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Abstract
Australian summer heat events have become more frequent and severe in recent times. Temperature-duration-frequency

(TDF) curves connect the severity of heat episodes of various durations to their frequencies and thus can be an effective

tool for analysing the heat extremes. This study examines Australian heat events using data from 82 meteorological

stations. TDF curves have been developed under stationary and non-stationary conditions. Generalised Extreme Value

(GEV) distribution is considered to estimate extreme temperatures for return periods of 2, 5, 10, 25, 50 and 100 years.

Three major climate drivers for Australia have been considered as potential covariates along with Time to develop the non-

stationary TDF curves. According to the Akaike information criterion, the non-stationary framework for TDF modelling

provides a better fit to the data than its stationary equivalent. The findings can be beneficial in offering new information to

aid climate adaptation and mitigation at the regional level in Australia.

Keywords Annual maximum temperature � Climate change � Climate drivers � Generalised extreme value �
Non-stationary � Temperature-duration-frequency

1 Introduction

Intergovernmental Panel on Climate Change (IPCC) esti-

mated that the mean global temperature would exceed the

higher limit of increase in temperature adopted in the Paris

agreement by the 2040s (IPCC 2018). It was also reported

in 2020 that the temperature in Australia has increased by

1.44 ± 0.24 �C since 1910 (CSIRO and Australian

Government (Bureau of Meteorology) 2020). Generally,

changes in maximum and minimum temperatures impact

the environment more than mean temperature (Sein et al.

2018) and adversely influence the events related to extreme

temperature (Chowdary et al. 2014). Extreme temperature

triggers more natural hazards, i.e. droughts, bushfires,

heatwaves, cyclones, and negatively affects human health,

agriculture, ecosystems and infrastructure (Omer et al.

2020; Suman and Maity 2020). Therefore, predicting

extreme temperatures for a particular duration and return

period is important in many aspects of our lives. Some are

relevant to health, energy and agriculture, urban planning,

and ecology management. In this context, the design tem-

peratures for the selected durations and return periods can

be estimated following the same principle of rainfall

Intensity–Duration–Frequency (IDF) curves, which have

been utilised for many years for the design and manage-

ment of hydrological infrastructure as well as flood risk

management (Yan et al. 2019). Extreme value theory has

been accepted globally to construct IDF curves by fitting

theoretical probability distribution functions to annual
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maximum rainfall time series (Cheng and Aghakouchak

2014; Yan et al. 2020).

Most of the works found in the literature on IDF curves

are based on the temporal stationarity concept (Singh and

Zhang 2007; Jakob 2013), implying that the occurrence

probability of precipitation events will not change signifi-

cantly over time. However, in reality, the frequency,

magnitude and duration of hydroclimatic extremes, i.e.

extreme rainfall (Galiatsatou and Iliadis 2022), floods

(Berghuijs et al. 2019), droughts (Spinoni et al. 2017), and

heatwaves (Lorenz et al. 2019) fluctuates beyond the sta-

tionary envelope of variability. Furthermore, it is also

observed that the IDF curve considering stationarity, often

underestimates the return level of rainfall (Sugahara et al.

2009; Cheng and Aghakouchak 2014). Therefore, to

increase the reliability of IDF curves, it is suggested to

incorporate the non-stationarity of the distribution param-

eters in hydrological models (Sarhadi and Soulis 2017),

especially at their extreme levels (Ganguli and Coulibaly

2017).

In the construction of IDF curves, covariates are gen-

erally introduced to apprehend the non-stationarities in

time series. Any drivers that are correlated to the selected

events can be considered as a candidate for such covariates

(Katz et al. 2002; Hundecha et al. 2008), which can be low-

frequency climatological signals (Coles 2001) as well as

time (Sugahara et al. 2009; Yilmaz and Perera 2014). In

this approach, the parameters of the Generalised Extreme

Value (GEV) distribution are expressed as a linear or non-

linear function of covariates (Kwon and Lall 2016; Sarhadi

and Soulis 2017). This approach has been effectively

employed in extreme rainfall events around the world

(Ouarda et al. 2019), including Australia (Yilmaz and

Perera 2014).

Although there have been extensive works carried out

on the development of IDF curves all over the globe, very

limited works are found in the literature on the construction

of Temperature-Duration-Frequency (TDF) curves, which

relate temperature intensities corresponding to varying

durations and return periods (Wang et al. 2013; Ouarda and

Charron 2018). Moreover, no TDF curves have been con-

structed for Australia till date.

