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Abstract
The main goal of this work is to obtain reliable predictions of pollutant concentrations related to maritime traffic (SO2,

PM10, NO2, NOX, and NO) in the Bay of Algeciras, located in Andalusia, the south of Spain. Furthermore, the objective is

to predict future air quality levels of the principal maritime traffic-related pollutants in the Bay of Algeciras as a function of

the rest of the pollutants, the meteorological variables, and vessel data. In this sense, three scenarios were analysed for

comparison, namely Alcornocales Park and the cities of La Lı́nea and Algeciras. A database of hourly records of air

pollution immissions, meteorological measurements in the Bay of Algeciras region and a database of maritime traffic in the

port of Algeciras during the years 2017 to 2019 were used. A resampling procedure using a five-fold cross-validation

procedure to assure the generalisation capabilities of the tested models was designed to compute the pollutant predictions

with different classification models and also with artificial neural networks using different numbers of hidden layers and

units. This procedure enabled appropriate and reliable multiple comparisons among the tested models and facilitated the

selection of a set of top-performing prediction models. The models have been compared using several quality classification

indexes such as sensitivity, specificity, accuracy, and precision. The distance (d1) to the perfect classifier (1, 1, 1, 1) was

also used as a discriminant feature, which allowed for the selection of the best models. Concerning the number of variables,

an analysis was conducted to identify the most relevant ones for each pollutant. This approach aimed to obtain models with

fewer inputs, facilitating the design of an optimised monitoring network. These more compact models have proven to be

the optimal choice in many cases. The obtained sensitivities in the best models were 0.98 for SO2, 0.97 for PM10, 0.82 for

NO2 and NOX, and 0.83 for NO. These results demonstrate the potential of the models to forecast air pollution in a port city

or a complex scenario and to be used by citizens and authorities to prevent exposure to pollutants and to make decisions

concerning air quality.

Keywords Air pollution forecasting � Classification models � Minimum redundancy maximun relevance �
Maritime traffic � Artificial neural networks

1 Introduction

Air pollution is a real threat in today’s world according to

the World Health Organization (WHO). The European

Directive 2008/50/EC regulates several key atmospheric

pollutants, including particulate matter (PM), nitrogen

dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and car-

bon monoxide (CO). Vessels-related atmospheric pollu-

tants encompass sulfur dioxide (SO2), nitrogen oxides

(NOx), and particulate matter (PM). Exposure to hazardous

air pollutants emissions can lead to a range of human health

problems, including respiratory disorders, cardiovascular

disease, and increased risk of stroke. Manisalidis et al.

(2020) showed an overview of the effects of air pollution

on human health. A large number of scientific work has

demonstrated that particulate matter directly affects human

health by reducing air quality (Adeyemi et al. 2022). Air

pollution in urban areas is a complex mixture of toxic

components that have unhealthy effects on residents,

especially sensitive populations such as children and peo-

ple with cardiac and respiratory diseases (Kolehmainen

et al. 2001). From an environmental point of view, the
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conduct of a study on the prediction of air pollutant levels

or concentrations (inmisions) is crucial for the protection of

human health and the environment. This research pretends

to provide valuable insights into the factors influencing the

distribution, temporal variations, and potential exposure

risks associated with ambient pollutants. Accurate predic-

tion models can be developed to forecast pollution levels,

identify pollution hotspots and assess compliance with

regulatory standards. These predictive models play a vital

role in urban planning, industrial siting and the formulation

of effective emission control strategies. By proactively

predicting and mitigating high pollution episodes, air pol-

lution forecasting research contributes to protecting public

health, reducing environmental impact and promoting

sustainable communities (Pope and Dockery 2006; Stieb

et al. 2009; Kloog et al. 2013). A review of models to

forecast air pollution health outcomes is presented by

Oliveri et al. (2017), where different huge cities were

compared regarding different pollutants. Besides, in

Savouré et al. (2021), Subramaniam et al. (2022), Traina

et al. (2022) artificial intelligence is applied to forecast air

pollution related to human health.

Different studies show the air pollutants related to vessel

traffic (Miola and Ciuffo 2011; Moreno-Gutiérrez et al.

