. Furthermore, the definition of separability has been revised in order to enlarge

the classical definition. Apart from the theoretical importance related to the new aspects, these new classes of covariance

models are characterized by an extremely simple formalism and can be easily adapted to several case studies.

Keywords Separable covariance functions � Non separable covariance functions � Negative correlation

1 Introduction

In the last 30 years a wide list of families of space-time

covariance functions have been proposed by various

authors: a detailed and comprehensive review has been

provided in Porcu et al. (2021). However, selecting an

appropriate class of models for a variable under study is

still difficult and it represents a priority problem with

respect to the choice of a particular model of a specified

class. Several important characteristics have to be consid-

ered in order to select an appropriate class of space-time

covariances, such as variability in space and in time,

behavior at the origin, non separability, effect of interaction

parameters, asymptotic behavior and anisotropy aspects.

However, most of the families of space-time covariance

functions proposed in the literature are positive: this

important aspect can also be explicitely detected in all the

examples proposed in many branches of applied sciences,

such as in Atmospheric Sciences (Brown et al. 2001), in

Environmental Sciences (De Cesare et al. 2001b), in

Meteorology (Bourotte et al. 2016; Cressie and Huang

1999; Gneiting 2002), in Machine learning (Garg et al.

2018), in Forestry (Jost et al. 2005), in Demography

(De Iaco et al. 2015) and in Finance (Porcu et al. 2012).

This same feature characterizes the Whittle–Matern class

(Matérn 1980; Hristopulos 2020): as a consequence a

negative correlation cannot be modelled from the above set

of covariances. Indeed, many applications concerning

phenomena related to turbolence in space-time, biology

and hydrology, require covariance functions with negative

values, as described by some authors (Levinson et al. 1984;

Yakhot et al. 1989; Shkarofsky 1968; Pomeroy et al. 2003;

Xu et al. 2003a, b).

For what concerns correlation models characterized by

negative values, a special family of infinitely differentiable

Bessel–Lommel covariance functions that always exhibit a

negative hole effect and are valid in Rn; where n[ 2; was
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derived by Hristopulos (2015), although the exact func-

tional form of these covariance functions is not exactly the

same for different dimensions. Moreover, a special class of

covariance functions (the generalized sum of product

models), characterized by negative weights, has been

analyzed by Gregori et al. (2008).

An interesting contribution concerning a new technique

to construct positive definite functions from multiply

monotone functions is given in Buhmann and Jager (2020).

Moreover, the positive definiteness of the Zastavnyi oper-

ator for the Matern, Generalized Cauchy and Wendland

families, acting on rescaled weighted difference between

two positive definite radial functions, has been analyzed by

Faouzi et al. (2020).

The permissibility for the linear combinations of two

real spatial or spatio-temporal covariance functions (or

variograms) isotropic in space, in all dimensions, has been

investigated by Ma (2005). It was found out that the

resultant covariance may be just available in certain finite

dimensions if one of the coefficients of the linear combi-

nations is negative.

The results given by Ma (2005) and Faouzi et al. (2020)

are only valid for real covariance functions; however, a

covariance is a complex valued function. The general

problem concerning the difference of two covariance

functions in the complex domain has been analyzed in Posa

(2021). In the special case of real isotropic covariance

functions, the results given in Ma (2005), concerning the

linear combination of two spatial or spatio-temporal

covariance functions, are valid in any dimensional space;

some of the results for real covariance functions, given in

Posa (2021), are special cases of Ma’s results. However,

details concerning the practical aspects and the behaviour

of the difference between two covariance functions in

R;R2 and R3 have been discussed in Posa (2021, 2023).

Starting from the above theoretical results, some tradi-

tional families of space-time covariance functions have

been reviewed, hence these new classes enrich the tradi-

tional models which are very often characterized just by

positive values of the correlation function. In particular,

wider classes of separable and non separable space-time

covariance functions will be constructed, able to be adap-

ted to several case studies, in order to include models

characterized by negative values in a subset of their

domain. In particular, negative correlation structures are

important for problems of biological, medical and physical

nature; empirical examples of negative spatial autocorre-

lation can be found in Griffith (2019) and Hu et al. (2018).

It is important to point out that some special covariance

families, proposed in the literature, cannot ever assume, by

construction, negative values, such as the Gneiting class

and Whittle–Matern class; moreover, it will be shown that

even in the integrated product models the resulting space-

time covariances could be always positive although the

basic spatial and temporal models are negative in a subset

of their domain.

Furthermore, the definition of separability/non-separa-

bility has been revised in order to enlarge the traditional

definition (Rodrigues and Diggle 2010; De Iaco and Posa

2013).

This paper is organized as follows: in Sect. 2, an over-

view concerning traditional classes of space-time covari-

ance functions is provided, together with the classical

definition of separability which is valid only for positive

covariance functions. Some well known models, often

utilized in the applications, have been considered. Indeed,

the whole family of positive covariance functions can be

splitted in two disjoint sets: separable and non separable

models; the most relevant properties and drawbacks of

these classes have been underlined. In Sect. 3 some tradi-

tional classes of space-time covariance functions have been

reviewed, in order to enrich the same families with models

characterized by negative values in a subset of their

domain; a peculiar parametric analysis on these families

has been given. In Sect. 4 a graphical representation of the

most significant results, which can be utilized in a flexible

and easy way by many practitioners, has been provided. At

last, as far as we know, classes of covariance functions,

able to describe various and different scenarios as the ones

presented in this paper, seem not to exist.

2 Overview of space-time covariance
functions

In literature, different space-time covariance models are

available and they are usually classified in two main cat-

egories: separable and non-separable space-time covari-

ance models.

Measures of separability/non separability have been

firstly introduced by Rodrigues and Diggle (2010) and then

extended by De Iaco and Posa (2013); however, all these

measures are valid only for positive covariance functions.

A general definition of separability/non separability will be

successively provided in Sect. 3 and valid for any covari-

ance function.

2.1 Definition of separability/non separability

As already pointed out, in the literature measures of sep-

arability/non separability have tacitly been given for pos-

itive covariance functions; these measures are recalled

hereafter.
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Definition 1 Let Cðx; t;HÞ[ 0; 8 ðx; tÞ 2 S� T �
Rn � R; be a covariance function of a second order stationary

space-time random field, whereH is a vector of parameters; let

qðx; t;HÞ ¼ Cðx; t;HÞ
Cð0; 0;HÞ

be the corresponding space-time correlation function,

where Cð0; 0;HÞ[ 0 and define the following ratio:

rðx; t;HÞ ¼ qðx; t;HÞ
qðx; 0;HÞqð0; t;HÞ

¼ Cðx; t;HÞ
Cðx; 0;HÞ �

Cð0; 0;HÞ
Cð0; t;HÞ ;

ð1Þ

analogously, the following difference dðx; t;HÞ between

qðx; t;HÞ and qðx; 0;HÞqð0; t;HÞ, can be defined, that is:

dðx; t;HÞ ¼ qðx; t;HÞ � qðx; 0;HÞqð0; t;HÞ; ð2Þ

or equivalently

d0ðx; t;HÞ ¼ Cðx; t;HÞCð0; 0;HÞ � Cðx; 0;HÞCð0; t;HÞ:
ð3Þ

Then, the covariance C is separable, if:

rðx; t;HÞ ¼ 1; or dðx; t;HÞ ¼ 0

8 ðx; tÞ 2 S� T ; 8H;
ð4Þ

moreover, the covariance C is uniformly positive non

separable, if:

rðx; t;HÞ[ 1; or dðx; t;HÞ[ 0

8 ðx; tÞ 2 S� T ; ðx; tÞ 6¼ ð0; 0Þ; 8H;
ð5Þ

or alternatively it is uniformly negative non separable, if:

rðx; t;HÞ\1; or dðx; t;HÞ\0

8 ðx; tÞ 2 S� T ; ðx; tÞ 6¼ ð0; 0Þ; 8H:
ð6Þ

On the other hand, if rðx; t;HÞ[ 1 or dðx; t;HÞ[ 0 for

some ðx; t;HÞ, then the covariance function is pointwise

positive non separable at ðx; t;HÞ; alternatively, it is

pointwise negative non separable at ðx; t;HÞ; if

rðx; t;HÞ\1 or dðx; t;HÞ\0 for some ðx; t;HÞ: Hence,

depending on the values of the parameter vector H or the

lag vector ðx; tÞ, the type of non separability for a given

class of covariance functions might change.

Alternatively, the covariance function is separable if

there exist spatial and temporal covariance functions CS

and CT , respectively, such that

Cðx; t;HÞ ¼ CSðx;HÞCTðt;HÞ; or equivalently

Cðx; t;HÞ ¼ Cðx; 0;HÞCð0; t;HÞ
Cð0; 0;HÞ : ð7Þ

hence by setting rðx; t;HÞ ¼ 1 in Eq. (1), if the covariance

function is separable, then the correlation function is the

product of the spatial and temporal marginals qðx; 0;HÞ and

qð0; t;HÞ: Equivalently, the sign of (2) and (3) will give

information about the kind of non-separability: in particular, if

a covariance function is separable, then dðx; t;HÞ ¼
d0ðx; t;HÞ ¼ 0. Considering the above definitions, interesting

results have been given in De Iaco and Posa (2013).

In the literature, separability can be checked through

several statistical tests (Cappello et al. 2018; Gneiting et al.

2007; Li et al. 2007; Scaccia and Martin 2005; Mitchell et al.

