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Abstract
Extreme precipitation shows non-stationarity, meaning that its distribution can change with time or other large-scale

variables. For a classical frequency-intensity analysis this effect is often neglected. Here, we propose a model including the

influence of North Atlantic Oscillation, time, surface temperature and a blocking index. The model features flexibility to

use annual maxima as well as seasonal maxima to be fitted in a generalized extreme value setting. To further increase the

efficiency of data usage, maxima from different accumulation durations are aggregated so that information for extremes on

different time scales can be provided. Our model is trained to individual station data with temporal resolutions ranging

from one minute to one day across Germany. Models are chosen with a stepwise BIC model selection and verified with a

cross-validated quantile skill index. The verification shows that the new model performs better than a reference model

without large-scale information. Also, the new model enables insights into the effect of large-scale variables on extreme

precipitation. Results suggest that the probability of extreme precipitation increases with time since 1950 in all seasons.

High probabilities of extremes are positively correlated with blocking situations in summer and with temperature in winter.

However, they are negatively correlated with blocking situations in winter and temperature in summer.

Keywords Extreme precipitation � Generalized extreme value distribution � Maximum likelihood � Non-stationary climate �
Large scale � Intensity-duration-frequency

1 Introduction

Hydrologic extremes are changing. This is supported by the

sixth IPCC assessment report (AR6) (Seneviratne et al 2021)

which finds that the majority of measurement stations in

Europe shows a significant increase in extreme precipitation

over durations of 1 day and 5 days between 1950 and 2018.

Trendsmight be variable in sign and value across regions and

seasons (Croitoru et al 2013; Fischer et al 2015; Chiew et al

2009; Arnbjerg-Nielsen 2012). For example, a decreasing 5-

day-maximum-precipitation (RX5day) by the year 2100 is

reported (Iturbide et al 2021; Gutiérrez et al 2021) in a 2 �C
warming scenario in summer and increasing RX5day in the

other seasons. These facts show the heterogeneity of devel-

opments in extreme precipitation. Furthermore, they

emphasize that precipitation extremes are changing in a non-

stationary fashion and the underlying distribution is subject

to change with time and other large-scale variables (Schlef

et al 2023; Rootzén and Katz 2013).

Extreme value statistics describes the relation between

intensity and occurrence probability of extremes. One

strategy is to describe block-maxima with the generalized

extreme value distribution (GEV). Here, the block size is

(1) one year for annual models or (2) one month for sea-

sonal models. Even in a stationary setting, extremes are

difficult to model since they are rare by definition.

Increasing the complexity of the model by describing the

dependence of extremes on other variables (covariates) is a

challenge which can be faced by more efficient use of data.

More information can be processed by using spatial models

with GEV parameters depending on the location. Such a

model has been created by Ulrich et al (2020) who were

able to decrease the uncertainty, but not to generally
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increase model performance score-wise. Here, nearby sta-

tions are modeled with a smooth transition and information

gain, but over large distances it is difficult to capture the

underlying patterns. Several more studies acknowledge the

spatial dependence of extreme precipitation (Davison et al

2012; Schliep et al 2009; Blanchet et al 2016).

Another way of increasing data use efficiency is the

inclusion of different duration accumulation steps. This is

not only beneficial for the efficiency, but also because effects

from covariates occur over different time scales. Therefore,

precipitation data from different measurement resolutions

(from minutes to days) can be accumulated to various

durations (duration steps). With this data, duration-depen-

dent GEV (d-GEV) distributions (Nguyen et al 1998) have

been used so thatmore information of each year is processed,

as maxima of different duration steps are fed into the model.

The results of such analyses are often shown in Intensity-

Duration-Frequency (IDF) curves (Chow1953). The relation

between duration and intensity can be described by different

parametrizations, including multiscaling (Gupta and Way-

mire 1990), duration-offset (Koutsoyiannis et al 1998) and

intensity-offset (Fauer et al 2021). Some of these duration-

dependent approaches have been combined with large-scale

influence on precipitation by Ouarda et al (2019). In their

study, the d-GEV parameters depended on large-scale

covariates, e.g., time and several teleconnection patterns.

This resulted in statistics for three locations in the USA.