In this study, time series data of the daily maximum

temperature of Australia at selected stations are analysed,

and the best climate-informed covariates are selected from

the most influential covariates for the annual maximum

temperature (AMT) to characterise the physical process

related to the dynamics of the extreme temperature. For

this purpose, three climate drivers (CDs), namely—El Niño

Southern Oscillation (ENSO), Southern Annular Mode

(SAM) and Indian Ocean Dipole (IOD), are selected along

with the Time as potential covariates. After that, stationary

TDF curves are constructed following the frequency

analysis method, already adopted in the construction of

IDF curves, for different durations and return periods. The

present work also extends these stationary TDF curves to

non-stationary conditions according to the framework

outlined by Ouarda and Charron (2018). Then, based on

the Akaike Information Criterion (AIC) value, the best

model for each selected station is identified, and the TDF

curves are constructed under stationary and non-stationary

conditions. Finally, the influence of non-stationarity on the

TDF curves is assessed.

2 Study area and data

The whole Australia is considered as the study area except

Tasmania (Fig. 1). Australia experiences a variety of cli-

mates across the country because of a wide range of geo-

graphical extent consisting of tropical-influenced climate in

the northern and north-eastern zones, Mediterranean-like

climate in the southern coastal zones and desert climate in

most of the central interior zones (Turney et al. 2007).

2.1 Temperature time series

All the recorded daily maximum temperatures across

Australian weather stations were examined for inconsis-

tency, outliers and gaps. The stations, which had less than

5% missing data over the last five decades covering the

time period from 1969 to 2021, were selected for analysis.

According to the above mentioned criterion, 82 weather

stations in Australia (out of 1415 weather stations) were

initially selected as candidate stations. The gaps in the

daily maximum temperature time series in the initially

Fig. 1 Study area and selected stations (stations marked with black

circles are described in detail in this paper)

4460 Stochastic Environmental Research and Risk Assessment (2023) 37:4459–4477

123



selected stations were spatially interpolated with the same

time series data from surrounding weather stations located

within a 30 km radius. The locations of the initially

selected temperature stations are shown in Fig. 1. For the

subsequent analysis, a total of 12 stations were selected,

two from each of the six Australian states (New South

Wales, Queensland, The Northern Territory, Western

Australia, South Australia and Victoria) as shown in Fig. 1.

The annual maximum daily temperatures were calculated

for each selected weather station from the recorded daily

maximum temperature data. Particular attention was given to

the summer season of Australia, which is considered to be

December to February, and the extended summer is considered

to be from November to March. Therefore, the annual maxi-

mum daily temperature calculated from each calendar year

would have been divided into summer or extended summer

seasons into two consecutive years. Therefore, the hydrological

year in Australia, starting from April to March, instead of the

calendar year, was considered in this study to calculate the

annual maximum daily temperature.

2.2 Covariates

Australia is extremely susceptible to changes in the ocean–

atmosphere system. The inter-annual dynamics of Aus-

tralia’s seasonal weather are regulated by the climatic

variability of three neighbouring oceans—the Pacific,

Indian, and Southern Oceans (Cai et al. 2014; Maher and

Sherwood 2014; Oliveira and Ambrizzi 2017), known as

CDs. Three primary CDs strongly influence Hydroclimate

in Australia—The El Niño Southern Oscillation (ENSO)

(Power et al. 1999; Cai and Van Rensch 2012), Southern

Annular Mode (SAM) (Thompson et al. 2000; Risbey et al.

2009) and Indian Ocean Dipole (IOD) (Ummenhofer et al.

2009; Ummenhofer et al. 2011).

Therefore, in this study, three physical processes, in which

two of them from the sea surface temperature—ENSO, IOD

and one from air pressure—SAM, and also Time, were con-

sidered to be one of the potential covariates to identify the best

covariate for developing non-stationary TDF curves.

2.2.1 El Niño-Southern Oscillation (ENSO) cycle

The El Nino-Southern Oscillation (ENSO) is considered to

be a major CD over many regions of the globe (Ropelewski

and Halpert 1988; Halpert and Ropelewski 1992), includ-

ing Australia (Nicholls 1985). The SST index is considered

the monthly sea surface temperature anomaly over

NINO3.4 (17�E–120�W, 5�S–5�N) region (Bellenger et al.

2014) and was used as a covariate representing ENSO.

Nino3.4 was obtained from https://psl.noaa.gov/gcos_

wgsp/Timeseries/Nino34.

ENSO is considered to be a strong CD in Australia

(Power et al. 2006; Risbey et al. 2009; Arblaster and

Alexander 2012), especially in southeastern Australia

(Nicholls and Lucas 2007) and northeast Australia (Min

et al. 2013; Cowan et al. 2014; Perkins et al. 2015), but

weak in the far southeast of Australia (Parker et al. 2013;

Boschat et al. 2015). In Australia, it has been observed that

the strength of ENSO decreases along a north–south

gradient.