2005). If the hypothesis of separability is rejected, then a non

separable covariance model is required.

Remarks

• Note that expression (1) is equivalent to expressions (2)

and (3) if and only if the covariance function

Cðx; t;HÞ[ 0; 8 ðx; tÞ 2 S� T; indeed, expression (1)

is not defined if the marginals Cðx; 0;HÞ and Cð0; t;HÞ
are continuous covariance functions which are negative

in a subset of their domain: infact, in this case, there

always exists at least one point in which these

marginals are zero.

• Although the above definition of separability is partic-

ularly relevant for positive space-time covariance

functions, it can be easily extended to any positive

covariance function; in particular, a positive covariance

function CðsÞ, defined in Rn, is separable if there exist

n1 2 N and n2 2 N, with n1 þ n2 ¼ n such that:

CðsÞ ¼ C1ðs1ÞC2ðs2Þ; s ¼ ðs1; s2Þ 2 Rn1 � Rn2 ;

where C1 is a covariance function defined in Rn1 and

C2 is a covariance function defined in Rn2 , with Rn ¼
Rn1 � Rn2 : In what follows, the dependence on the

vector of parameters H will be omitted if not explicitely

required.

2.2 Separable space-time covariance functions

As previously described, a space-time covariance function

is separable if the non separability ratio rðx; tÞ ¼ 1 or

equivalently the non separability index

dðx; t;HÞ ¼ d0ðx; tÞ ¼ 0:

The product model is the only model which belongs to

this category; it is known in two versions: the one obtained

by the product of purely spatial and purely temporal

covariances (Rouhani and Myers 1990; Posa 1993), i.e.,

Cðx; tÞ ¼ CSðxÞCTðtÞ;

and the other one where the global variance is multiplied

by a purely spatial correlation function and a purely tem-

poral correlation function (Haas 1995), i.e.,
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Cðx; tÞ ¼ r2qSðxÞqTðtÞ; ð8Þ

where r2 ¼ Cð0; 0Þ is the variance, qS is the spatial cor-

relation function and qT is the temporal correlation

function.

It is well known that the separable space-time covari-

ance model has been one of the first attempts to describe

spatio-temporal phenomena, because of its simple expres-

sion, however models of this type do not allow for space-

time interaction.

The separable model (8) is just suitable to model the

correlation of spatio-temporal random fields characterized

by the same spatial and temporal variance. Hence, if the

purely spatial and purely temporal correlation models of

(8) decay at infinity, then

8 t; lim
kxk!1

Cðx; tÞ ¼ 0; 8 x; lim
jtj!1

Cðx; tÞ ¼ 0:

At last, the separable model is integrable in space-time if

qS and qT are integrable functions.

2.3 Non separable space-time covariance
functions

All covariance models, different from the separable pro-

duct model, characterize this class. In Porcu et al. (2021)

the class of non separable covariance functions has been

classified according to the following scheme:

• scale mixtures, such as the quasi-arithmetic class (Porcu

et al. 2009), the models proposed by Fonseca and Steel

(2011), Apanasovich et al. (2012), Porcu et al. (2007),

Cressie and Huang (1999), the integrated product and

product-sum models (De Iaco et al. 2002);

• classes obtained by applying the properties of positive-

definite functions seen as convex cone, such as the sum

model (Rouhani and Hall 1989), the product-sum

models (De Cesare et al. 2001a), Rodrigues and Diggle

models (Rodrigues and Diggle 2010) and models

generated by mixtures (Ma 2002, 2003);

• spectral density approaches, proposed by Stein (2005)

and Posa (2021);

• lagrangian reference frame, whose covariance functions

are no longer fully symmetric (Cox and Isham 1988;

Gneiting et al. 2007);

• classes with special features (Christakos and Hristo-

poulos 1998; Kolovos et al. 2004; Brown et al. 2000).

Indeed, most of the previous families of covariance func-

tions (Porcu et al. 2009; Cressie and Huang 1999; Ma

2002, 2003; Rouhani and Hall 1989; Rodrigues and Diggle

2010; De Cesare et al. 2001a; De Iaco et al. 2002) have

been built utilizing the combined result of the Kronecker

product between the spatial and the temporal marginals and

the classical properties of covariance functions.

A brief overview concerning the most utilized space-

time non separable covariance models, with their properties

and shortcomings is presented hereafter, in order to provide

an exhaustive overview and a comparative analysis. Please

note that the same analysis can be drawn for some other

classes of space-time covariance models which have not

explicitely analyzed in this paper.

2.3.1 The sum model

The sum model (Rouhani and Hall 1989), also called zonal

anisotropy model, is obtained by the sum of purely spatial

and purely temporal covariances:

Cðx; tÞ ¼ CSðxÞ þ CTðtÞ; ð9Þ

CS and CT are, respectively, purely spatial and purely

temporal covariance models.

The family of covariance functions defined in (9) has

been wrongly included within the class of separable models

(Cressie and Huang 1999). Indeed, according to definition

(1) and (3), in the following it is shown that the sum model

is characterized by negative non separability, as a conse-

quence it cannot be considered separable.

Corollary 1 The sum model, defined in Eq. (9), is non

separable.

Proof (See the Appendix). h

According to the previous result, the sum model is

uniformly negative non separable, hence it cannot model

correlation structures characterized by positive non sepa-

rability; moreover, the same model is not strictly positive

definite even if CS and CT are strictly positive definite

correlation functions (De Iaco and Posa 2018). At last, the

sum model is not integrable in space-time even if CS and

CT are integrable functions, hence in the Bochner repre-

sentation it cannot be expressed through a spectral density

function.

2.3.2 The product-sum model

In the product-sum model (De Cesare et al. 2001a, b)

Cðx; tÞ ¼ k1CSðxÞCTðtÞ þ k2CSðxÞ þ k3CTðtÞ;
k1 [ 0; k2 � 0; k3 � 0;

ð10Þ

CS and CT are, respectively, purely spatial and purely

temporal covariance models.

Concerning the asymptotic behavior of the product-sum

covariance model, if the purely spatial and purely temporal

covariances are such that:
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lim
kxk!1

CSðxÞ ¼ lim
jtj!1

CTðtÞ ¼ 0;

then

8 t; lim
kxk!1

Cðx; tÞ¼ k3CTðtÞ; 8x; lim
jtj!1

Cðx;tÞ¼ k2CSðxÞ:

Of course, if the limits on space and time exist and con-

verge to values which are generally different, the following

limit lim
kðx;tÞk!1

Cðx; tÞ does not exist.

Note that the product-sum model does not decay at

infinity along the spatial and temporal axes, then it enables

to model different variabilities along space and time, as it

can be seen by setting t ¼ 0 in the first limit and x ¼ 0 in

the second one. On the other hand, the class (10) cannot

model space-time processes characterized by the same

variability along space and time. Assuming that

CSðxÞ[ 0 8x and CTðtÞ[ 0 8t, the index d0 defined

in (3) can be easily computed:

d0ðx; tÞ ¼ k2k3

�
CTð0Þ � CTðtÞ

��
CSðxÞ � CSð0Þ

�
\0;

ð11Þ

hence the product-sum covariance models can just describe

stationary space-time covariances that are uniformly neg-

ative non separable. Even in this case, the above index can

be equivalently written as follows:

d0ðx; tÞ ¼ �k2k3cSðxÞcTðtÞ, where cS and cTðtÞ are the

spatial marginal and temporal marginal semivariogram,

respectively. At last, the product-sum model is not inte-

grable in space-time even if CS and CT are integrable

functions, hence in the Bochner representation it cannot be

expressed through a spectral density function.

2.3.3 The integrated product-sum model

The integrated product-sum model (De Iaco et al. 2002) in

terms of the spatio-temporal correlation function:

qðx; tÞ ¼
Z

V

h
k1qSðx; aÞqTðt; aÞ þ k2qSðx; aÞ

þ k3qTðt; aÞ
i
dlðaÞ;

ð12Þ

where l is a positive measure on U � R, qS and qT are

correlation functions defined on D � Rn and T � R,

respectively, for all a 2 V � U, k1 [ 0; k2 � 0 and k3 � 0,

k1 þ k2 þ k3 ¼ 1 and

Z

V

dlðaÞ ¼ 1; let

a ¼
Z

V

½qSðx; aÞqTðt; aÞ�dlðaÞ; b ¼
Z

V

½qSðx; aÞ�dlðaÞ;

c ¼
Z

V

½qTðt; aÞ�dlðaÞ:

Then the difference (2) can be easily obtained:

dðx; tÞ ¼ak1 þ bk2 þ ck3

� ½ðk1 þ k2Þbþ k3�½ðk1 þ k3Þcþ k2�;

which can be further simplified as follows:

dðx; tÞ ¼ ða� bcÞk1 � ð1 � bÞð1 � cÞk2k3: ð13Þ

The sign of d might be positive or negative depending on

the coefficients k1; k2 and k3 (with 2 degrees of freedom)

and the factor ða� bcÞ, or equivalently the sign of d

depends on the inequality existing between

ða� bcÞ=½ð1 � bÞð1 � cÞ� and k2k3=k1. If the factor ða�
bcÞ is negative, the above difference is always negative, for

any k1; k2 and k3. Note that ða� bcÞ corresponds to the

difference between the integrated product model and the

product of the integrals of the same correlation functions. If

the factor ða� bcÞ is positive, the above difference might

be positive and negative, according to the coefficients k1; k2

and k3. It is worth noting that if qSð�; aÞ and qTð�; aÞ are

both non-decreasing functions (or all are non-increasing

functions) with respect to a, the factor ða� bcÞ is always

positive.