2015; Ekmekçioğlu et al. 2020), and estimate the amount

of pollution associated with ships in port areas (Lu et al.

2006; Liu et al. 2014; Fameli et al. 2020). These pollutants

are sulphur dioxide (SO2), nitrogen oxides (NOx) and

Particulate Matter (PM). Marine pollution is regulated by

the International Maritime Organisation (IMO) through the

Marine Pollution Protocol (MARPOL). Decarbonisation is

the main purpose of the IMO and the reduction of emis-

sions of Greenhouse gas emissions. An energy efficiency

index is applied to vessels to indicate their classification

(A, B, C, D, E) (MARPOL, Annex VI). The aim of the

IMO is to achieve zero emissions by 2050 (IMO 2021).

The air pollutants responsible for acid rain are sulphur

dioxide (SO2) and nitrogen oxides (NOx) in the atmo-

sphere, which react with water, oxygen, and other chemi-

cals to form sulphuric acid and nitric acid. NO2 is primarily

responsible for the formation of smog and acid rain in

urban areas, causing both acute and chronic effects

(Menezes and Popowicz 2022). These pollutants are

emitted from the combustion of fossil fuels in industrial

processes, power generation, and transport. The main pol-

lutants associated with port activity are presented in (Yang

et al. 2022; Yeh et al. 2022; Mueller et al. 2023).

In recent decades, artificial neural networks (ANNs)

have been applied in the field of air quality forecasting in a

wide range of literature (Kukkonen et al. 2003; Fernando

et al. 2012; Hu et al. 2021; Muruganandam and Arumugam

2023). Numerous studies have been developed using arti-

ficial intelligence (AI) and machine learning techniques in

monitoring the air quality (Bai et al. 2018; Mclean et al.

2019; Baklanov and Zhang 2020; Liu et al. 2021; Masood

and Ahmad 2021). Bai et al. (2018) analysed the three

classical methods for forecasting air pollution (statistical,

artificial intelligence, and numerical prediction methods).

There is literature on air quality in urban areas using dif-

ferent statistical methods to forecast air quality (Mavroidis

et al. 2007; Ilacqua et al. 2007; Lu et al. 2014). Considering

meteorological aspects, in Mavroidis et al. (2007) a suc-

cessful methodology was suggested for assessing the

impact of different emission reduction scenarios on the

attainment of air quality standards for CO and NO2 in the

Athens area. Furthermore, in Ribeiro and Gonçalves,

(2022), in Portugal, NO2 is classified as a binary objective

using a benchmark model. In Durão et al. (2016), classi-

fication and regression tree techniques were successfully

used to predict ozone in Sines (Portugal). For NO2, Prati

et al. (2015) provided an insight into the relevance of a

spatial analysis of data that provides knowledge on how

ship emissions affect the air in a port city. To forecast air

quality in urban areas, Lu et al. (2014) proposed different

semi-parametric regression models. Particulate matter

(PM) sources in three European cities (Athens, Basle, and

Helsinki) are described and analysed using structural

equation modelling in parallel with traditional principal

components (Ilacqua et al. 2007). Similar machine learning

techniques are used by Lakra and Avishek, (2022) to

forecast fog, which is also related to meteorological fac-

tors. Other techniques are used to construct air quality

models. In Garcı́a-Nieto et al. (2015) air quality in Oviedo

(Spain) was modelled using multivariate adaptive regres-

sion splines (MARS) and subsequently, support vector

regression (SVR), multilayer perceptron (MLP), were

specifically used to forecast PM10 concentrations in the

same city by Garcı́a-Nieto et al. (2018). In addition,

meteorological variables are considered by Luna et al.

(2019), where low-cost electrochemical sensors are used to

quantify air pollution exposure, prediction, and control of

CO2 and SO2 concentrations using ANNs. The most rele-

vant information extracted from this study was that pollu-

tion prediction is sensitive to humidity, wind speed, and

temperature. Therefore, the use of ANNs could predict and

impute missing values or re-evaluate doubtful values. A

method for predicting SO2 emissions in several cities is

shown by Ju et al. (2023), which is of great help for

accurate control of this pollutant. Applied to megacities,

He et al. (2014) provided an ANN-based method, in par-

ticular a multilayer perceptron (MLP), that predicts fine

particles suggesting that particulate matter concentrations

are generated by traffic and controlled by weather

conditions.