2.2.2 Indian Ocean Dipole (IOD)

The Indian Ocean Dipole (IOD) is represented with Dipole

Mode Index (DMI) (Saji et al. 1999; Meyers et al. 2007;

Liu et al. 2014) and calculated as the difference of SST

anomalies in the western equatorial Indian Ocean (50 to

70�E, 10�S to 10�N) minus those in the east (90 to 110�E,
10�S to 0� N). The monthly DMI was derived from https://

psl.noaa.gov/gcos_wgsp/Timeseries/DMI/ and considered

as a covariate that represents IOD.

IOD has been identified as the major driver for Eastern

Australia (Meyers et al. 2007; Risbey et al. 2009; Cai et al.

2011) and has a positive correlation with maximum tem-

peratures during winter and spring (May and November)

(Min et al. 2013; White et al. 2013).

2.2.3 SAM

The Southern Annular Mode (SAM) describes the north–

south movement of the westerly wind belt that circles

Antarctica and is a monthly mean sea level pressure

(MSLP) anomaly time dataset. The data for this index were

obtained from http://www.nerc-bas.ac.uk/icd/gjma/sam.

html.

SAM considerably impacts the rainfall in Australia

(Hendon et al. 2007), particularly in southern Australia.

SAM is even associated with 10–15% of the rainfall in

southwest Australia. SAM also affects the temperature in

Australia and is identified as the main CD for the south-

western land division in western Australia (Guthrie 2021).

2.2.4 Time

Time has been utilised as a covariate to investigate the non-

stationarity in the IDF curves all over the world (Sugahara

et al. 2009; Yilmaz and Perera 2014). Therefore, in this

study, Time was also considered as one of the potential

covariates to construct the non-stationary TDF curves. The

hydrological years of the AMT series were transformed

into a series of integers from 1 to the number of years of

the selected time duration and considered as a covariate

representing Time.
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3 Methodology

In this study, firstly, the non-stationarity of the temperature

data series was assessed to justify the requirements of the

incorporation of the non-stationarity in the construction of

TDF curves. Then, the correlations between the selected

three physical processes—ENSO, SAM and IOD were

computed to identify the best covariate. In this approach,

Time was also used as one of the covariates. Different non-

stationary models were constructed considering different

covariates stated earlier as well as their combination.

Finally, Time or any of the selected physical processes

(ENSO, IOD and SAM) was considered a covariate in

models with one covariate.

Similarly, Time and one climate index (Time—ENSO,

Time—IOD and Time—SAM) were adopted in models

with two covariates. First, the best model for the AMT

series was chosen based on the Akaike information crite-

rion (AIC). After identifying the best non-stationary model,

the non-stationary design temperature was computed using

the parameters of the best non-stationary model.

GEV distribution was selected to develop both station-

ary and non-stationary TDF curves as it is widely used to

model climatic extremes (Ouarda and Charron 2018;

Ouarda et al. 2020; Haddad 2021; Devi et al. 2022). Under

the condition of stationary, three parameters of the GEV

distributions, l, r, n, which are the location, scale and

shape parameters, respectively, were assumed to be con-

stant, whereas, under non-stationary conditions, the

parameters were expressed as a linear or quadratic function

of the covariate(s). However, the shape parameter was

assumed to be constant for all the cases since the reliability

of modelling the shape parameter is low (Cheng et al.

2014; Ganguli and Coulibaly 2017). The distribution

parameters were calculated using the maximum composite

likelihood method utilising the optimisation function

fmincon in MATLAB. Finally, the stationary and non-sta-

tionary TDF curves were compared to assess the influence

of non-stationarity in the construction of TDF curves.

3.1 Detection of non-stationarity in temperature
time series

All the historical records of AMT at the selected stations

over the selected time period were tested for non-stationary

signals. An augmented Dickey-Fuller (ADF) test was

applied to the AMT data series for each of the selected

stations. In this test, the null hypothesis assumes that the

data series is non-stationary and thereby considered sta-

tionary when the null hypothesis is rejected at the selected

significance level.

3.2 Correlation between climate drivers (CDs)
and temperature time series

The relations between the AMT for all the selected stations

and CDs—ENSO, SAM and IOD were tested using cor-

relation analyses considering both concurrent and time-

lagged relationships.

The covariates representing CDs in this study were

computed as the moving averages of corresponding CDs

over three consecutive months starting from April and end-

ing in March of the next year, covering the full hydrological

year and denoted in this study by the first letter of the three

months (AMJ, MJJ, JJA, JAS, ASO, SON, OND, NDJ, DJF,

JFM). To determine the appropriate season of the CD acting

as the predictor of the AMT, correlations between seasonal

CDs and AMTs were explored. Best covariates and the

suitable seasonwere selected based on the higher correlation

values between the AMT series and CDs averaged over the

selected season. This selection process was also validated

graphically by plotting all the correlations between the AMT

time series and all the CDs for all seasons.