According to the previous rsults, the class of integrated

product-sum covariance models can handle any form of

non separability: uniformly positive and negative non

separability and non uniformly non separability. Given a

correlation model as in (12), if the purely spatial and purely

temporal correlations are such that:

lim
kxk!1

qSðx; aÞ ¼ lim
jtj!1

qTðt; aÞ ¼ 0;

then for the class of models (12):

8 t; lim
kxk!1

qðx; tÞ ¼
Z

V

½k3qTðt; aÞ�dlðaÞ;

8 x; lim
jtj!1

qðx; tÞ ¼
Z

V

½k2qSðx; aÞ�dlðaÞ:

These last results are proved by using the previous results

on the product-sum model and by recalling the dominated

convergence theorem in order to exchange limit and

integral.

Setting t ¼ 0 in the first limit and x ¼ 0 in the second

one, the following results for the marginal covariances can

be obtained:
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t ¼ 0; lim
kxk!1

qðx; 0Þ ¼
Z

V

½k3qTð0Þ�dlðaÞ;

x ¼ 0; lim
jtj!1

qð0; tÞ ¼
Z

V

½k2qSð0; aÞ�dlðaÞ:

According to the previous results, the integrated product-

sum models present essentially the same asymptotic

behavior of the product-sum model, then it enables to

model different variabilities along space and time. How-

ever, the class (12) cannot model space-time processes

characterized by the same variability along space and time.

2.3.4 The integrated product model

If k2 ¼ k3 ¼ 0 in (12), the integrated product model is

obtained:

qðx; tÞ ¼
Z

V

qSðx; aÞqTðt; aÞdlðaÞ: ð14Þ

Although the product model is separable, the integrated

product is non separable; several examples can be found in

De Iaco et al. (2002).

Assuming that qSðxÞ� 0 8x and qTðtÞ� 0 8t, the

difference (2) can be easily obtained:

dðx; tÞ ¼ a� bc; ð15Þ

where the parameters a, b and c have been previously

defined; as a consequence, the class of integrated product

covariance models, as a special case of (12), can handle

any form of non separability: uniformly positive and neg-

ative non separability and non uniformly non separability.

Given a correlation model as in (14), if the purely spatial

and purely temporal correlations are such that:

lim
kxk!1

qSðx; aÞ ¼ lim
jtj!1

qTðt; aÞ ¼ 0; there always exists an

integrable function G, with respect to the measure l,

which dominates the class of functions qSðx; aÞqTðt; aÞ;
that is: jqSðx; aÞqTðt; aÞj �GðaÞ; 8 ðx; tÞ; because any

correlation function is bounded, then for the class of

models (14):

8 t; lim
kxk!1

qðx; tÞ ¼ 0; 8 x; lim
jtj!1

qðx; tÞ ¼ 0:

Similarly to the product model, the integrated product

model decays at infinity along the spatial and temporal

axes, hence this class of models cannot handle space-time

processes which present different variability along space

and time.

2.3.5 Cressie–Huang class of models

In the Cressie–Huang class of models (Cressie and Huang

1999)

Cðx; tÞ ¼
Z

Rn
eix

Txqðt;xÞkðxÞdx; ð16Þ

qð�;xÞ is a continuous integrable correlation function for

all x 2 Rn; and kð�Þ is a positive function, which is inte-

grable on Rn. Although this class of models allows for

space-time interaction, the same class is restricted to a

small family of functions for which a closed form solution

to the Fourier integral is known. Since the complex

exponential can be written as: eix
Tx ¼ cosðxTxÞ þ

isinðxTxÞ; if qðx; tÞkðxÞ is symmetric about the origin in

Rn, then Cressie–Huang representation can be viewed as a

special case of (14). Hence,

Cðx; tÞ ¼
Z

Rn
eix

Txqðx; tÞkðxÞdx

¼
Z

Rn
þ

CSðx;xÞCTðt;xÞkðxÞdx;

where k is defined, positive and integrable over Rþ,

CSðx;xÞ is only positive semi-definite spatial covariance

function for each x 2 Rn
þ and CT is a temporal covariance.

Recalling the existence of the spectral density of C, the

Cressie–Huang class of models (16) is characterized by the

following asymptotic behavior

lim
kðx;tÞk!1

Cðx; tÞ ¼ 0; 8 t; lim
kxk!1

Cðx; tÞ ¼ 0;

8 x; lim
jtj!1

Cðx; tÞ ¼ 0:

From these results, it follows that this class of models is not

suitable to describe phenomena characterized by a different

variability in space and time.

Assuming that CSðxÞ[ 0 8x and CTðtÞ[ 0 8t and

recalling that (16) can be viewed as a special case of (14),

Cressie–Huang class is flexible enough to handle either

uniformly positive and negative non separability.

2.3.6 Gneiting class of models

In the Gneiting class of models (Gneiting 2002)

Cðx; tÞ ¼ r2

½wðt2Þ�n=2
/

�
kxk2

wðt2Þ

�
; ð17Þ

x 2 Rn, /ðtÞ; t� 0, is a completely monotone function and

wðtÞ; t� 0, is a positive function with completely mono-

tone derivative; hence, the above class of models is always

positive, as a consequence it cannot model space-time

correlation structures characterized by negative values.

Concerning the asymptotic behavior of the Gneiting class

of models (17), two different cases can be mentioned,

depending on the hypothesis on w.

Firstly, if lim
t!1

wðtÞ ¼ 1; then:

4946 Stochastic Environmental Research and Risk Assessment (2023) 37:4941–4962

123



1. 8 t; lim
kxk!1

Cðx; tÞ ¼ 0 (since / vanishes at infinity

by definition);

2. 8 x; lim
jtj!1

Cðx; tÞ ¼ 0 (from the hypothesis on w).

In this case, the class (17) cannot describe space-time

processes which present different variability along space

and time.

Secondly, given a covariance as in (17), if lim
t!1

wðtÞ ¼ k;

then:

1. 8 t; lim
kxk!1

Cðx; tÞ ¼ 0 (since / vanishes at infinity

by definition);

2. 8 x; lim
jtj!1

Cðx; tÞ ¼ r2

kn=2
/

�
kxk2

k

�
(from the hypoth-

esis on w).

In this case the class (17) is not integrable in space-time

and can describe space-time processes which present dif-

ferent variability along space and time. Note that for the

marginal covariances, analogous results can be obtained

from 1. and 2. by setting t ¼ 0 in the first limit and x ¼ 0 in

the second one. Hence, nothing can be said, in general, on

the existence of the following limit lim
kðx;tÞk!1

Cðx; tÞ. For

what concerns the type of non separability, the index d

defined in (2), can be easily computed:

dðx; tÞ ¼ r2

½wðt2Þ�n=2

�
/

�
kxk2

wðt2Þ

�
� /

�
kxk2

�	
; ð18Þ

since the function / is decreasing and w is an increasing

function with wð0Þ ¼ 1, as a consequence

dðx; tÞ[ 0; 8 x; 8 t:
According to the previous result, Gneiting class of

covariance models is always characterized by uniform

positive non separability, hence this class cannot model

space-time processes characterized by negative non

separability.

2.3.7 Rodrigues and Diggle class of models

Rodrigues and Diggle (2010) proposed the following

space-time correlation model:

qðx; tÞ ¼ 1

2
qS;1ðxÞqT ;1ðtÞ þ qS;2ðxÞqT ;2ðtÞ
� �

; ð19Þ

where qS;1ðxÞ; qS;2ðxÞ; qT ;1ðtÞ; qT ;2ðtÞ are, respectively, two

non negative and integrable spatial and two non negative

and integrable temporal correlation functions. The inte-

grability of the spatial and temporal correlation functions

for the class (19) implies that:

lim
kxk!1

qS;iðxÞ ¼ 0; lim
jtj!1

qT ;iðtÞ ¼ 0; i ¼ 1; 2;

as a consequence:

8 t; lim
kxk!1

qðx; tÞ ¼ 0; 8 x; lim
jtj!1

qðx; tÞ ¼ 0:

From these results, it follows that the class of models

(19) is not appropriate to describe phenomena character-

ized by a different variability in space and time.

Assuming that all the correlation models qS;1; qS;2; qT ;1
and qT ;2 be positive, the index d defined in (2) can be easily

computed:

dðx; tÞ ¼ 1

4

�
qS;1ðxÞ � qS;2ðxÞ

��
qT ;1ðtÞ � qT ;2ðtÞ

�
; ð20Þ

hence Rodrigues and Diggle class of models is flexible

enough to handle either uniformly positive and negative

non separability suitably choosing the correlation models

qS;1; qS;2; qT ;1 and qT ;2:

Remarks

• The non separability index d0 is essentially the same for

the sum and product-sum models, i.e. it is equal to

minus the product of the spatial marginal and temporal

marginal semivariograms. Indeed, the product-sum

model can be considered a linear combination, with

positive coefficients, of the sum model with a separable

space-time correlation model, as a consequence, the

non separability indexes are equivalent and they are

always negative regardless of the spatial and temporal

marginals correlation structures. Even for Gneiting

family, the non separability index, which is always

positive, does not depend on the correlation models

utilized.

• On the other hand, the non separability index strongly

depends on the spatial and temporal marginals for the

integrated models, in particular for the Cressie–Huang

class of models, and for the Rodrigues and Diggle

family; for this last class of models, it is easy to check

that the non separability index approaches to zero as the

two spatial marginals (or the temporal marginals)

become very close to each other.