Air quality assessment, from an operational point of

view, requires the characterisation of atmospheric quality
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(Corani and Scanagatta 2016; Méndez et al. 2023). The aim

of this work is to predict future values of the levels of each

pollutant. Machine learning methods based on classifica-

tion models have been used for this purpose. A compre-

hensive comparison of classification models was

developed. The classifiers tested were trees, support vector

machines (SVMs), artificial neural networks (ANNs),

ensembles, K-nearest neighbours (KNNs), discriminant,

and naı̈ve Bayes. Most of them have already been suc-

cessfully used by authors in different papers (Turias et al.

2008; Ruiz-Aguilar et al. 2020; Song and Fu 2020; Gon-

zález-Enrique et al. 2021; Moscoso-López et al. 2022).

Regarding local studies, the impact of ship propulsion

systems on air pollution in the Strait of Gibraltar in 2017 is

presented in Durán-Grados et al. (2022). This study is

based on an inventory of ships crossing the Strait and

calling at the ports of Algeciras, Tarifa, and Ceuta. In

Martı́n et al. (2008) air pollution was modelled with clas-

sification techniques in the Bay of Algeciras (Spain).

Additionally, Rodrı́guez-Garcı́a et al. (2022) conducted an

extensive analysis of statistical, risk, and trends developed

in the area of the Bay of Algeciras from 2010 to 2015.

Furthermore, due to the large number of inputs used to

build the models, the problem of the curse of dimension-

ality (Bishop 2006) could arise. Therefore, a feature

selection stage was applied using the Minimum Redun-

dancy Maximum Relevance (mRMR) method, which has

been successfully tested by the authors previously in air

pollution forecasting problems (González-Enrique et al.

2021).

The main motivation of this manuscript is to provide

citizens with reliable information on air pollution forecasts.

This challenge is achieved through a data-driven approach

using historical data and machine learning techniques,

which will be explained in more detail in the next sections.

Improving the air quality in populated cities is another of

the main motivations for this study, which is carried out in

the Bay of Algeciras (southern Spain), where the most

important port in Spain and the fourth in Europe in terms of

cargo traffic is located. The importance of maritime traffic

in Algeciras, which has experienced a massive increase in

the last ten years, in terms of air pollution, lies in the fact

that this increase in the number of vessels in the port of

Algeciras may affect the air quality in the area and in the

nearest city (Algeciras). Since there have been few studies

on air pollution in this strategic area of port activities in

terms of pollution, this research can make a specific

contribution.

Another main contribution of this work is the use of a

classification-based machine learning scheme to predict the

next level of a pollutant, including an analysis of the most

relevant variables (using mRMR) for each of the pollutants

and sites studied. In addition, many different classification

methods were used and compared. This research has

allowed us to develop a procedure for predicting future

pollution levels, both on an hourly basis for nitrogen oxides

(NO2, NOx, and NO) and, on a daily basis for SO2 and

PM10. The results obtained are suitable for the design of air

pollution forecasting system that can be used by citizens or

institutions to support decision making.

The rest of this article is organised as follows: Sect. 2

describes the database, the site, the case study and the

regulations to be applied, Sect. 3 presents the methodol-

ogy including the classification models tested in the study

together with the feature selection process and the experi-

mental procedure used to achieve the objectives, Sect. 4

presents and discusses the results and, finally, Sect. 5

draws the main conclusions.

2 Materials

The importance of environmental studies in this area is due

to the fact that the Port of Algeciras is located in this area,

handling more than 100 million tonnes of goods per year

since 2017, and is located in an area with special meteo-

rological and orographic conditions, the Strait of Gibraltar,

as well as in a highly industrialised region where the Port

of Algeciras coexists with numerous industries (a refinery,

several chemical and thermal power plants, a stainless steel

factory, etc.), together with several highways and the

Gibraltar airport.), together with several motorways and

Gibraltar airport, contribute to a very complex air pollution

scenario. Maritime traffic in Algeciras has increased dra-

matically over the last decade. It is logical to think that the

increase in the number of vessels in the Port of Algeciras

could affect the air quality in the area.