3.3 Construction of TDF curves

(i) General TDF relationship

The general TDF relationship can be expressed by fol-

lowing the formulation for IDF curves proposed by Rossi

and Villani (1994) and Koutsoyiannis et al. (1998):

tR dð Þ ¼ a Rð Þ
b dð Þ ð1Þ

where d is the duration and R is the return period. In this

formulation, the dependency of return level, tR(d) on R and

d can be modelled separately. The distribution of maxi-

mum average temperature T(d) governs the function a(R)

that defines the TDF curves, which remain parallel for

various return periods. The function b(d) controls the shape

of the TDF curves and is given as:

b dð Þ ¼ d þ hð Þg ð2Þ

where h and g are the shape parameters subjected to the

boundary conditions of h[ 0 and 0\g\1.

If the probability distribution of T dð Þ is denoted by

FTðdÞ t; dð Þ, where t indicates the maximum average tem-

perature and d represents the durations, Y ¼ T dð ÞbðdÞ,
which is the scaled maximum average temperature dis-

tributed as FTðdÞ t; dð Þ (i.e., FTðdÞ t; dð Þ ¼ FY yRð Þ ¼ 1� 1
R).

Consequently, the expression a Rð Þ is given by:

a Rð Þ ¼ F�1
y 1� 1

R

� �
ð3Þ
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(ii) Stationary TDF curves

The GEV distribution is the most widely used probability

distribution that is used to model climate extremes, and

hence, the GEV distribution is used here to model T(d). The

cumulative distribution function of the GEV is given by:

F xð Þ ¼ exp � 1þ j
x� l

r

� �h i�1=k� �
; ð4Þ

where l; r and j are the location, scale, and shape param-

eters, respectively. F xð Þ is defined for 1þ j x�lð Þ
r

[ 0,

where r[ 0.

The general stationary TDF relationship based on the

GEV distribution can be expressed as (Ouarda and Charron

2018):

tR dð Þ ¼ a Rð Þ
b dð Þ ¼

l� r
j 1� log 1� 1

R

� 	�j
 �� 

d þ hð Þg ð5Þ

(iii) Non-stationary TDF curves

To incorporate non-stationarity in Eq. (5), the three parame-

ters of the GEV distribution described in Eq. (4) are considered

to be dependent on time to incorporate the non-stationarity in

TDF curve development and Eq. (4) can be expressed as:

F xð Þ ¼ exp � 1þ j tð Þ x� l tð Þ
r tð Þ

� �� ��1=k( )
; for 1

þ j tð Þ x� l tð Þð Þ
r tð Þ [ 0 ð6Þ

In this exploratory study, the location and scale

parameters are considered to vary with covariates linearly

or quadratically, while all other shape parameters, h, g and

j for the GEV distribution are assumed to be constant

(Katz et al. 2002; Adlouni and Ouarda 2009).

The vectors of the distribution parameters w = (l, r, h,
g) and w = (l0, l1, …, r0, r1, …, j, h, g) are estimated

using the maximum composite likelihood for stationary

and non-stationary TDF curves, respectively.

4 Results and discussion

The results for 12 stations (two stations from each state in

Australia and shown as black dots in Fig. 1) are presented

in greater detail (out of the 82 selected stations) in the

following sections.

4.1 Detection of non-stationarity

The augmented Dickey-Fuller (ADF) test was applied to

each AMT data series (covering 1969–2021) separately for

each selected station. Based on the ADF tests, the test

statistics and p-value for 12 stations are summarised in

Table 1. Four stations showed ADF test statistics below the

critical value (- 3.507), and the p-values were less than

0.05 at the 95% confidence level, as shown in boldface in

Table 1. For these stations, the null hypothesis was rejec-

ted, and the data series was considered stationary. There-

fore, the null hypothesis could not be rejected for the rest of

the stations, and the non-stationarities in the data series

were detected. Although all the available stationarity tests

have some drawbacks and are not decisive alone (Cai et al.

2009a, b), the results of ADF tests here highlighted the

presence of the non-stationarity in the AMT time series and

consequently emphasised the importance of incorporating

the non-stationarity in the construction of TDF curves.

4.2 Correlation analysis and covariate selection

The correlations between the AMT and the ENSO, IOD

and SAM for all the seasons are presented in Supplemen-

tary Section (Figures S1, S2 and S3).

The correlations between ENSO and the AMT were the

strongest and statistically significant during the spring and

summer seasons, particularly in the eastern regions of

Australia. The positive influence of the ENSO on the

temperature was weaker at the beginning of the hydro-

logical year and increased gradually over the year. At the

end of the hydrological year, this influence became weak,

even negative for some stations.