However, there is no study known to uswhich covers Central

Europe with such a model. Our approach uses a similar

method as Ouarda et al (2019) and the main new aspects are:

(1) We cover Germany with 199 precipitatin gauges. (2) We

use large-scale information (NAO index, a blocking index,

spatially and temporally averaged temperature and humid-

ity) which might fit better to the atmospheric circumstances

in Central Europe. (3) Our model features advanced flexi-

bility regarding different durations and probes more poten-

tially influencing covariates. (4) We use an advanced

verification method to assess whether the use of large-scale

information improves the model, aside from new insights

into large-scale effects.

Cheng and AghaKouchak (2014) modeled extreme

precipitation depending on large-scale covariates in a

Bayesian setting which has the advantage that uncertainty

of parameters can be estimated in a much more elaborated

way. A disadvantage of Bayesian models is the need to

choose a prior manually. The results might be sensitive to

this choice of hyper-parameter. Another advantage of our

study is the use of a consistent model that includes dura-

tion-dependence in one modeling step.

Our analysis aims for the identification of meaningful

large-scale variables. Therefore, we investigate the influ-

ence of blockings, North Atlantic Oscillation (NAO),

temperature, humidity and time.

A blocking situation is characterized by an interuption

of the westerly flow due to persistent anticyclones (Otero

et al 2022). The presence of a blocking situation can

influence the appearance of heavy precipitation. The

change of odds for heavy precipitation in presence of

blocking depends heavily on season and region

(Lenggenhager and Martius 2019). We will compare our

findings with the literature with respect to our definition of

blocking and choice of region in Sect. 4.

The NAO is the most important teleconnection pattern

in Europe (Barnston and Livezey 1987). The change of

extreme precipitation with respect to NAO has been

investigated by Casanueva et al (2014) and the association

between both variables is opposite in winter (positive) and

summer (negative) in Germany. There, precipitation trend

over time in Germany is mostly non-significant both in

summer and winter.

Temperature and extreme precipitation show a correla-

tion which has received considerable attention in the lit-

erature (Aleshina et al 2021; Westra et al 2014). The

Clausius-Clapeyron scaling describes the dependence

between potential water content and air temperature. It

provides an explanation for increasing rain amounts in

warmer air. However, the connection between extreme

precipitation and temperature is more complex. After cor-

recting for the Clausius-Clapeyron scaling, the sign of the

correlation coefficient changes depending on the tempera-

ture regime and is negative (positive) for warmer (colder)

temperatures in Australia (Hardwick Jones et al 2010). The

same applies to Europe, where temperatures above 15 �C
lead to less extreme precipitation (Drobinski et al 2016). In

North-America, the correlation between both quantities is

consistently positive (Mishra et al 2012), which is also

known as Clausius-Clapeyron (C-C) scaling.

The temporal trend, described as change in time, has to

be treated carefully as time in most cases is not physically

influencing precipitation extreme, but it is a proxy for other

effects that influence meteorological extremes. These

effects are highly non-linear and therefore difficult to

describe. Time is thus an interesting covariate as it repre-

sents multiple effects. The goal is, however, to integrate

more physically relevant covariates and reduce the influ-

ence of time as covariate.

2 Data and methods

2.1 Data

We use precipitation data from three different sources. (1)

The German meteorological service (DWD) provides data

from stations across Germany and we use 86 stations that

cover both daily and minutely resolution (see Fig. 1b). This
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data is publicly available (DWD 2022). (2) Additionally,

data from three DWD stations with long time ranges

(longest with 57 years) and 5-minute resolutions were

provided to us which are not publicly available (see

Acknowledgements). (3) Furthermore, the Wupperverband

provided data from 57 stations with daily data, 6 stations

with hourly data and 18 stations with minutely data (see

Fig. 1c). Stations vary in length of time series and avail-

ability of high-temporal-resolution measurements (Fig. 1a-

c). Different stations that have a distance of less than

250 m were grouped together, since precipitation amount

should not change considerably. Possible duplicates, i.e.,

more than one value for a specific station and duration and

year might occur because different stations were merged or

because both minutely and daily measuring devices will

provide an accumulated rainfall value for durations

d� 24 h. In this case, values from the lower measuring

frequency are omitted.

The NAO index is obtained from the National Oceanic

and Atmospheric Administration (NOAA) and the Climate

Prediction Center (CPC), where it is openly available

(NOAA 2022). We use the dataset with monthly values

which is based on a Rotated Principal Component Analy-

sis, starting in 1950.

The mean surface air temperature (tas) and relative

humidity over Germany are obtained from the ERA5

dataset with a daily resolution of 0.25�. The data are

spatially averaged between 4�W and 15�W longitude and

between 45�N and 55�N latitude. This way, one value per

time step indicates the mean temperature on a large scale.