• Cressie–Huang models, the product, the integrated pro-

duct model and Rodrigues and Diggle models decay at

infinity, namely, in terms of the corresponding variogram

models, they reach the same sill value along space and

time. Hence, these classes of covariances are not appro-

priate to model variables which do not present the same

variability along space and time. On the other hand, the

product-sum model, the integrated product-sum models

and Gneiting models are able to model variables charac-

terized by different variability along space and time.

• Cressie–Huang models, the integrated product, the

integrated product sum models and Rodrigues and
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Diggle models are flexible enough to handle either

uniformly positive and negative non separability. On

the other hand, the product sum models can only

describe negative non separability, whereas Gneiting

models are just characterized by positive non

separability.

3 Wider classes of isotropic space-time
covariance functions

The aim of the present Section is to revise some of the

previous traditional classes of spatio-temporal covariance

functions, which are isotropic in space, taking into account

the main features, together with the drawbacks and limi-

tations of the same classes. In particular, it can be under-

lined that:

• the Gneiting class of models, by construction, does not

allow to model covariance functions characterized by

negative values;

• all the examples proposed by the families of covariance

functions of the previous Section in the various case

studies, treat only positive covariance models; at this

purpose, see for example, the applications proposed in

Brown et al. (2001), De Cesare et al. (2001b), Bourotte

et al. (2016), Cressie and Huang (1999), Gneiting

(2002), Garg et al. (2018), Jost et al. (2005), De Iaco

et al. (2015) and Porcu et al. (2012);

• for the family of models proposed by Rodrigues and

Diggle (2010), all the correlation functions in (19) are

assumed to be positive and integrable by the same

authors;

• utilizing the well known properties and considering

standard covariance models (see, for example, Whittle–

Matern family, the rational and spherical models) it is

not possible to generate covariances which can assume

negative values;

• Yaglom (1987) presented oscillatory covariance func-

tions utilizing some Bessel functions. Linear combina-

tions of covariance functions with some negative

coefficients can be found in Gregori et al. (2008);

• on the other hand, it is relevant to point out that it is

possible to construct three-parameter isotropic covari-

ance functions which take negative values for a specific

range of values of one parameter (rigidity coefficient), as

it has been shown for the so-called Spartan covariance

functions (Hristopulos and Elogne 2007). In addition, the

Spartan covariance functions for values of the rigidity

parameter greater than 2 are expressed as the difference

between two functions (Hristopulos 2015);

• in order to model covariance structures which present

negative values or damped oscillations, covariance

functions resulting from the product of standard posi-

tive models with a cosine function have been often

utilized. However, this kind of covariance functions

present some severe limitations and are not able to

describe different structures modifying the values of

their parameters.

The theoretical results given in Posa (2021) will be prop-

erly utilized hereafter to enrich the family of isotropic

space-time covariance functions; according to these last

results, in the present Section some interesting conse-

quences outcoming from these special classes of covari-

ance functions will be given: in particular, the resulting

covariance models present some relevant and interesting

properties which are often required in the applications,

hence they can be easily utilized in several case studies.

Indeed, the class of models proposed hereafter, according

to the values of the parameters on which the same class

depends, could be positive or negative in a subset of their

domain; moreover, the models could portray different

behaviours near the origin. Note that the concept of iso-

tropy just refers to the spatial Euclidean space.

The following result allows to define a class of covari-

ance functions which is particularly flexible to be utilized

in several case studies.

Theorem 1 The following class of parametric functions:

qðt; kÞ ¼ 1 � kt2

ðt2 þ 1Þ3
; ð21Þ

is a correlation function in R if and only if: � 1

5
� k� 3:

Proof (See the Appendix). h

In Fig. 1 it is shown the behaviour of model (21). As

specified in Theorem 1, this class of covariances, according

to the previous values of parameters, presents a parabolic

behaviour in proximity of the origin, moreover, according

to the values of the parameter k, it can be always positive if

� 1

5
� k� 0; and can assume negative values in a subset of

its domain if 0\k� 3:

3.1 Wider classes of separable space-time
covariance functions

In the applications separable space-time covariance models

have been utilized by choosing spatial and temporal mar-

ginals only characterized by positive values. In the present

Section, it will be shown how to construct separable space-

time covariance models also characterized by negative

values, in order to enrich the same class of separable

models.

For the family of the separable space-time covariance

models defined in expression (8), i.e.,
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Cðx; tÞ ¼ r2qSðxÞqTðtÞ;

the correlation functions qS and qT , can be chosen as fol-

lows (Posa 2021):

qSðx;A1;A2;a1;b1Þ¼A1q1ðx;a1Þ�A2q2ðx;b1Þ; A1�A2¼1;

ð22Þ

qTðt;B1;B2;a2;b2Þ¼B1q3ðt;a2Þ�B2q4ðt;b2Þ; B1�B2¼1;

ð23Þ

or alternatively, according to Theorem 1:

qTðt; aÞ ¼
1 � at2

ðt2 þ 1Þ3
; � 1

5
� a� 3;

hence the separable space-time covariance function C and

the marginal correlations qS and qT can assume positive or

negative values by properly choosing the parameters val-

ues. As already pointed out, an exhaustive parametric

analysis on models (22) and (23) has been provided in Posa

(2021). Note that all the results given in this last paper are

valid for isotropic covariance functions. In particular, the

spatial correlation functions q1 and q2 in (22) are supposed

to be isotropic.

3.2 Wider classes of non separable space-time
covariance functions

As previously outlined for separable models, in this Sec-

tion some peculiar families of non separable covariance

functions will be suitably enriched in order to obtain

classes of space-time covariance functions characterized by

negative values. In particular, for the various classes of non

separable space-time covariance models described in

Sect. 2, the only relevant models which allow for negative

values regard the modified version of the class of the

product-sum models and the revised class of Rodrigues and

Diggle models, as specified hereafter.

3.2.1 Modified product-sum models

The product-sum model (10) introduced by De Cesare

et al. 2001a, b, can be easily generalized as follows:

Cðx; tÞ ¼k1CS;1ðxÞCT ;1ðtÞ þ k2CS;2ðxÞ þ k3CT ;2ðtÞ;
k1 [ 0; k2 � 0; k3 � 0;

ð24Þ

CS;i and CT ;i; i ¼ 1; 2 are, respectively, purely spatial and

purely temporal covariance models. In the previous pro-

duct-sum model (10) it is assumed that CS;1 ¼ CS;2 ¼ CS

and CT ;1 ¼ CT ;2 ¼ CT . Special cases of (24) are the

following:

Cðx; tÞ ¼ k1CS;1ðxÞCT ;1ðtÞ þ k2CS;2ðxÞ; k1 [ 0; k2 � 0;

ð25Þ

and

Cðx; tÞ ¼ k1CS;1ðxÞCT ;1ðtÞ þ k2CT ;2ðtÞ; k1 [ 0; k2 � 0:

ð26Þ

In particular, in the previous classes (24), (25) and (26), the

covariance functions CS;� and CT ;�, can be chosen as follows

(Posa 2021):

CS;�ðx;A1;A2; a1; b1Þ ¼ A1;�C1;�ðx; a1Þ � A2;�C2;�ðx; b1Þ;
CT ;�ðt;B1;B2; a2; b2Þ ¼ B1;�C1;�ðt; a2Þ � B2;�C2;�ðt; b2Þ;

or alternatively, according to Theorem 1:

CT ;�ðt;A; aÞ ¼
A� at2

ðt2 þ 1Þ3
; �A

5
� a� 3A;

hence the non separable space-time covariance function C

and the marginal covariances CS;� and CT ;� can assume

positive or negative values by properly choosing the

parameters values.

The classes (25) and (26) can be equivalently written in

terms of the spatial and temporal correlation functions, i.e.,

qðx; tÞ ¼AqS;1ðxÞqT ;1ðtÞ þ BqS;2ðxÞ;
A[ 0;B[ 0;Aþ B ¼ 1;

ð27Þ

qðx; tÞ ¼AqS;1ðxÞqT ;1ðtÞ þ BqT ;2ðtÞ;
A[ 0;B[ 0;Aþ B ¼ 1;

ð28Þ

and both models can assume negative values by choosing

the correlation functions qS;� and qT ;� as in (22) and in (23).

The families (27) and (28) present interesting properties; if

the spatial and temporal correlation functions are inte-

grable, then for the class (27):

Fig. 1 Behaviour of model (21). It is always positive if � 1

5
� k� 0;

and assumes negative values in a subset of its domain if 0\k� 3
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8 t; lim
kxk!1

qðx; tÞ ¼ 0; 8 x; lim
jtj!1

qðx; tÞ ¼ BqS;2ðxÞ;

whereas for the class (28):

8 t; lim
kxk!1

qðx; tÞ ¼ BqT ;2ðtÞ; 8 x; lim
jtj!1

qðx; tÞ ¼ 0:

In the peculiar case that the spatial and temporal correla-

tion functions for the classes (27) and (28) are positive, the

following results can be easily proved.