Similar to the ENSO, positive influences of IOD on the

temperatures were also identified all over Australia. This

influence was enhanced during the spring season and was

statistically significant in the southeastern region of

Table 1 Summary of ADF test statistics and p-values for selected 12

stations in Australia

Station ID Station p-value Test statistics

066037 Sydney airport AMO 0.465 - 2.252

063005 Bathurst agricultural station 0.088 - 3.246

014015 Darwin airport 0.052 - 3.493

015590 Alice springs airport 0.008 - 4.244

009021 Perth airport 0.004 - 4.579

012038 Kalgoorlie-boulder airport 0.050 - 3.506

040004 Amberley AMO 0.006 - 4.364

036007 Barcaldine post office 0.047 - 3.532

018012 Ceduna AMO 0.454 - 2.275

023034 Adelaide airport 0.060 - 3.424

087031 Laverton RAAF 0.194 - 2.829

076064 Walpeup research 0.121 - 3.088

Bold font indicates a p-value smaller than 0.05
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Australia. However, at the end of the hydrological year, the

impact of IOD also became weaker and negative at some

stations.

Considering the correlation values between the CDs

averaged over different seasons and the temperature, one

CD was selected for each station along with the occurring

season, as shown in Fig. 2.

One of the main findings of this study was that ENSO in

spring acted as the dominant CD for the stations located in

the inland NSW, Queensland and Western Australia, which

is similar to the findings by a few other researchers (Min

et al. 2013). On the other hand, IOD had the strongest

relations with temperature along the east coast and almost

all stations in the coastal and inland regions of Victoria and

South Australia. It should be noted that there is a signifi-

cant decrease in rainfall across southern Australia as the

frequency of positive IOD events has increased, which

contributed to significant bushfires over southeastern

regions of the continent (Cai, Cowan and Raupach, 2009;

Cai et al. 2009a, b).

Although SAM in Autumn had strong relations with

stations in NSW and Victoria, ENSO and IOD were the

dominant CDs. Furthermore, one of the Department of

Primary Industries and Regional Development studies

reported a decline in rainfall due to SAM in southern

Australia, particularly in the southwest region (Guthrie

2021). However, SAM appeared as the selected CD at the

stations located in the coastal regions of Western Australia.

In the cases of stations located in the Northern Territory,

the temperature recorded at the station on the coastal side

was associated with ENSO, while at the inland, it was

correlated with the IOD.

The Pearson correlation coefficient values for the AMT

series from April–May–June (AMJ) to January–February–

March (JFM) of the same hydrological year recorded at 12

stations are presented in Fig. 3. These illustrations vali-

dated the selection of the best CDs and seasons presented

in Fig. 2. Selected CDs with the seasons for the selected 12

stations are summarised in Table 2.

4.3 Stationary TDF

Figure 4 illustrates the stationary TDF curves based on

GEV distribution as described in the methodology sec-

tion. Estimated temperatures were plotted against the

selected durations (1, 2, 3, 4, 5, 6, 7 and 10 days), with

each curve indicating a different return period such as 2, 5,

10, 25, 50 and 100 years at stationary scale. These TDF

curves demonstrated a significant rise in temperature with

higher return periods and decreased with the increase in

duration for all the selected stations.

4.4 Non-stationary TDF surfaces

For each TDF model and station, the maximal indepen-

dence log-likelihood, the CL-AIC statistic, and the model

parameters are summarised in Table 3. According to the

values obtained by the AIC criterion from each model, the

table only shows the optimal parameter relationship among

the constant, linear and quadratic relationships to the

covariate or the combinations of the covariates.

The CL-AIC statistic and log-likelihood suggested that

the Time and covariate individually or combinedly

increased the goodness-of-fit compared to the stationary

model for all the stations. It’s worth noting that employing

a non-stationary model or the GEV enhances the log-

likelihood in every case. However, the performances of

different stationary and non-stationary TDF models were

compared by the CL-AIC values, which were penalised due

to the inclusion of more variables and thereby provided

more reliable results.

Most stations (9 out of 12) with a combination of Time

and CD as covariates showed the best goodness-of-fit. This

suggested that the combination of the two covariates con-

siderably impacted severe temperatures. Time was more

prominent than CDs and qualified as the best covariate in

cases of Sydney Airport AMO and Laverton RAAF sta-

tions. On the other hand, for Barcaldine Post Office, the

influence of covariate alone was stronger than Time or the

combination of Time and CD as the covariate.