In order to develop this study, the main pollutants

related to port activities were selected as shown in (Yang

et al. 2022; Yeh et al. 2022; Mueller et al. 2023). Immis-

sion data of SO2, NO2, NOX, NO and, PM10 concentra-

tions, meteorological data (relative humidity, solar

radiation, temperature, atmospheric pressure, wind speed,

wind direction, and rainfall) were provided through the

Andalusian Government’s monitoring network, and the

vessel gross tonnage (GT) database was provided by the

Algeciras Bay Port Authority, all for the years 2017 to

2019. Similar studies, such as López-Aparicio et al. (2017),

analysed all these pollutants in a Nordic port and concluded

that the main emission contributions come from berthed

vessels and manoeuvres.

The Andalusian Government’s system of sensors in the

Bay of Algeciras includes a total of sixteen air pollutant

monitoring stations and five specialised meteorological

sensors (W1-5) distributed throughout the bay (see Fig. 1),

which record hourly data of each pollutant and
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meteorological values over a three-year period, from 1st

January 2017 to 31st December 2019 (see Table 1). The

meteorological sensors W3, W4, and W5 are located in the

chimney of a refinery at different heights, 10 m, 15 m, and

60 m. The data analysed are recorded at stations in the

towns of Algeciras and La Lı́nea and in the Alcornocales

Park, in order to compare three distant locations. The

importance of Algeciras and La Lı́nea spots is due to their

coastal areas and the huge port of Algeciras, with massive

truck traffic, and Alcornocales Park is an unspoilt area far

from anthropogenic activity. In addition, La Lı́nea and

Algeciras are two cities located opposite each other, thus

studying both can shed more light on air pollution

immissions. Algeciras is the most populated city in the bay

with 122,982 inhabitants in 2021 and La Lı́nea is the

second most populated city with 63,365 inhabitants.1 The

entire database consists of 131 variables. In each experi-

ment, the output variable is the concentration of each

pollutant in each of the monitoring stations according to the

rest of the study variables described in Table 1 (pollutant

concentrations in the rest of the monitoring stations,

meteorological information and vessel data).

This study has been developed in three stages: prepro-

cessing of the data, classification stage and the stage of

feature selection to reduce the number of variables. Among

the wide range of feature selection methods, the mRMR

method was used in this work to rank the variables con-

sidered as inputs. Feature selection, one of the fundamental

problems in pattern recognition and machine learning,

Fig. 1 Location of the area of study. Spain, Andalusia and The Bay of Algeciras in the Strait of Gibraltar. The three studied monitoring stations

in the cities of Algeciras and La Lı́nea and Alcornocales Park and the rest of sensors over the Bay

Table 1 Monitoring stations codes. Meteorological variables codes.

Pollutant variables

Code Monitoring stations Code Variables of the study

Alg Algeciras Ws Wind speed (km/h)

Cam Campamento Wd Wind direction (degree)

Cor Los Cortijillos RH Relative humidity (%)

Hos Hostelerı́a RF Rainfall (l/m2)

Alc Alcornocales T Temperature (�C)
Car Carteya AP Atmospheric pressure (hPa)

Rin Rinconcillo SR Solar radiation (W/m2)

Pal Palmones SO2 Sulphur dioxide (lg/m3)

San San Roque NO2 Nitrogen dioxide (lg/m3)

Zab El Zabal NOX Nitrogen oxides (lg/m3)

Eco Economato NO Nitrogen monoxide (lg/m3)

Gua Guadarranque PM2.5 Particulate matter (B 2.5 lm)

Lin La Lı́nea PM10 Particulate matter (B 10 lm)

Mad Madrevieja CO Carbon monoxide (lg/m3)

Bar Los Barrios O3 Ozone (lg/m3)

Pue Puente Mayorga Tol Toluene (lg/m3)

W1-5 Meteo stations Ben Benzene (lg/m3)

Ves Vessels (GT/h)

1 http://www.ine.es.
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involves identifying subsets of data that are relevant to the

parameters used, usually referred to as maximum rele-

vance. These subsets often contain material that is relevant

but redundant, and mRMR attempts to address this problem

by eliminating these redundant subsets. In this paper, the

ten most relevant features were selected as inputs to the

different models to test whether there are significant dif-

ferences when all variables are used in the models.