Data is available from 1950 to 2021 (Bell et al 2020).

The blocking information is inferred from a binary

blocking-index (BBI), using gridded daily ERA5 data (by

2.5�). It is based on the two-dimensional blocking index

from Scherrer et al (2006); Schuster et al (2019) with minor

modifications. The BBI of the grid fields is averaged over

Scandinavia, because atmospheric blocking situations over

this region are found to have an influence on convection in

Central Europe (Mohr et al 2019). The blocking value that is

used here ranges between 0 and 1 and indicates the spatial

fraction of grid fields that were identified as blocked.

All daily values of the large-scale variables, i.e., NAO,

temperature, humidity and blocking, are averaged over

non-overlapping blocks of one month or one year,

depending on the model (season or annual). Since all

datasets of large-scale variables start in 1950, precipitation

data of earlier years are omitted because our model cannot

handle missing values in any of the predictor terms.

The data for temperature, humidity and blocking index

has been accessed using the ClimXtreme Central Evalua-

tion System framework (Kadow et al 2021).

Fig. 1 a: Number of stations (accumulated) that provide data for each measurement frequency (color). b and c: Stations (dots) with measurement

frequency (color) and length of time series (radius). c: Zoom into Wupper Catchment area
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2.2 Flexible model for stationary GEV
distribution

We model block-maxima of extreme precipitation with the

GEV distribution. This distribution links probabilities or

return periods to intensities or return levels. In this study,

an extended version of the d-GEV distribution is used as

proposed by Fauer et al (2021) whose study will be shortly

summarized in this section. The used model shows a higher

flexibility for very short (d\8 h) and very long (d[ 24 h)

durations. This flexibility is introduced by a combination of

existing features, namely curvature for short durations and

multiscaling for medium durations, and an extension with

an additional parameter s which allows for return levels to

deviate from the log-linear relation with duration (Fauer

et al 2021; Ulrich et al 2021a). This flexible model is

described by

GðzÞ ¼ exp

�
� 1þ n

z� lðdÞ
rðdÞ

� �� ��1=n�
; ð1Þ

rðdÞ ¼ r0ðd þ hÞ�ðgþg2Þ þ s; ð2Þ

lðdÞ ¼ ~lðr0ðd þ hÞ�g þ sÞ; ð3Þ

with the location parameter function lðdÞ, the scale

parameter function rðdÞ, the rescaled location parameter ~l,
the scale offset r0 [ 0, the shape parameter n 6¼ 0, the

duration offset h[ 0, the two duration exponents g and g2,
the intensity offset s[ 0 and duration d[ 0. The intensity

z is restricted to 1þ nðz� lðdÞÞ=r0 [ 0. If n ¼ 0, then

GðzÞ ¼ expf� expððz� lðdÞÞ=rðdÞÞ½ �g applies.

The role of the different parameters has been explained

in detail by Fauer et al (2021).The following paragraph

provides a brief summary. Location l, scale r and shape n
are characteristic distribution parameters, similar to many

other distributions that describe the first three moments of

the distribution. Adding duration-dependence to location

and scale (Eqs. 2,3) requires additional parameters which

have distinct effects on IDF or intensity-duration-variable

(IDV) curves (Fig. 5, Sec. 3.3). Duration offset h describes

the curvature for short durations or how strong the curves

deviate from a linear log-log relationship between duration

and intensity. Therefore, this parameter is only necessary

for stations with sub-hourly data. The intensity offset s
describes analogously the flattening of the relationship for

long durations. This parameter is mainly important for

annual models and only in combination with the duration

offset (Fauer et al 2021). The Duration exponent g
describes the slope of the relationship and the second

duration exponent g2 describes how the slope changes for

different frequencies (multiscaling).

We estimate distribution parameters from the data with

maximum likelihood estimation (MLE), meaning that the

distribution parameters are chosen in a way such that the

joined probability of all data points is maximized (Coles

2001).

The uncertainty of estimated intensities in the stationary

model is obtained by parametric bootstrapping of the cor-

responding available years at each station. Years are

sampled with replacement. When a year is chosen, data

from all durations in this year are used. With this sample,

the model is trained and return levels are estimated. This

process is repeated 1000 times. Then, the 0.025- and the

0.975-quantile of the bootstrapped return levels determine

the 95%-confidence interval. The uncertainty of estimated

intensities in the large-scale model is obtained in the same

way (see Sec. 3.3, last paragraph).