Corollary 2 The non-separability index d for the class (27)

is given by the following expression:

dðx; tÞ ¼ AB
�
1 � qT ;1ðtÞ

��
qS;2ðxÞ � qS;1ðxÞ

�
: ð29Þ

Proof The result can be easily obtained by applying def-

inition (2). h

Corollary 3 The non-separability index d for the class (28)

is given by the following expression:

dðx; tÞ ¼ AB
�
1 � qS;1ðxÞ

��
qT ;2ðtÞ � qT ;1ðtÞ

�
: ð30Þ

Proof The result can be easily obtained by applying def-

inition (2). h

According to the previous Corollaries, the space-time

correlation models (27) and (28) can handle both positive

and negative non separability depending on the sign of�
qS;2ðxÞ � qS;1ðxÞ

�
and

�
qT ;2ðtÞ � qT ;1ðtÞ

�
, respectively.

3.2.2 A wider class of Rodrigues and Diggle models

In the class of models (19) proposed by Rodrigues and Diggle,

the spatial and temporal correlation functions were assumed to

be all positive. The same class of correlation models, defined

by the authors, can be easily revised as follows:

qðx; t;HÞ ¼AqS;1ðx; h1ÞqT ;1ðt;/1Þ
þ BqS;2ðx; h2ÞqT ;2ðt;/2Þ;A[ 0;B[ 0;Aþ B ¼ 1;

ð31Þ

where qS;1ðx; h1Þ; qS;2ðx; h2Þ; qT ;1ðt;/1Þ; qT ;2ðt;/2Þ are,

respectively, two valid and integrable spatial and two valid

and integrable temporal correlation functions, not neces-

sarily constrained to be positive, hence the non separable

space-time correlation function q and the marginal corre-

lations can assume positive or negative values by properly

choosing the parameters values of the correlation functions

qS;� and qT ;� as in (22) and in (23) and the weights A and B.

Note that the modified product-sum models (27) and (28)

cannot be considered special cases of model (31), because in

this last class of models all the correlation functions involved

are integrable, on the other hand the constant correlation

functions qT ;2ðtÞ ¼ 1 and qS;2ðxÞ ¼ 1 are not integrable.

Moreover, with respect to the classical model given in (19),

proposed by the authors in Rodrigues and Diggle (2010), in

the class (31) the products qS;iqT ;i; i ¼ 1; 2 are suitably

weighted through the parameters A and B.

3.3 Some notes on the integrated product
models

As already pointed out, the families of space-time covari-

ance models defined in (24), (25) and (26) can assume

negative values by properly choosing the parameters values

of the marginal spatial and temporal correlation structures

on which they depend.

However, in the following Corollaries it will be shown

that the family of the integrated product models, in which

one of the marginals or both the marginals can assume

negative values, the resulting space-time covariance is

always positive in its domain. This result can also be

applied to the Cressie–Huang class of models, because this

last class can be viewed as a special case of the integrated

product models, as already underlined.

Corollary 4 Let

CSðx; a;A;B; a; bÞ ¼ Ae�aax � Be�abx; ð32Þ

where x ¼ kxk; a[ 0;A[ 0;B[ 0; a[ 0; b[ 0;

CTða; tÞ ¼ e�at; lðaÞ ¼ e�a:

It has been shown (Posa 2021) that (32) is an isotropic

covariance function which always assumes negative values

in a subset of its domain if and only if: 1\
a
b
\

A

B
.

If these last conditions on the parameters are satisfied,

then the following covariance function

Cðx; t;A;B; a; bÞ

¼
Z 1

0

CSðx; a;A;B; a; bÞCTða; tÞlðaÞda
ð33Þ

is always positive in its domain.

Proof (See the Appendix). h

Corollary 5 Let

CSðx; aÞ ¼ e�ax; CTðt; aÞ ¼ cosðajtjÞ;
lðaÞ ¼ e�a; x ¼ kxk a[ 0;

then, the following space-time covariance function

Cðx; tÞ ¼
Z 1

0

CSðx; aÞCTðt; aÞlðaÞda ¼ xþ 1

ðxþ 1Þ2 þ t2
;

ð34Þ
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is always positive in its domain.

Note that in the previous Corollary, the covariance

function C	ðx; t; aÞ ¼ CSðx; aÞCTðt; aÞ is separable, it is not

strictly positive definite (De Iaco and Posa 2018) because

the cosine covariance function is only positive definite and

it can assume negative values in a subset of its domain;

however, the integrated product (34) is non separable and it

is strictly positive definite, moreover it is always positive.

Corollary 6 Let

CSðx; a;A;B; a; bÞ ¼ Ae�aax � Be�abx; ð35Þ

with x ¼ kxk; a[ 0;A[ 0;B[ 0; a[ 0; b[ 0;

CTða; tÞ ¼ cos
�
ajtj

�
; lðaÞ ¼ e�a:

It has been shown (Posa 2021) that (35) is an isotropic

covariance function which always assumes negative values

in a subset of its domain if and only if: 1\
a
b
\

A

B
.

If these last conditions on the parameters are satisfied,

then the following covariance function

Cðx; t;A;B; a; bÞ ¼
Z 1

0

CSðx; a;A;B; a; bÞ;CTða; tÞlðaÞda

ð36Þ

is always positive in its domain.

Proof (See the Appendix). h

Note that in the previous Corollary, the covariance

function C	ðx; t; aÞ ¼ CSðx; aÞCTðt; aÞ is separable, it is not

strictly positive definite (De Iaco and Posa 2018) because

the cosine covariance function is only positive definite and

it can assume negative values in a subset of its domain;

however, the integrated product (34) is non separable and it

is strictly positive definite, moreover it is always positive.

Remarks

• According to Corollaries 4, 5, and 6, integrated product

models could be always positive even if the basic

models CS and CT are negative in a subset of their

domain, hence they are not suitable to generate space-

time covariance functions which can assume negative

values in a subset of their domain.

• On the basis of the previous item, Cressie–Huang

models are special cases of the integrated product

models, hence they could be always positive on their

spatial-temporal domain. In particular, the space-time

covariance function in the example 4. of their paper

(Cressie and Huang 1999) corresponds to the covari-

ance function of Eq. (14) in De Iaco et al. (2002).

• Taking into account the prevoius items and the further

result which claims that Gneiting models are always

positive by constructions, the only models suitable to

generate space-time covariance functions which can

assume negative values in a subset of their domain are

the product, the product sum, together with the modified

versions, as well as Rodrigues and Diggle models.

• The modified class of Rodrigues and Diggle models in

(31) can be further generalized without assuming the

integrability of the correlation functions qS;i and

qT ;i; i ¼ 1; 2. The hypothesis of integrability has been

assumed by the same authors (Rodrigues and Diggle

2010). Hence, if the correlation functions qS;i and

qT ;i; i ¼ 1; 2 are not necessarily integrable, then the

modified class of product-sum models can be consid-

ered special cases of the modified class of Rodrigues

and Diggle models by selecting qS;2 ¼ 1 or qT ;2 ¼ 1 in

(31).

3.4 General definition of separability/non
separability

As already pointed out, expression (1) cannot be utilized

for continuous covariance functions which can assume

negative values. Indeed, if the spatial and temporal mar-

ginals are continuous covariance functions characterized

by negative values, there always exists at least one point

for which the same marginals are zero. Hence, in order to

provide a more general definition of separability, expres-

sion (1) will be replaced by the indexes d and d0 defined by

expressions (2) or (3). In the following, a general definition

of separability/non separability will be given, valid for any

covariance function.

Definition 2 Let Cðx; t;HÞ; ðx; tÞ 2 A � Rn � R; be a

continuous covariance function of a second order station-

ary space-time random field, where H is a vector of

parameters; then the covariance function C is separable in

the subset A if:

dðx; t;HÞ ¼ d0ðx; t;HÞ ¼ 0; 8 ðx; tÞ 2 A; 8H;

ð37Þ

where d and d0 have been defined in (2) and (3), respec-

tively and the measure l of the set A satisfies the condition

lðAÞ[ 0; on the other hand, the covariance function C is

non separable in the subset A if:

dðx; t;HÞ 6¼ 0 8 ðx; tÞ 2 B � A;

dðx; t;HÞ ¼ 0; 8 ðx; tÞ 2 A� B;
ð38Þ

where the measure l of the set B satisfies the condition

lðBÞ[ 0 and lðA� BÞ ¼ 0:

Moreover, the covariance function C is uniformly

positive non separable in the subset A if:
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dðx;t;HÞ[0 and d0ðx;t;HÞ[0 8ðx;tÞ2A; ð39Þ

where: Cðx;t;HÞ[0 8ðx;tÞ2A;8H; and the measure l
of the set A satisfies the condition lðAÞ[0; alternatively,

the covariance function C is uniformly negative non sep-

arable in the subset A if:

dðx; t;HÞ\0 and d0ðx; t;HÞ\0 8 ðx; tÞ 2 A;

ð40Þ

where: Cðx; t;HÞ[ 0 8 ðx; tÞ 2 A; 8H; and the mea-

sure l of the set A satisfies the condition lðAÞ[ 0:

According to the above Definition, the following result

can be established.

Corollary 7 A space-time correlation function q is sepa-

rable in a subset A if and only if

qðx; tÞ ¼ qSðxÞqTðtÞ; 8 ðx; tÞ 2 A;

and the measure l of the set A satisfies the condition

lðAÞ[ 0:

Taking into account the previous Corollary, the only

separable space-time covariance model is the product

model.