4.4.1 Non-stationary TDF surfaces—One covariate (Time
or CD)

Figures 5 and 6 present the non-stationary TDF graphs

with the model considering Time and CD as a covariate for

the typical stations. For all the illustrated stations in this

study, non-stationary TDF models with Time as a covariate,

either scale or location parameters were found to be varied

linearly with time, except for Darwin, Alice Springs

Fig. 2 Selected climate drivers (CDs) with season based on the

correlations between AMT and the CDs (ENSO, IOD and SAM)

during 1969–2021
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Airport, Adelaide Airport, Walpeup Research, where either

of the parameters varied quadratically with time. TDF

curves with Time as a covariate for Kalgoorlie-Boulder

Airport stations linearly varied with time but were not

parallel to each other for different return periods. It needs

further investigation, which is left for future research. In

the case of Perth stations, the estimated temperature

increased with return periods and decreased with duration

but did not vary significantly with time. However, in the

case of non-stationary TDF models with CDs as covariates,

the scale or location parameters varied quadratically with

selected CDs for most stations.

Consequently, the TDF curves varied parabolically with

CDs. Exceptions were observed for Sydney Airport AMO,

Alice Spring Airport, Amberly AMO, Adelaide Airport and

Walpeup Research stations, where either scale or the

location parameter changed linearly with CDs and exhib-

ited linear TDF curves for different return periods and

durations. These characteristics of non-stationary TDF

models can be seen distinctively in Figures S4—S7 (in

supplementary sections).

4.4.2 Non-stationary TDF surfaces—Two covariates (Time
and CDs as covariates)

For non-stationary TDF models incorporating two covari-

ates, five variables are required to be present in the graph.

Therefore, in this paper, non-stationary TDF surfaces are

presented in two ways—either the duration is kept fixed

and TDF surfaces for different return periods are presented,

or return period is kept fixed and TDF surfaces for different

durations are illustrated. Figure 7 shows the TDF surfaces

for 5-day duration and all the return periods considered in

this study, whereas Fig. 8 presents the TDF surfaces for

50-year return period and all the considered durations.

4.5 Impacts of non-stationarity on TDF curves

The temperature quantiles calculated at a given time are

significantly affected by incorporating one or more

covariates. Figure 9 shows the graphs of the 50-year

quantiles versus the duration for the stationary TDF model

and the non-stationary TDF models considering different

Time and covariates representing different scenarios for

each station. The non-stationary quantiles for the first and

last years of the study period were computed with Time

covariate and denoted as Time (1970) and Time (2021) to

display the quantiles’ temporal movement. The years with

the highest and lowest values of the selected seasonal CDs

throughout the period 1970–2021 were selected for ‘‘CD’’

and ‘‘Time ? CD’’ non-stationary models to highlight the

influence of the extreme conditions on the estimated

quantiles. All the graphs illustrated in Fig. 9 use the model

that provides the greatest overall fit.

In all stations, it was observed that the influence of the

duration on the difference in quantile estimation between

the stationary and non-stationary models was negligible.

For all the 12 stations, the stationary model always over-

estimated and underestimated the return levels in the case

of the non-stationary models with the earliest (1970) and

latest (2021) years of the study period as Time covariate,

respectively. The stationary model overestimated upto

4.2 �C compared to the former cases, while underestimated

upto 2.3 �C for the latter cases at all the12 stations. The

only exception was for the Perth Airport station, where

Time covariate had no significant influence. This can be

explained by the fact that the Perth Airport station showed

no non-stationarity (Table 1) and no temporal trend in the

bFig. 3 Correlations between AMT and CDs. The blue, black and

green lines represent correlations between AMT and ENSO, IOD and

SAM, respectively

Table 2 Pearson correlation coefficients between the AMT series and the selected seasonal climate index

Station ID Station name Latitude Longitude Climatic driver and season Correlation coefficient value

066037 Sydney airport AMO - 33.95 151.17 IOD(JJA) 0.25

063005 Bathurst agricultural - 33.43 149.56 ENSO(SON) 0.37

014015 Darwin airport - 12.42 130.89 ENSO(AMJ) 0.43

015590 Alice springs airport - 23.80 133.89 IOD(SON) 0.38

009021 Perth airport - 31.93 115.98 SAM(SON) - 0.21

012038 Kalgoorlie-boulder airport - 30.78 121.45 SAM(MJJ) 0.29

040004 Amberley AMO - 27.63 152.71 IOD(OND) 0.43

036007 Barcaldine post office - 23.55 145.29 ENSO(SON) 0.44

018012 Ceduna AMO - 32.13 133.70 IOD(SON) 0.25

023034 Adelaide airport - 34.95 138.52 IOD(ASO) 0.24

087031 Laverton RAAF - 37.86 144.76 IOD(SON) 0.33

076064 Walpeup research - 35.12 142.00 IOD(ASO) 0.25
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Fig. 4 Stationary TDF curves