2.3 Motivation of non-stationary models

In this section, a sliding window approach motivates the

need for a non-stationary model to describe the IDF rela-

tion. The methodology that is explained in this section will

not be used for the final model of this study and will be

presented in Sec. 3 (Results). Here, data points are grouped

according to the value of a large-scale variable and d-GEV

parameters are estimated for each group. This way, the

change of d-GEV parameters can be shown with respect to

a large-scale variable.

The dependence of d-GEV parameters ~l, r0, n, h and g
on the large-scale variable temperature is shown in Fig. 2

for the example station (Nürburg-Barweiler) in winter.

Subsets of the data were created by choosing overlapping

ranges of 4� around all possible centered temperature val-

ues in the data (first subset: - 6 �C to - 2 �C, second

subset: � 5.5 �C to �1.5 �C,...). Then, parameters are

estimated for each of these subsets. The model parameters

depending on the chosen subset with the centered tem-

perature value on the abscissa are plotted as dots with

vertical uncertainty bars. The four lines in different color

represent a least-squares polynomial fit of degree 1 to 4.

Solid lines indicate a significant coefficient of the covariate

with the highest polynomial order according to a two-sided

t test on a 0.05 level of significance. Dashed lines indicate

polynomials with non-significant coefficients associated

with the highest order. For example, the rescaled location

parameter ~l shows a significant dependence on tempera-

ture with polynomials of order 1 or 2 (blue and green solid

lines). The histogram (Fig. 2f) shows that temperature

values from all stations are not uniformly distributed and

explains the higher uncertainty for very low temperatures

which can also be seen in the sample sizes, given as small

numbers below the bars in Fig. 2a).
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2.4 Implications for non-stationary d-GEV model

The results of the previous section helps setting the

boundaries for the model selection of the final model, i.e.,

restraining the d-GEV parameters depending on season,

and which large-scale variables will potentially be used for

estimating the d-GEV parameters. These implications are

part of a pre-selection process and will be explained in this

section. Afterwards, the systematic model selection will be

explained in Sec. 2.5. A pre-selection is necessary to limit

the computational costs.

The complex model with seven parameters (Eq. 1) is not

used in all cases. For stations without sub-hourly data, we

do not use the flexible IDF-model, because the more

complex model is not expected to improve results (Fauer

et al 2021). Here, only ~l, r0, n and g are allowed to vary; h,
g2 and s are held fixed at zero. For winter (DJF), the

parameter s is held fixed at zero, even when sub-hourly

data is available. This parameter is particularly important,

when the annual maxima potentially stem from different

seasons (Fauer et al 2021; Ulrich et al 2021a) which is not

the case here. Moreover, in winter the parameter s would

have been chosen only twice, out of a possible maximum

of 104 stations. This further justifies the exclusion of this

parameter from the systematic model selection process.

However, for summer (JJA) this parameter seems to

improve the model since dependences of s on large-scale

variables were often significant (chosen 39 times out of

104). Hence, we allow s to vary in summer. Alternatively,

all possible combinations could have been probed and

decided for with model selection. But, these limitations can

be motivated by the previous arguments and dramatically

reduce the computational costs of the following analysis.

The maximum number of dependencies on large-scale

variables for each parameter is set to two, e.g., the shape

parameter can not depend on more than two different large-

scale variables.

In this study, annual and monthly block maxima are

used. Several other studies show that monthly maxima can

be used to model GEV distributions (Ulrich et al 2021a;

Rust 2009; Fischer et al 2019; Maraun et al 2009).

Although, there is a debate whether a block size of one

Fig. 2 An example of dependence of flexible d-GEV parameters ~l
(a), r0 (b), n (c), h (d) and g (e) on large-scale variable temperature.

Colored curves represent polynomial models to describe the param-

eter variability. Significance (t-test) is indicated with solid lines.

Sample size for each second bar is given in a). Data is from the

example station Nürburg-Bahrweiler, for winter. f Histogram of

temperature data for this station

Stochastic Environmental Research and Risk Assessment (2023) 37:4417–4429 4421

123



month is sufficiently large to fulfill the requirements of a

GEV distribution, since the length of droughts increase

(Ionita et al 2022) and monthly precipitation sums might

be zero in some cases. However, since this study aims for

an analysis of different seasons which wouldn’t be captured

by annual maxima, we chose the monthly block size

despite its drawbacks. Using the annual maxima, i.e., one

value per year, easily enables the estimation of average

return periods T since it is connected to the annual non-

exceedance probability p from the GEV distribution func-

tion by T ¼ 1=ð1� pÞ. Consequently, the exceedance

probability is pe ¼ 1� p. When using monthly maxima

and three maxima for a season of 3 months, i.e., 3 values

per year, the probability ps from the distribution function

has to be converted with p ¼ 1� ð1� psÞ1=3 to get annual

non-exceedance probabilities p, again.