Remarks

• Note that Definition 1 is a special case of Definition 2;

in particular, if a spatio-temporal correlation function is

always positive, together with its marginals, Definition

1 gets back; in particular, Definition 2 is valid for any

spatio-temporal covariance function, even if it assumes

negative values, although the concepts of uniformly

positive and negative non separability can be given just

for positive covariance functions;

• according to the previous item, as will be shown in the

next Section, the space-time correlation models (47)

and (48) assume negative values and they are non

separable in the subset A ¼ ½ð0;þ1Þ � ð0;þ1Þ�,
hence dðx; t;HÞ 6¼ 0 8 ðx; tÞ 2 B 
 A; the measure of

B is positive and dðx; t;HÞ ¼ 0 8 ðx; tÞ 2 A� B, how-

ever the measure of this last set is zero;

• according to the revised Definition 2, the concept of

separability/non separability is related to the subset of

the spatio-temporal domain of the covariance function.

For example, a space-time covariance function can be

separable in a certain subset and non separable in a

different subset of its domain, as shown hereafter.

Consider the following space-time correlation model:

qðx; tÞ ¼ k1Sphðx; a1ÞSphðt; a2Þ þ k2Sphðx; a3Þ;
k1 [ 0; k2 [ 0; k1 þ k2 ¼ 1;

ð41Þ

where x ¼ kxk and:

Sphðr; aÞ ¼ 1 � 3r

2a
þ 1

2

�
r

a

�3

r� a

0 r[ a;

8
<

:
ð42Þ

is the spherical correlation model, moreover

0\a3\a1; a2 [ 0. It is trivial to check that model (41)

is non separable in the subset A ¼ ½ð0; a3Þ � ð0; a2Þ� and

it is separable in the subset C ¼ ½ða3; a1Þ � ð0;þ1Þ�
and the measures of the sets A and C are different from

zero;

• note that the index d (or d0) does not depend on the

peculiar correlation model for what concerns the classes

of the sum model, the product sum model and Gneiting

family: infact the index d (or d0) is always negative for

the sum and product sum models and it is always

positive for the Gneiting family, indipendently from the

correlation functions utilized. Moreover, for the sum

and product sum models, the index d (or d0) is always

negative even if the correlation functions are negative;

• on the other hand, for what concerns the integrated

product and product-sum, Cressie, Rodrigues and

Diggle families and the modified product-sum models,

the sign of the index d (or d0) strongly depends on the

correlation functions utilized: indeed, these last models

are able to describe any kind of non separability.

4 Graphical representation of the results

In the present Section graphical representations of some

classes of space-time correlation functions, described in the

previous Section, will be provided. In particular, it will be

shown how these wider classes of correlation functions are

able to describe positive and negative correlations by

suitably modifying the parameters values on which the

same classes depend.

4.1 Separable space-time isotropic correlation
functions

Flexible classes of separable space-time correlation func-

tions, characterized by positive and negative values and by

various behaviour near the origin, can be suitably obtained

by using some relevant results concerning the difference

between covariance functions, given in Posa (2021) and

utilizing Theorem 1. Among the various results, it has been

shown that the following isotropic correlation class:

qðs;A;B; a; bÞ ¼ A expð�asÞ � B expð�bsÞ;
A[ 0;B[ 0; A� B ¼ 1;

ð43Þ

is capable to describe several behaviours: models which are

always positive, as well as models which are characterized
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by negative values, in addition to models which present a

linear or a parabolic behaviour in proximity of the origin.

Moreover, according to the values of parameters on which

this family depends, there could be an inflection point, such

that the concavity is downwards in proximity of the origin:

this last behaviour is atypical for covariance functions

characterized by a linear behaviour near the origin.

In particular, (43) is a correlation function if and only if:

1\
b
a
� A

B
; or 1\

a
b
\

A

B
:

If 1\
b
a
\

A

B
or 1\

a
b
\

A

B
, then the correlation function

(43) always presents a linear behaviour near the the origin.

If 1\
b
a
¼ A

B
, the correlation function (43) presents a

parabolic behavior near the origin; moreover, if 1\
a
b
\

A

B
,

the correlation function (43) is always negative in a subset

of its field of definition. At last, if 1\
b
a
� A

B
, the correlation

function (43) cannot ever be negative.

According to the previous results, the following sepa-

rable class of space-time isotropic correlation functions:

qðx; t;HÞ ¼ ðA1e
�a1x � B1e

�b1xÞðA2e
�a2t � B2e

�b2tÞ;
ð44Þ

where Ai [ 0;Bi [ 0; Ai � Bi ¼ 1; i ¼ 1; 2;H ¼
ða1; b1; a2; b2;A1;B1;A2;B2Þ; can handle situations for

which both marginals are characterized by a linear beha-

viour near the origin, together with various combinations

for which both marginals are characterized by positive or

negative values, by suitably changing the values of the

parameters vector H, as previously described. In particular,

in Fig. 2a the spatial marginal assumes negative values in a

subset of its domain, whereas the temporal marginal is

always positive; in Fig. 2b both marginals always assume

positive values, whereas in Fig. 2c the spatial marginal is

always positive and the temporal marginal assumes nega-

tive values in a subset of its domain; at last, in Fig. 2d both

marginals assume negative values in a subset of their

domain. Note that both marginals in Fig. 2a–d present a

linear behaviour near the origin. Moreover, the expression

of the correlation functions utilized in each of the above

figures, is represented on the top of the same figures.

On the basis of the results given in Posa (2021), the

family of correlation functions

qðx;A;B; a; bÞ ¼ Ae�ax2 � Be�bx2

;

A[ 0;B[ 0;A� B ¼ 1;
ð45Þ

is an isotropic correlation function in R2 if and only if:

1\
a
b
\

A

B
: ð46Þ

The class (45) is extremely flexible to describe some

peculiar behaviours of correlation structures: infact, this

class, according to the values of the parameters, i.e.

1\
a
b
\

A

B
, always assumes a parabolic behaviour in

proximity of the origin, moreover, the same class is always

negative in a subset of its domain.

Hence, in order to describe separable space-time corre-

lation models for which both marginals are characterized

by a parabolic behaviour near the origin (Fig. 3), the

classes (21), (43) and (45) can be suitably combined

according to the required behaviour. As already pointed

out, the class (43) presents a parabolic behaviour near the

origin if 1\
b
a
¼ A

B
and it is always positive; the class (45)

Fig. 2 Behaviour of model (44)

where both marginals present a

linear behaviour near the origin.

In a the spatial marginal is

negative in a subset of its

domain, whereas the temporal

marginal is always positive; in

b both marginals are always

positive; in c the spatial

marginal is always positive,

whereas the temporal marginal

is negative in a subset of its

domain; in d both marginals are

negative in a subset of their

domain
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always presents a parabolic behaviour near the origin and it

is always negative in a subset of its domain, whereas the

class (21) always presents a parabolic behaviour near the

origin and can assume always positive values, as well as

negative values in a subset of its domain, according to the

value of the parameter k. In Fig. 3a both marginals always

assume positive values; in Fig. 3b the spatial marginal is

always positive and the temporal marginal assumes nega-

tive values in a subset of its domain; viceversa, in Fig. 3c

the spatial marginal assumes negative values in a subset of

its domain, whereas the temporal marginal is always pos-

itive; at last, in Fig. 3d both marginals assume negative

values in a subset of their domain. Note that both marginals

in Fig. 3a–d present a parabolic behaviour near the origin.

Moreover, the expression of the correlation functions uti-

lized in each of the above figures, is represented on the top

of the same figures.

Putting together all the previous results, separable

models characterized by a parabolic behaviour near the

origin for the spatial marginal and a linear behaviour near

the origin for the temporal marginal, can be obtained, as

shown in Fig. 4. In Fig. 4a both marginals always assume

positive values; in Fig. 4b the spatial marginal is always

positive and the temporal marginal assumes negative val-

ues in a subset of its domain; viceversa, in Fig. 4c the

spatial marginal assumes negative values in a subset of its

domain, whereas the temporal marginal is always positive;

at last, in Fig. 4d both marginals assume negative values in

a subset of their domain. Moreover, the expression of the

correlation functions utilized in each of the above figures,

is represented on the top of the same figures.

4.2 Non separable space-time isotropic
correlation functions

As already undelined in the previous Sect. 3, considering

the various classes of non separable correlation functions,

the modified product-sum models and the modified version

of Rodrigues and Diggle models can be considered among

the most flexible to describe non separable space-time

correlation functions characterized by positive and nega-

tive values.

Some peculiar graphical representations for the class of

models (27), (28) and (31) is given hereafter. In particular,

for the following non separable space-time class of modi-

fied product-sum models:

qðx; t;A;BÞ ¼A



6:9e�7x2 � 5:9e�6x2
� 1 � 3t2

ðt2 þ 1Þ3

þ B
1 � 3x2

ðx2 þ 1Þ3
;

ð47Þ

the spatial and temporal marginals always present a para-

bolic behaviour near the origin; moreover:

lim
x!1

qðx; tÞ ¼ 0; lim
t!1

qðx; tÞ ¼ B
1 � 3x2

ðx2 þ 1Þ3
:

According to the previous results, the space-time corre-

lation model always goes to zero along the spatial axis,

whereas it reaches a limit value along the temporal axis

which depends on x and on the parameter B. In Fig. 5 it is

shown the bahaviour of model (47) for different values of

the parameters A and B, whose values are represented at the

top of each figure. Note that the spatial marginal is always

Fig. 3 The classes (21), (43)

and (45) are suitably combined

so that both marginals present a

parabolic behaviour near the

origin. In a both marginals

always assume positive values;

in b the spatial marginal is

always positive, whereas the

temporal marginal is negative in

a subset of its domain; in c the

spatial marginal is negative in a

subset of its domain, whereas

the temporal marginal is always

positive; in d both marginals are

negative in a subset of their

domain
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negative in a subset of its domain, whereas the behaviour

of the temporal marginal depends on the value of the

parameter B. As B goes to zero, the temporal marginal

assumes negative values and the above model is very close

to a separable model: in this case, model (47) can be

considered as nuisance to a separable model.