3 Methodology

The main objective of this work is to predict the future air

quality levels of the main maritime pollutants in the Bay of

Algeciras as a function of other pollutants, meteorological

variables, and vessel data. In order to achieve this objec-

tive, the time series were considered according to the limits

marked in the European Directive 2008/50/EC (Table 2),

and the outputs were transformed into disjoint quartiles

(Q1–Q4).

The predictions are calculated using pollutant concen-

trations in each station (Algeciras, Alcornocales, and La

Lı́nea) as outputs and the rest of the variables as inputs

(pollutants in other stations, meteorological parameters,

and the vessel data). Different classification techniques are

compared together with ANN models in order to find

improvements and the best model. The performance of the

tested models is calculated using hourly and daily mean

data time series.

byq t þ 1ð Þ ¼ f classificationðex tð Þ; yðtÞÞ ð1Þ

Equation 1 shows mathematically the prediction

approach, where t is the time and t þ 1 is one step ahead to

be predicted. In the case of hourly data, the next 1 h-mean

period concentration value is predicted and in the case of

daily data, the next day mean concentration value is pre-

dicted. Inputs ex tð Þ consist of all other pollutants measured

at the monitoring stations together with meteorological

variables and vessel time series. The scheme of the process

is shown in Fig. 2.

Three stages were developed. The first step is the pre-

processing of the data. On the one hand, the imputation of

missing values was done using a previous algorithm suc-

cessfully proposed by the authors (González-Enrique et al.

2019a, 2019b; Rodrı́guez-Garcı́a et al. 2022). On the other

hand, the standarisation of the database. A transformation

of the vessel data, given as incoming and outgoing vessels

in the bay into hourly data was also performed. Once the

databases are transformed and unified, the data consist of

26,280 hourly records 9 131 variables (130 inputs and 1

output) of a unique database. Each row is a record of

hourly data for the three years from 2017 to 2019. The

database has been normalised and the output has been

divided into disjoint quartiles. The second stage of classi-

fication is described in Sect. 3.1 and the third stage is a

feature selection procedure using the mRMR approach

proposed by Peng et al. (2005), which is a feature selection

algorithm that ranks a set of features according to their

relevance to the target variable. It also penalises redundant

features. The best features are those with the highest trade-

off between maximum relevance with the target variable

and minimum redundancy with the remaining features.

3.1 Classification

In this stage, 29 classification models (Table 3) were tested

to select the best classifier. Classification is a type of

supervised machine learning where an algorithm learns to

classify new observations from labelled data samples. In

this work, the database is labelled in quartiles, as shown in

Table 3. The different classification schemes are briefly

explained below.

Table 2 Simulation scenarios and Directive 2008/50/EC limit values

for pollutants of the study

Pollutant Limit value Upper assessment threshold (lg/m3)

SO2 Daily mean 75

PM10 35

NO2 Hourly mean 140

NOX

NO

Fig. 2 Methodology scheme. The output data was transformed into

quartiles (Q1–Q4). The inputs and output at the timestamp t are the

predictors of the quartile at timestamp t ? 1

Table 3 Classification models
Models Enumeration

Trees 1–3

Discriminant 4–5

Naı̈ve Bayes 6–7

SVM 8–13

KNN 14–19

Ensembles 20–24

ANNs 25–29
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3.1.1 Trees

Trees are a hierarchical non-parametric supervised learning

algorithm consisting of a root node, branches, internal

nodes, and leaf nodes. It is based on classification princi-

ples that predict the outcome of a decision for both clas-

sification and regression tasks (Breiman et al. 1984). Three

types of trees were used depending on the maximum

number of splits (100, 20, 4). The maximum number of

splits equal to 100 is when many leaves are used to make

many fine distinctions between classes. When the number

of leaves is equal to 4, the distinctions that can be made are

stronger.