In the final model, each d-GEV parameter will be

modeled explicitly as a function of the large-scale covari-

ates. The function will be a polynomial up to the fourth

order and selected via a model selection process (Sec. 2.5).

For future reference, we call the new model which contains

large-scale information the large-scale model.

2.5 Systematic model selection

Not all d-GEV parameters show a significant dependence

on large-scale variables and using too many parameters

increases their uncertainty (Di Baldassarre et al 2006).

Also, overfitting might be a potential problem. Therefore,

we conducted a stepwise Bayesian information criterion

(BIC) model selection for each station individually as

follows: The initial reference model is a d-GEV model

without any large-scale dependence. Then, all possible

parameter-variable dependencies (combinations) of d-GEV

parameters (7), large-scale variables (4) and order of

polynomial (4) are added individually (7*4*4=112 possible

models) in parallel. Whichever model scores the lowest

two-fold cross-validated BIC is selected as the new refer-

ence model. Then, again all remaining possible model

combinations are added to the new reference model in

turns. This procedure is repeated until none of the new

models has a lower BIC than the reference model.

This methodology is used for the final model. Please

note that it differs from the methodology, presented in

Sec. 2.3 which is not used for the final model but is meant

to motivate the need of large-scale modeling.

2.6 Quantile skill index

We compare the new model with large-scale information to

a reference model without large-scale information for

verification. Therefore we use the Quantile Skill Index

(�1�QSI� 1) which is based on the quantile score

(QS[ 0) (Bentzien and Friederichs 2014).

The QS compares the modeled quantile q with all data

points zn (see Eq. 5) and penalizes data points that are

higher than the modeled quantile with a weight that scales

with the non-exceedance probability p of the quantile

(Eq. 4). This way, the model is penalized strongly, when

data points exceed model quantiles with a high non-ex-

ceedance probability:

qpðuÞ ¼
pu ; u[ 0

ðp� 1Þu ; u� 0

�
ð4Þ

QSðpÞ ¼
Xn
i

qpðzi � qÞ: ð5Þ

The quantile score is calculated for model (QSM) and ref-

erence (QSR). For a given probability p and duration d, the

QSI shows whether a model yields more adequate p-

quantiles (values close to 1) than the reference or worse

(values close to -1)(cf. Fauer et al 2021, Section 2.5):

QSI ¼
1� QSM=QSR ;QSM �QSR

QSR=QSM � 1 ;QSM [QSR:

�
ð6Þ

The QSI is cross-validated (CV) by using every possible

three subsequent years as testing set and the remaining

years as training set (test set in the first CV step: year 1 to

3, second CV step: year 2 to 4,...). The quantile score from

all CV steps is averaged and the two QS from model and

reference are used for the calculation of the QSI.

Summarizing the processes of model selection

(Sec. 2.5) and verification (this section), please note that

model selection is conducted with a two-fold cross-vali-

dated BIC and verification is done with cross-validated

QSI.

3 Results

3.1 Overview of selected models

The number of models in which each parameter-variable

combination has been chosen is shown in Fig. 3. The black

horizontal lines show the mean proportion of models for

this variable. However, the influence of d-GEV parameters

on the model is very different and thus, the black lines just

illustrate roughly the importance of a large-scale variable.

All in all, large-scale dependencies were chosen most often

by the rescaled location ~l and scale offset r0 parameters.

The d-GEV parameters for stations where at least 30

years of sub-hourly data are available are shown in Table 1.

This set of parameters is the result of the stepwise BIC-

model selection process. Stationary parameters are com-

bined in the vector / ¼ f~l; r0; n; h; g; g2; sg for summer
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and annual models or /w ¼ f~l; r0; n; h; g; g2g for winter,

respectively. The other parameters show their functional

dependency on large-scale variables in brackets, e.g., the

shape parameter n depending on time t with a polynomial

of third order notated as nðt3Þ.