On the other hand, for the following non separable

space-time class of modified product-sum models:

qðx; t;A;BÞ ¼Að6:9e�7x2 � 5:9e�6x2Þ 1 � 3t2

ðt2 þ 1Þ3

þ B
1 � t2

ðt2 þ 1Þ3
;

ð48Þ

although the spatial and temporal marginals always present

a parabolic behaviour near the origin, however:

lim
x!1

qðx; tÞ ¼ B
1 � t2

ðt2 þ 1Þ3
; lim

t!1
qðx; tÞ ¼ 0:

According to the previous results, the space-time cor-

relation model always goes to zero along the temporal axis,

whereas it reaches a limit value along the spatial axis

which depends on t and on the parameter B. In Fig. 6 it is

shown the bahaviour of model (48) for different values of

the parameters A and B, whose values are represented at the

top of each figure. Note that the temporal marginal is

always negative in a subset of its domain, whereas the

behaviour of the spatial marginal depends on the value of

Fig. 4 The classes (43) and (45)

are suitably combined so that

the spatial marginal presents a

parabolic behaviour near the

origin, whereas the temporal

marginal presents a linear

behaviour near the origin. In

a both marginals always assume

positive values; in b the spatial

marginal is always positive,

whereas the temporal marginal

is negative in a subset of its

domain; in c the spatial

marginal is negative in a subset

of its domain, whereas the

temporal marginal is always

positive; in d both marginals are

negative in a subset of their

domain

Fig. 5 Bahaviour of the non

separable model (47) for

different values of the

parameters A and B, whose

values are represented at the top

of each figure. The spatial

marginal is always negative in a

subset of its domain, whereas

the behaviour of the temporal

marginal depends on the value

of the parameter B: as B goes to

zero, the temporal marginal

assumes negative values and the

above model is very close to a

separable model
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the parameter B. As B goes to zero, the spatial marginal

assumes negative values and the above model is very close

to a separable model: in this case, model (48) can be

considered as nuisance to a separable model.

In the following some non separable space-time iso-

tropic models belonging to the modified class of Rodrigues

and Diggle models given in (31) will be analyzed. In

particular, for the family defined hereafter:

qðx; t;A;BÞ ¼A



6:9e�7x2 � 5:9e�6x2
� 1 � 3t2

ðt2 þ 1Þ3

þ Bð5e�7x2 � 4e�6x2Þe�t;A[ 0;B[ 0;

ð49Þ

lim
x!1

qðx; tÞ ¼ lim
t!1

qðx; tÞ ¼ lim
kðx;tÞk!1

qðx; tÞ ¼ 0; moreover,

the spatial marginal always presents a parabolic behaviour

near the origin and always assumes negative values in a

subset of its domain. On the other hand, the temporal

marginal always presents a linear behaviour near the ori-

gin; indeed, according to the values of parameters on which

this family depends, there could be an inflection point, such

that the concavity is downwards in proximity of the origin:

this last behaviour is atypical for covariance functions

characterized by a linear behaviour near the origin (Posa

2023). Moreover, the temporal marginal can always

assume positive values, as well as negative values in a

subset of its domain by suitably varying the values of the

parameter B, which could be considered a nuisance

parameter; in fact, as B goes to zero, model (49) becomes

very close to a separable correlation function. In Fig. 7 it is

shown the bahaviour of model (49) for different values of

the parameters A and B, whose values are represented at the

top of each figure. For the following family,

qðx; t;A;BÞ ¼Ae�x 1 � 3t2

ðt2 þ 1Þ3

þ Bð5e�7x2 � 4e�6x2Þ 1 � 2t2

ðt2 þ 1Þ3
; A[ 0;B[ 0;

ð50Þ

lim
x!1

qðx; tÞ ¼ lim
t!1

qðx; tÞ ¼ lim
kðx;tÞk!1

qðx; tÞ ¼ 0; moreover

the temporal marginal always presents a parabolic beha-

viour near the origin and always assumes negative values

in a subset of its domain. On the other hand, the spatial

marginal always presents a linear behaviour near the ori-

gin: indeed, as in the previous case, according to the values

of parameters on which this family depends, there could be

an inflection point, such that the concavity is downwards in

proximity of the origin. Moreover, the spatial marginal can

always assume positive values, as well as negative values

in a subset of its domain by suitably varying the values of

the parameter B, which could be considered a nuisance

parameter; in fact, as B goes to zero, model (50) becomes

very close to a separable correlation function. In Fig. 8 it is

shown the bahaviour of model (50) for different values of

the parameters A and B, whose values are represented at the

top of each figure. For the family defined hereafter,

qðx; t;A;BÞ ¼Ae�x 1 � 3t2

ðt2 þ 1Þ3

þ Be�3x 1 � 2t2

ðt2 þ 1Þ3
; A[ 0;B[ 0;

ð51Þ

lim
x!1

qðx; tÞ ¼ lim
t!1

qðx; tÞ ¼ lim
kðx;tÞk!1

qðx; tÞ ¼ 0; moreover

the temporal marginal always presents a parabolic beha-

viour near the origin and always assumes negative values

Fig. 6 Bahaviour of the non

separable model (48) for

different values of the

parameters A and B, whose

values are represented at the top

of each figure. Note that the

temporal marginal is always

negative in a subset of its

domain, whereas the behaviour

of the spatial marginal depends

on the value of the parameter

B. As B goes to zero, the spatial

marginal assumes negative

values and the above model is

very close to a separable model
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in a subset of its domain. On the other hand, the spatial

marginal always presents a linear behaviour near the ori-

gin; moreover, the spatial marginal always assumes posi-

tive values. As the parameter B goes to zero, model (51)

becomes very close to a separable correlation function. In

Fig. 9 it is shown the bahaviour of model (51) for different

values of the parameters A and B, whose values are rep-

resented at the top of each figure. For the following family,

Fig. 7 Bahaviour of the non separable model (49) for different values

of the parameters A and B, whose values are represented at the top of

each figure. The spatial marginal always presents a parabolic

behaviour near the origin and always assumes negative values in a

subset of its domain. On the other hand, the temporal marginal always

presents a linear behaviour near the origin: indeed, according to the

values of parameters on which this family depends, there could be an

inflection point, such that the concavity is downwards in proximity of

the origin: this last behaviour is atypical for covariance functions

characterized by a linear behaviour near the origin. Moreover, the

temporal marginal can always assume positive values, as well as

negative values in a subset of its domain by suitably varying the

values of the parameter B, which could be considered a nuisance

parameter; in fact, as B goes to zero, model (49) becomes very close

to a separable correlation function

Fig. 8 Bahaviour of the non separable model (50) for different values

of the parameters A and B, whose values are represented at the top of

each figure. The spatial marginal always presents a linear behaviour

near the origin: indeed, according to the values of parameters on

which this family depends, there could be an inflection point, such

that the concavity is downwards in proximity of the origin. Moreover,

the spatial marginal can always assume positive values, as well as

negative values in a subset of its domain by suitably varying the

values of the parameter B, which could be considered a nuisance

parameter; in fact, as B goes to zero, model (50) becomes very close

to a separable correlation function

Stochastic Environmental Research and Risk Assessment (2023) 37:4941–4962 4957

123



qðx; t;A;BÞ ¼A



6:9e�7x2 � 5:9e�6x2
�


2e�2t � e�1:01t
�

þ Be�x2

e�t;A[ 0;B[ 0;

ð52Þ

lim
x!1

qðx; tÞ ¼ lim
t!1

qðx; tÞ ¼ lim
kðx;tÞk!1

qðx; tÞ ¼ 0; moreover

the spatial marginal always presents a parabolic behaviour

near the origin and it always assumes positive values for

the values of the parameter B[ 0:2, as it is shown in

Fig. 10a–c. On the other hand, the temporal marginal

always presents a linear behaviour near the origin, more-

over the temporal marginal always assumes positive values

for values of the parameter B[ 0:3. Note that both mar-

ginals assume negative values in a subset of their domain if

the parameter B is very close to zero; in particular, in this

last case, model (52) becomes very close to a separable

correlation function and the parameter B can be considered

a nuisance parameter. In Fig. 10 it is shown the bahaviour

Fig. 9 Bahaviour of the non

separable model (51) for

different values of the

parameters A and B, whose

values are represented at the top

of each figure. The temporal

marginal always presents a

parabolic behaviour near the

origin and always assumes

negative values in a subset of its

domain. On the other hand, the

spatial marginal always presents

a linear behaviour near the

origin; moreover, the spatial

marginal always assumes

positive values. As the

parameter B goes to zero, model

(51) becomes very close to a

separable correlation function

Fig. 10 Bahaviour of the non separable model (52) for different

values of the parameters A and B, whose values are represented at the

top of each figure. The spatial marginal always presents a parabolic

behaviour near the origin and it always assumes positive values for

the values of the parameter B[ 0:2, as it is shown in (a), (b) and (c).

On the other hand, the temporal marginal always presents a linear

behaviour near the origin, moreover the temporal marginal always

assumes positive values for values of the parameter B[ 0:3. Note

that both marginals assume negative values in a subset of their

domain if the parameter B is very close to zero; in particular, in this

last case, model (52) becomes very close to a separable correlation

function and the parameter B can be considered a nuisance parameter
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of model (52) for different values of the parameters A and

B, whose values are represented at the top of each figure.