3.1.2 Discriminant analysis

Discriminant analysis is a statistical transformation tech-

nique that produces a function capable of classifying phe-

nomena (Fisher 1936). The objective is to maximise the

between-group variance and minimise the within-group

variance through these linear (or quadratic) combinations.

The procedure is to discover the autovalues and autovec-

tors of a quotient matrix of the interclass distance matrix

and the intraclass distance matrix. For linear discriminant

analysis, the model has the same covariance matrix for

each class; only the means vary. For quadratic discriminant

analysis, both the means and the covariances of each class

vary.

3.1.3 Naı̈ve Bayes

Naive Bayes models assume that observations have a

multivariate distribution with regard to class membership,

although the predictors or features that make up the

observation are independent. This framework can accom-

modate a full set of features, so that an observation is a set

of multinomial counts (Mitchell 1997). Normal (Gaussian)

distribution is appropriate for predictors that have normal

distributions in each class. The Naı̈ve Bayes classifier

estimates a separate normal distribution for each class by

calculating the mean and standard deviation of the training

data in that class. The kernel distribution is suitable for

predictors that have a continuous distribution. It does not

require a strong assumption such as a normal distribution,

and you can use it in cases where the distribution of a

predictor may be skewed or have multiple peaks or modes.

3.1.4 Support Vector Machines (SVMs)

The goal of SVM is to find out a hyperplane that best

separates two different classes of data points with the

widest margin between the two classes. The algorithm can

only find this hyperplane in problems that allow linear

separation; in most practical problems, the algorithm

maximises the flexible margin by allowing a small number

of misclassifications. The support vectors refer to a subset

of the training observations that identify the location of the

separation hyperplane. SVMs can use a kernel function to

transform the features. Kernel functions map the data into a

different, usually higher dimensional space, with the

expectation that it will be easier to separate the classes after

this transformation (Vapnik and Chervonenkis 1971;

Cortes and Vapnik 1995). The types tested are Linear SVM

(makes a simple linear separation between classes),

Quadratic SVM, Cubic SVM, and three categories of

Gaussian SVM (fine, with kernel scale set to
ffiffiffi

P
p

=4;

medium, with kernel scale set to
ffiffiffi

P
p

; and coarse, with

kernel scale set to
ffiffiffi

P
p

� 4, where P is the number of

predictors).

3.1.5 KNN

The k-nearest neighbour algorithm, also known as KNN or

k-NN, is a non-parametric supervised learning classifier,

that uses proximity to make classifications or predictions

about the clustering of a single data point. While it can be

used for regression or classification problems, it is gener-

ally used as a classification algorithm, based on the

assumption that similar points will be found close together.

Usually, the number k is an odd number (1,3,5…) (Sil-

verman and Jones 1989). The types of trees tested were

Fine KNN (the number of neighbours is set to 1), Medium

KNN (the number of neighbours is set to 10), Coarse KNN

(the number of neighbours is set to 100), Cosine KNN,

using a cosine distance metric (the number of neighbours is

set to 10), Cubic KNN, using a cubic distance metric (the

number of neighbours is set to 10), Weighted KNN, using a

distance weight (the number of neighbours is set to 10).

3.1.6 Ensemble learning

Classification ensemble learning uses multiple learning

algorithms to obtain a better predictive model, which is aa

weighted combination of several classification models. In

general, the combination of several classification models

increases the predictive power. The types of ensembles

tested were: Subspace with discriminant learners, Subspace

with nearest neighbour learners, and RUSBoost, Random

Forest Bag, and AdaBoost, with decision tree learners

(Breiman 1996, 2001; Hastie et al. 2008; Freund 2009).

3.1.7 Artificial neural networks (ANNs)

ANNs were also included in the second stage. A feedfor-

ward fully connected ANN can be arbitrarily well suited to
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multidimensional mapping problems, given consistent data

and enough neurons in its hidden layer (Hornik et al. 1989).