3.2 Verification

The large-scale flexible d-GEV models were verified

against flexible d-GEV models without large-scale depen-

dence using the QSI median over all stations. Figure 4

shows the QSI for all durations from 1 min to 5 days and

non-exceedance probabilities p (return periods) up to 0.995

(200 years) and all seasons (a-c). Non-exceedance proba-

bilities higher than pe ¼ 0:98 (50-year return period) have

to be handled with care, because the quantile score cannot

reasonably evaluate return periods much longer than the

time range of the data. In this regime, a model is incen-

tivized to yield larger values, since all data points are lower

than the modeled quantile and the QS penalizes larger data

points stronger. Therefore, black dots indicate whether the

average number of years is equal or higher than the return

period corresponding to the non-exceedance probability

(vertical axis), but still might be unreliable for long return

periods, e.g. 50 years.

For describing annual maxima (Fig. 4c), the large-scale

model has a higher QSI in most durations d and non-ex-

ceedance probabilities p while in winter DJF (a) and

summer JJA (b) there is no clear tendency. Despite there

being no improvement of non-stationary modeling in some

duration/probability regimes (blue), the new models gain

insight into dependencies (see Sect. 3.3). The color-scale

exceeds the range of values in the plot because it is chosen

consistently with previous studies evaluating the QSI of

d-GEV models (Fauer et al 2021; Ulrich et al 2020).

3.3 Large-scale dependence of extreme
precipitation

We present a visualization of modeling large-scale pre-

cipitation extremes which is an adaptation of known IDF

curves (Fig. 5). The axes for intensity and duration stay the

same, but different curves and colors show the range of a

large-scale variable while the exceedance probability (av-

erage return period) is fixed to pe ¼ 0:05 (20 years) and the

other large-scale variables are fixed to an average value.

We call this visualization Intensity-Duration-Variable

(IDV) curve. A stationary reference model without large-

scale dependence is added (dashed line).

In a model where the duration offset h depends on the

year, intensities will vary for short durations (Fig. 5c).

Dependence of rescaled location ~l, scale offset r0 or shape
n (Fig. 5a-d) will let the intensities vary over the whole

range of durations equally (on a log-scale) and produce a

shift along the intensity-scale. Large-scale influence on the

duration exponent might lead to opposing trends for both

ends of the duration range (not shown). Dependence of the

intensity offset s will mostly effect the long-duration

regime (Fig. 5c).

Another way of visualising the dependence of the

exceedance probability (return-period) on large-scale

variables is given in Fig. 6. It shows the dependence of

Fig. 3 For winter (a), summer (b) and annual maxima (c) and large-

scale variable (abscissa) and d-GEV parameter (color), height of the

bars show how often the stepwise regression with BIC chose a large-

scale variable. Horizontal black lines show the average proportion of

models for this large-scale variable and indicate the importance of

each variable in the respective season
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extreme precipitation on the large-scale variable (abscissa)

for many stations in one plot with an average over stations

added (solid lines) to improve robustness.

For Fig. 6, an artificial reference event was defined

which has an annual exceedance probability (average

return period) of pe ¼ 0:05 (20 years). For this event, we

use associated values for the large-scale parameter of the

NAO-index N ¼ 0, year y ¼ 1990, temperature T ¼ 10�C,
blocking-index b ¼ 0 and humidity h ¼ 75%. Note, that all

curves intersect at these values. For each station (thin

lines), one large-scale variable has been varied (in each

column of Fig. 6) while the others and the return level of

the reference event are fixed to the large-scale reference

values. Extrapolations outside of the data range of this

parameter at this station are indicated as dotted lines. The

thick solid lines show the median over all summer (red),

winter (blue) and annual (black) models. In the following,

only those median lines will be interpreted.

In most cases, there is no difference between the dura-

tions (rows in Fig. 6, 1 min to 3 days, d in hours). Only two

Table 1 d-GEV model

parameters for selected stations
Station Season Dependencies

Buchenhofen DJF /w; ~lðT1; h4Þ;r0ðb3Þ; nðn4;T4Þ;
hðy3Þ; g2ðT4; n1Þ

JJA /; ~lðy1; n1Þ; nðh4; y1Þ; hðy3; n3Þ;
gðh1; y2Þ; g2ðn3Þ; sðh1; b4Þ

Annual /; ~lðy3;T4Þ; nðn3; h2Þ; hðn1Þ;
gðT3Þ; g2ðn1;T1Þ

Leverkusen DJF /w; ~lðT2; h1Þ;r0ðy1; n2Þ; nðh3; y3Þ;
hðy4;T2Þ; gðy3Þ; g2ðn4Þ

JJA /; ~lðh2Þ;r0ðy4Þ; nðn2; y3Þ; hðy1Þ;
gðy4Þ; g2ðn3Þ

Annual /; r0ðy1Þ; nðT1Þ; hðh3Þ; gðT4Þ; g2ðy4Þ
Neumühle DJF /w; ~lðb1; h1Þ;r0ðT1; y4Þ; nðh2Þ