4.2.1 A general class of space-time correlation functions

A general and wide description of several classes of space-

time correlation functions has been provided in this paper,

analyzing some merits and drawbacks of the same classes.

By utilizying and putting together all the previous results,

the following general class of space-time correlation

functions has been proposed:

qðx;t;HÞ¼AqS;1ðx;h1ÞqT ;1ðt;/1Þ
þBqS;2ðx;h2ÞqT ;2ðt;/2Þ;A[0;B[0;AþB¼1;

ð53Þ

where H ¼ ðA;B; h1;/1; h2;/2Þ and qS;1ðx; h1Þ; qS;2ðx; h2Þ;
qT ;1ðt;/1Þ; qT ;2ðt;/2Þ are, respectively, two valid and not

necessarily integrable spatial and two valid and not neces-

sarily integrable temporal correlation functions, not neces-

sarily constrained to be positive; hence the non separable

space-time correlation function q and the marginal correla-

tions can assume positive or negative values by properly

choosing the parameters values of the correlation functions

qS;� and qT ;� as in (22) and in (23) and the weights A and B.

The class (53) is characterized by an extremely simple

formalism and can be easily adapted to several case studies, as

shown through the graphical representation in the previous

Section. Indeed modelling and computational advantages of

this class can be easily summarized as follows:

• if all the correlation functions in (53) are integrable and

A ¼ B, then the classical Rodrigues and Diggle class is

obtained;

• if B ¼ 0 then the class (53) is separable; as already

underlined, classes of separable space-time correlation

functions, characterized by positive and negative values

and by various behaviour near the origin, can be

suitably obtained by using some relevant results

concerning the difference between covariance func-

tions, given in Posa (2021) and utilizing Theorem 1 (see

Figs.2,3 and 4);

• if qS;2 ¼ 1 or qT ;2 ¼ 1 in (53), then the modified

product-sum models (28) and (27), respectively, can be

obtained; these last classes of models are particularly

useful to describe correlation structures which do not

decay asymptotically to zero along space or time (see

Figs. 5 and 6);

• as previously underlined, the class (53) is flexible

enough to describe positive and negative correlation

structures, as well as various behaviours near the origin,

according to the choice of the correlation functions

involved and to the values of the parameters. In

particular, negative spatial correlation refers to phe-

nomena where the values of a variable tend to be

dissimilar when they are geographically proximate; this

situation is consistent with the wave-hole semivari-

ogram model specification, which resembles a second-

order temporal autoregressive structure having first-

order positive and second-order negative autocorrela-

tion. By nature, negative spatial correlation materializes

with a spatial competitive process. For example, it has

been discovered in forest competition for light (Mont-

gomery and Chazdon 2001), in the geographic distri-

bution of lung cancer rates (Hu et al. 2018) and in

georeferenced data (Jacob et al. 2011). Furthermore,

Gray and Shadbegian (2007) detect weak negative

spatial correlation in 102 industrial plant emissions of

sulfur dioxide and nitrogen oxides across the medium-

size United States cities;

• various asymptotic behaviours along space and time can

be described through the class of models (53): in

particular, if all the correlation functions involved in

(53) are integrable, then the same class decays asym-

totically to zero along any spatial-temporal direction, in

particular along space and time separately. Moreover, if

one or more than one of the correlation functions

involved in (53) is not integrable, then the class of

models (53) does not decay asymptotically to zero

along space or time;

• if all the correlation functions involved in (53) are

positive, then the same class of models can describe any

kind of separability.

4.2.2 Computational aspects

The choice of an appropriate model within the class (53)

can be supported by analyzing some main properties, such

as separability/non-separability, type of non-separability (if

the correlation model is assumed to be positive) and

behaviour near the origin of the spatio-temporal sample

correlation function; the related computational aspects

were developed in Cappello et al. (2020) and some statis-

tical tests can be used for this purpose (Cappello et al.

2018).

Regarding parameters estimation, as a starting point, it is

necessary to compute the sample correlation function bq.

Given the set A ¼ fðsi; tiÞ; i ¼ 1; 2. . .; ng of data locations

in space-time, where

Lðrs; rtÞ ¼ ðsþ hs; t þ htÞ 2 A; ðs; tÞ 2 A :f
hs 2 TolðrsÞ and ht 2 TolðrtÞg;

and TolðrsÞ, TolðrtÞ are, respectively, some specified tol-

erance regions around rs and rt and jLðrs; rtÞj is the car-

dinality of the set Lðrs; rtÞ, a suitable class of correlation
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functions qð�;HÞ belonging to (53), which depends on a

vector of parameters H, must be fitted to the empirical

correlation bq, as usually done. In particular, the vector of

parameters H can be estimated through the non-linear

weighted least squares technique, by minimizing the fol-

lowing function:

WðHÞ ¼
Xn

i¼1

�
bqðsi; tiÞ � qðsi; ti;HÞ

�2
wi;

where wi represents the weight of the i-th lag. These

weights are reasonably assumed to be equal to the number

of pairs related to the same lag.

After modeling the space-time empirical correlation, the

subsequent step is to evaluate the reliability of the fitted

model through the application of spatio-temporal cross-

validation and jackknife techniques.

5 Conclusions

In this paper some traditional families of space-time covari-

ance functions, proposed in the literature, have been properly

reviewed in order to enrich the same families with models

characterized by negative values in a subset of their domain.

Furthermore, the definition of separability has been revised in

order to enlarge the classical definition. These new families of

covariances present flexible and interesting features with

respect to most of the classical families of isotropic covariance

models. Indeed, as it has been underlined throughout the

paper, the Whittle–Matern family and the whole classes of

models obtained by applying the usual properties of the

covariance functions, are not able to describe correlation

structures which present negative values. From a practical

point of view, these new classes of isotropic covariance

models are characterized by an extremely simple formalism

and can be easily adapted to several case studies.

Appendix

Proof of Corollary 1 According to definition (3), if CSðxÞ[ 0 8x
and CT ðtÞ[ 0 8t:

d0ðx; tÞ ¼ Cðx; tÞCð0; 0Þ � Cðx; 0ÞCð0; tÞ ¼
¼

�
CSðxÞ þ CTðtÞ

��
CSð0Þ þ CTð0Þ

�

�
�
CSðxÞ þ CTð0Þ

��
CSð0Þ þ CTðtÞ

�
¼

¼ �
�
CSð0Þ � CSðxÞ

��
CTð0Þ � CTðtÞ

�
\0;

ð54Þ

taking into account one of the main properties of a

covariance function: CSð0Þ� jCSðxÞj and CTð0Þ� jCTðtÞj:
Indeed, under the hypothesis of second order stationarity,

the above index can be equivalently written as follows:

d0ðx; tÞ ¼ �cSðxÞcTðtÞ, where cS and cTðtÞ are the spatial

marginal and temporal marginal semivariogram, respec-

tively. h

Proof of Theorem 1 It is well known that (21) is a correlation

function if and only if its Fourier transform:

f ðx; kÞ ¼ 1

2p

Z þ1

�1
cosðxtÞ 1 � kt2

ðt2 þ 1Þ3
dt;

is a spectral density function. Note that:

1

2p

Z þ1

�1
cosðxtÞ 1 � kt2

ðt2 þ 1Þ3
dt

¼ e�jxj

16

�
x2ð1 þ kÞ þ xð3 � kÞ þ 3 � kÞ

�
;

hence it is integrable and f ðx; kÞ� 0 if and only if

� 1

5
� k� 3: The class of parametric correlation functions (21)

always presents a parabolic behaviuor in proximity of the origin,

moreover it is flexible enough because it can model positive corre-

lation structures as well as correlation structures which can assume

negative values in a subset of their domain; indeed, according to the

value of the parameter k, it can be always positive if � 1

5
� k� 0; and

can assume negative values in a subset of its domain if 0\k� 3: For

t[ 0, qðtmÞ ¼
�4k3

27ðk þ 1Þ2
is the minimum value assumed by (21),

where tm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ 3

2k

r

. As a consequence, as k increases, qðtmÞ
becomes more and more negative; in particular, according to the

results of Theorem 1, the lowest value of qðtmÞ is obtained for k ¼ 3,

i.e., qðtmÞ ¼ �0:25: h

Proof of Corollary 4 Note that

Z 1

0

CSðx; a;A;B; a; bÞCTða; tÞlðaÞda

¼ xðAb� BaÞ þ tðA� BÞ þ A� B

ðaxþ t þ 1Þðbxþ t þ 1Þ ;

ð55Þ

hence, taking into account the hypotheses on the parame-

ters, i.e., Ab� Ba[ 0;A� B[ 0; expression (55) is

always positive. h

Proof of Corollary 6 Let: Ab� Ba ¼ d1 [ 0; Aa� Bb ¼
d2 [ 0; A� B ¼ d3 [ 0; then:

Z 1

0

CSðx;a;A;B;a;bÞ;CTða; tÞlðaÞda¼

¼
�
abd1x

2 þd2t
2 þ2d1 þd2Þxþ½d1ðaþbÞþabd3�x2 þd3ðt2 þ1Þ

2ðaþbÞðabx2 þ t2 þ1Þxþa2b2x4 þ½ða2 þb2Þt2 þa2 þb2 þ4ab�x2 þðt2 þ1Þ2
;

ð56Þ
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hence taking into account the hypotheses on the parame-

ters, expression (56) is always positive.
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