for 2, 5, 10, 25, 50 and

100 years return periods

Stochastic Environmental Research and Risk Assessment (2023) 37:4459–4477 4467

123



Table 3 Summary of parameters for the selected models and their error estimation

Station Model lind CL-AIC Model parameters

Sydney airport AMO Stationary - 881.47 1791.45 l;r

Time - 866.07 1775.35 ll ¼ l0 þ l1T ; r

CD - 873.53 1787.97 ll ¼ l0 þ l1I, r

Time ? CD - 863.46 1780.83 ll ¼ l0 þ l1I þ l2T ; r

Bathurst agricultural station Stationary - 939.29 1917.13 l;r

Time - 851.05 1751.47 ll ¼ l0 þ l1T , r

CD - 895.64 1854.87 ll ¼ l0 þ l1E þ l2E
2, r

Time 1 CD - 808.35 1692.00 ll ¼ l0 þ l1E þ l2E
2 þ l3T , r

Darwin airport Stationary - 324.62 676.26 l;r

Time - 262.29 572.28 ll ¼ l0 þ l1T þ l2T
2, r

CD - 287.11 625.63 ll ¼ l0 þ l1E þ l2E
2, r

Time 1 CD - 234.22 525.28 ll ¼ l0 þ l1E þ l2T þ l3T
2, r

Alice springs airport Stationary - 675.70 1390.62 l;r

Time - 642.08 1358.22 ll ¼ l0 þ l1T

rl ¼ r0 þ r1T þ r2T
2

CD - 623.41 1304.61 ll ¼ l0 þ l1I

rl ¼ r0 þ r1I

Time 1 CD - 621.70 1304.38 ll ¼ l0 þ l1I þ l2T ;r

Perth airport Stationary - 763.95 1557.98 l;r

Time - 763.95 1567.02 l;r1 ¼ r0 þ r1T

CD - 736.19 1526.39 ll ¼ l0 þ l1Sþ l2S
2

rl ¼ r0 þ r1Sþ r2S
2

Time 1 CD - 732.25 1524.26 ll ¼ l0 þ l1Sþ l2S
2 þ l3T

rl ¼ r0 þ r1Sþ r2T

Kalgoorlie-boulder airport Stationary - 791.51 1616.49 l;r

Time - 774.88 1588.99 l;r1 ¼ r0 þ r1T

CD - 764.00 1582.79 ll ¼ l0 þ l1Sþ l2S
2, r

Time 1 CD - 741.39 1554.90 ll ¼ l0 þ l1Sþ l2S
2 þ l3T

rl ¼ r0 þ r1Sþ r2T

Amberley AMO Stationary - 844.36 1728.03 l;r

Time - 798.10 1649.35 ll ¼ l0 þ l1T ;r

CD - 806.68 1665.05 ll ¼ l0 þ l1I;r

Time 1 CD - 779.77 1623.46 ll ¼ l0 þ l1I þ l2T ;r

Barcaldine post office Stationary - 733.20 1505.18 l;r

Time - 721.59 1498.50 ll ¼ l0 þ l1T ;r

CD - 635.98 1344.19 ll ¼ l0 þ l1E þ l2E
2

rl ¼ r0 þ r1E þ r2E
2

Time ? CD - 628.05 1353.58 ll ¼ l0 þ l1E þ l2E
2 þ l3T þ l4T

2

rl ¼ r0 þ r1E þ r2T

Ceduna AMO Stationary - 934.32 1898.72 l;r

Time - 924.77 1890.45 ll ¼ l0 þ l1T ;r

CD - 919.05 1888.54 ll ¼ l0 þ l1I þ l2I
2, r

Time 1 CD - 892.92 1861.80 ll ¼ l0 þ l1I þ l2I
2 þ l3T þ l4T

2

rl ¼ r0 þ r1I þ r2T
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AMT during the study period (Figure S8 in the supple-

mentary section).

In general, for all the stations, the difference between

the stationary and non-stationary models incorporating the

CDs as covariates decreased with the return period, as

shown in the supplementary section (Figures S9–S13).

Also, the stations where IOD was selected as the CD

showed a significant difference between stationary and

non-stationary models compared to the other stations

where ENSO and SAM were selected as the CDs.

The average difference between the stationary model

and the non-stationary models considering the CD alone as

covariate ranged from - 3.0 to 1.5 �C (? CD) and - 0.6

to 3.4 �C (– CD). In contrast, this difference became - 1.9

to 2.2 �C (‘‘Time ? CD’’) and - 1.6 to 4.7 �C (‘‘Time–

CD’’) in the case of the combination of two covariates—

Time and selected CD.