JJA /; ~lðT1; h4Þ; r0ðy4; h4Þ; nðy2Þ;
hðT1Þ; g2ðT4Þ; sðy4Þ

Annual /; ~lðT3; b3Þ; nðn1; y2Þ; hðy3; n3Þ; sðy4; h1Þ
Solingen-Hohenscheid DJF /w; ~lðy3; b1Þ;r0ðT4; h1Þ; nðy3Þ;

gðy2Þ; g2ðy1Þ
JJA /; ~lðn1; y3Þ; r0ðh3Þ; hðy2Þ; sðh2Þ
Annual /; r0ðy4; b2Þ; nðb1Þ; hðy3Þ; gðT4; y4Þ;

g2ðb2Þ
Seehausen DJF /w; ~lðT3Þ;r0ðb1Þ; nðy1Þ; g2ðn2; h4Þ

JJA /; ~lðh3Þ;r0ðy3;T4Þ; nðn1Þ; gðn2;T4Þ
Annual /; ~lðy4; h1Þ; r0ðh4Þ; g2ðn1; b1Þ; sðn3; b1Þ

Stötten JJA /; ~lðT2; b2Þ; r0ðn2; h2Þ; nðy1Þ;
gðh4Þ; g2ðh3Þ

Annual /; ~lðb3; y1Þ; r0ðb1;T4Þ; nðh2Þ;
gðb1Þ; g2ðn2Þ

Stuttgart-Echterdingen DJF /w; ~lðb1Þ; ~lðT1Þ; r0ðT4; n2Þ; hðT3Þ;
gðy2;T3Þ; g2ðn2; b2Þ

JJA /; ~lðh3; T1Þ; r0ðb1; h3Þ; hðT3; y3Þ;
gðh4Þ; g2ðh3Þ; sðT4Þ

annual /; r0ðb1Þ; hðy3Þ; g2ðb1; n2Þ; sðy2Þ

The variable /w contains all parameters without large-scale dependence for winter and / for summer and

annual models. The large-scale variables are nao N, year y, temperature T, blocking b and humidity h with

their corresponding polynomials
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Fig. 4 Verification of large-

scale model. a–c The QSI is

shown for every probability and

duration with the stationary

model as reference model.

Positive values of QSI (red

color) indicate an improvement

of the large-scale model over

the reference model. d
Histogram over all quantile skill

indices. Most QSI values are

between �0.05 and 0.05

(colored in white in a-c) and are

considered non-relevant. Black

dots indicate that the

corresponding return period is

longer than the average length

of time series in the data

Fig. 5 Intensity-Duration-Variable (IDV) curve for selected stations

and selected seasons. Intensity over duration is shown for different

values of large-scale variables and for a fixed average return period of

5%. Stations are chosen for the purpose of visualizing the effect on d-

GEV parameters. They do not necessarily represent a general trend

over all stations. Dashed thick black curves show the reference

without large-scale dependence. Dashed thin black curves show the

confidence interval of the reference, obtained by bootstrapping. Black

crosses show the empirical quantiles. a Annual model of station

Lindscheid, visualizing the effect of year on duration exponent g and

and scale offset r0. b Summer model of station Uckermünde,

visualizing the effect of temperature on scale offset r0. c Summer

model of station Angermünde, visualizing the effect of humidity on

rescaled location ~l, duration offset h and intensity offset s. d Winter

model of station Doberlug-Kirchhain, visualizing the effect of

blocking on rescaled location ~l, and shape n (only daily data)
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clear duration-sensitive effects have been found: (1) The

steepness of change with year increases for larger durations

and (2) the steepness of change increases for the temper-

ature for larger durations. The following results are similar

for all durations. There is a positive effect of NAO on

probability of an extreme event in winter and a slightly

negative effect in summer. The trend over time (year) is

almost always clearly positive, but smaller for short

durations. Rising temperature has a positive effect on the

probability of extreme rainfall in winter and summer.

Blocking situations support extreme rainfall in summer and

counteract extremes in winter. Higher humidity has a

positive effect on the occurrence of extremes in all seasons.

The uncertainty of the 50-year return level over a

duration of 24 h in the large-scale model is lower than in

the stationary reference model in 28% (not shown) of all
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Fig. 6 Change of exceedance probability for extreme events with

respect to a reference event with exceeding probability pe ¼ 0:05 in a

situation which is defined as large-scale reference (see text). All

curves meet at this value. Varying one large-scale variable (column)

while fixing the other values allows to analyse the new exceedance

probability pe of the reference event in the new large-scale situation.

This figure shows how the probability of the reference event changes

for different seasons (color) and durations (rows). Thin lines in the

background represent individual stations/models while thick lines

represent the median probability over all stations. Interpolations

(extrapolations) are indicated as solid (dotted) thin lines for each

station/model
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stations and seasons (only DJF: 18%, only JJA: 21%, only

annual: 44%). Over a duration of 1 h, this value drops to

19% (only DJF: 12%, only JJA: 15%, only annual: 30%).

4 Discussion and summary

The aim of this study was to investigate the dependence of

precipitation extremes of different duration on large-scale

variables. There was no particular focus on the physical

dynamics, leading to precipitation extremes. That is why

the independent variables (NAO, temperature, blocking)

were used in a large-scale setting on purpose with no finer

than monthly resolution. In future studies, we plan to

investigate variables on different time scales like daily

temperature or daily blocking index instead of monthly

values and include seasonality in the model. Furthermore,

we plan to create projections of extreme intensities in the

future depending on large-scale covariates, however there

are some challenges to address (Faulkner et al 2023).

According to the QSI most models with large-scale

information outperform the reference without large-scale

information (red regions in Fig. 4), meaning that quantiles

estimated from the model with large-scale information in

most cases are better than those from the simpler model.

Additionally, the complex model is able to describe the

influence of large-scale variables on extreme precipitation

and provides new information and therefore has an

advantage over the simple model. Furthermore, the fact

that large-scale variables decreases the BIC during the

model selection process shows that the model profits from

this information. Still, the heterogeneous character of the

out-of-sample-performance from the cross-validated QSI

verification (Fig. 4) is noteworthy.

Large-scale influence only marginally depends on the

duration (Fig. 6). But, using durations not only provides

information about time scales in the final model, but also

improves efficiency of data usage (Ulrich et al 2020).

A disadvantage of the new large-scale model is its

increased uncertainty, due to the higher number of

parameters that have to be estimated. Comparing this

model extension to the step from a GEV model to a d-GEV

model, there is a difference in efficiency gain. When letting

GEV parameters depend on duration, the uncertainty

decreases (Ulrich et al 2020). However, when using

d-GEV parameters as functions of large-scale covariates,

the uncertainty increases (see Sec. 3.3, last paragraph). In

both cases, more information is used, but in the second

case, the ratio of information usage and number of addi-

tional parameters is worse, so there seems to be no effi-

ciency gain in the large-scale approach.

When comparing our results with Casanueva et al

(2014), we find that both studies conclude to the same

opposite association with NAO in winter and summer over

Germany. Lenggenhager and Martius (2019, Fig. 12) find

an increase of precipitation with blocking defined over a

European sector (0�–30�W) in summer. In winter, the

chance of precipitation is decreasing. Both these findings

are in accordance with our results.

The aim of this study is to find meaningful large-scale

variables that have an influence on extreme precipitation.

Therefore, a parametrical duration-dependent GEV model

includes the effect of large-scale variables and non-sta-

tionarity. A stepwise BIC model selection is conducted and

the results are verified with a cross-validated QSI. The

results are IDF-curves, depending on large-scale variables.

Furthermore, the influence of large-scale effects on

extreme precipitation can be investigated. We find that

time (year) has a positive effect on exceedance probability

of extremes for durations longer than 1 h while the effect

of the NAO index, surface temperature averaged over

Germany or the blocking index depend on the season.

Especially the blocking index, the NAO index and the

temperature are covariates that can change the exceedance

probability of an extreme event by a factor of 2 or more.

This shows that the non-stationary behavior of extreme

precipitation should be acknowledged more. Our new

large-scale model performs better than a stationary refer-

ence model in most duration-probability regimes and

additionally is able to estimate probabilities of extreme

precipitation in a changing climate.
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