Although Time had the overall dominance as a covariate

on the computed quantiles for all the return periods com-

pared to the selected climate indices, different covariates or

combinations of them yielded the maximum quantiles for

different return periods and stations. It should be noted that

non-stationary TDF curves should be adopted in practice

irrespective of its difference with the stationary TDF curves.

5 Conclusion

In this study, the formulation of stationary and non-sta-

tionary TDF curves was based on temperature time series

from 82 weather stations located in Australia using the

GEV distribution. Initially, the augmented Dickey-Fuller

(ADF) test was conducted to identify non-stationarity in

temperature time series and non-stationarity was found to

be present in the data series.

The long-range relationships between the seasonal CDs

(ENSO, IOD and SAM) and temperature data from 1969 to

2021 were investigated using the Pearson correlation

coefficient to find out the best covariates in non-stationary

TDF models. The magnitude of correlation coefficients of

ENSO increases towards the east of Australia, and these

coefficients are significant during SON and DJF seasons.

The AMT observed at stations in the southeastern region of

Australia, especially in the inland and coastal region of

Victoria and South Australia, showed a significant corre-

lation with IOD during SON. SAM showed a strong cor-

relation with the annual temperature at the stations located

in the coastal regions of Western Australia.

Stationary TDF curves showed an increase and decrease

in design temperatures with higher return periods and an

increase in duration, respectively. In the case of non-sta-

tionary TDF models, the location and scale parameters

were modelled as being dependent on time and climate

indicators for the selected stations. Inclusion of the selected

covariates in non-stationary TDF models enhanced good-

ness-of-fit compared to the stationary TDF model for the

corresponding station. Similar results were found by

Ouarda and Charron (2018) where the influence of the

climate oscillation pattern was found to be more prominent

than the temporal trend. Furthermore, the best goodness-of-

fit of the TDF model based on the AIC values was obtained

with a combination of both covariates Time and selected

Table 3 (continued)

Station Model lind CL-AIC Model parameters

Adelaide airport Stationary - 885.62 1803.53 l;r

Time - 867.75 1790.75 ll ¼ l0 þ l1T þ l2T
2;r

CD - 884.90 1810.97 l;rl ¼ r0 þ r1I

Time 1 CD - 842.22 1750.65 ll ¼ l0 þ l1I þ l2T þ l3T
2

rl ¼ r0 þ r1I þ r2T

Laverton RAAF Stationary - 939.13 1908.59 l;r

Time - 931.24 1902.91 ll ¼ l0 þ l1T ;r

CD - 932.31 1904.82 l;rl ¼ r0 þ r1I þ r2I
2

Time ? CD - 922.50 1905.08 ll ¼ l0 þ l1I þ l2I
2 þ l3T ,r

Walpeup research Stationary - 915.68 1866.35 l;r

Time - 864.87 1788.51 ll ¼ l0 þ l1T þ l2T
2;r

CD - 908.46 1865.52 ll ¼ l0 þ l1I;r

Time 1 CD - 846.70 1772.17 ll ¼ l0 þ l1I þ l2T þ l3T
2

rl ¼ r0 þ r1I þ r2T

Bold font indicates the best model having the lowest CL-AIC value

* j; h; g are constant for all models

T = Time, E = ENSO, I = IOD, S = SAM
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Fig. 5 Non-stationary TDF surfaces with Time covariates for 2, 5, 10, 25, 50 and 100 years return periods
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Fig. 6 Non-stationary TDF

surfaces with CD covariates for

2, 5, 10, 25, 50 and 100 years

return periods
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Fig. 7 Non-stationary TDF

surfaces with Time and CD as

covariates of 5-days duration for

2, 5, 10, 25, 50 and 100 years

return periods
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Fig. 8 Non-stationary TDF

surfaces with Time and CD as

covariates of 50-year return

period for 1, 2, 3, 4, 5, 6, 7 and

10 days durations
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Fig. 9 Comparison between

stationary and non-stationary

TDF curves (50-year quantiles)
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CD for most of the stations. These results highlighted the

importance of considering the combined effect of the

temporal trend caused by global warming and CDs in

statistical models used to predict design temperature.

The non-stationary quantiles computed with the first and

last years of the study period and with the years of highest

and lowest values of the selected seasonal CDs were

compared with the stationary model to display the quan-

tiles’ temporal movement and the influence of the extreme

conditions on the quantiles. In most cases, the stationary

TDF model underestimated the design temperature com-

pared to the non-stationary model, including Time as a

covariate. This conveys a crucial message that the non-

stationary framework for designing temperature facilities

in Australia could be considered a stronger option than the

traditional stationary approach. In addition, TDF curves

developed in this study can be applied to a range of sectors

such as agriculture, health care and energy production and

can be a useful tool for policymakers and planners.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00477-

023-02518-w.
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