The authors have successfully used ANNs in similar pre-

diction problems (Gonzalez-Enrique et al., 2019b; Ruiz-

Aguilar et al. 2020; Moscoso-López et al. 2022). ANNs

were trained with the backpropagation algorithm (Rumel-

hart et al. 1986) using the Levenberg–Marquardt optimi-

sation procedure. Finally, the obtained results were

statistically analysed and compared using a resampling

procedure in order to select the model with the best gen-

eralisation capabilities. ANN models with different hidden

units were compared to determine the effect of adding non-

linear processing capabilities on model performance. Each

model is a feedforward fully connected neural network

with a different number of fully connected layers and

hidden units. A ReLU activation function was used in each

model. The rectified linear activation function, or ReLU, is

a non-linear or piecewise linear function that directly

outputs the input if it is positive, otherwise, it outputs zero

(Glorot et al. 2011). It is the most commonly used acti-

vation function in neural networks since 2017

(Ramachandran et al. 2017). The types of tested ANNs

were: One hidden layer with 10, 25, and 100 neurons; two

hidden layers with 10 x 10 neurons and three hidden layers

with 10 x 10 x 10 neurons.

3.2 Feature selection

The third stage is a feature selection procedure. The Min-

imum Redundancy Maximum Relevance (mRMR)

approach (Peng et al. 2005) is a feature selection algorithm

that ranks a set of features according to their relevance to

the target variable. It also penalises redundant features. The

best features are those with the highest trade-off between

maximum relevance with the target variable and minimum

redundancy with the remaining features.

Among the wide range of feature selection methods, the

mRMR method has been used in this work to rank the

variables considered as inputs. This method has been suc-

cessfully used by the authors in other studies related to air

pollution (González-Enrique et al. 2021). Feature selection,

one of the fundamental problems in pattern recognition and

machine learning, involves identifying subsets of data that

are relevant to the parameters used, usually referred to as

maximum relevance. These subsets often contain material

that is relevant but redundant, and mRMR attempts to

address this problem by eliminating these redundant sub-

sets. In this paper, the top ten relevant features were

selected as inputs to the different models to test whether

there are significant differences when all variables are used

in the models.

3.3 Experimental procedure

A resampling procedure was used to reduce the prediction

error of a test set and to reduce the effects of overfitting.

The strategy randomly divided the database into three parts

(training 70%, validation 10%, and test sets 20%) and the

performance results were collected only for the test set in

order to estimate the generalisation error of each model

using unseen data, as the authors have successfully

implemented in other papers (Turias et al. 2008; González-

Enrique et al. 2019a; Ruiz-Aguilar et al. 2020; Moscoso-

López et al. 2022). In this research, all of the simulations

were developed and tested in Matlab � software.

The whole system can be seen as a mapping from a set

of input features to an output variable. The mathematical

form of the mapping is determined by the data (training

set). Of course, we need to build a system that is capable of

making good predictions on unseen data. In order to

measure this generalisation ability, cross-validation is used

with another set of samples (test set) is used. We adopted

five-fold cross-validation to select the best model based on

the generalisation performance of each model. The avail-

able data were divided into three different groups (training,

validation, and test sets). The parameters of each model

were estimated using one of the groups (the training set). A

validation set is used for early stopping and to avoid

overfitting. Finally, the test set is used to test the classifi-

cation quality indexes (sensitivity, specificity, accuracy,

and precision), simulating the real performance of the

model. This process is repeated 20 times and the results are

averaged over these runs. To visualise the obtained results

with a classification model, the confusion matrix is used

(Ting 2010). Each row (i) of the matrix (C) represents the

number of predicted values for each class and each column

(j) represents the number of real values for each class

(C(i,j)). In this case, four classes are considered, one for

each of the quartiles of the output. Once an air pollutant has

been considered, its values are divided into four quartiles,

each containing 25% of the total distribution. The confu-

sion matrix is calculated and then the quality indexes of

sensitivity, specificity, accuracy, and precision are also

calculated. The Euclidean distance (d1) to a perfect clas-

sifier in terms of the quality indexes (sensitivity = 1,

specificity = 1, accuracy = 1, precision = 1) is also calcu-

lated (expressed by Eq. 2).

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sensitivityð Þ2 þ 1� specificityð Þ2 þ ð1� accuracyÞ2 þ ð1� precisionÞ2Þ
q

ð2Þ

In this case, the confusion matrix has a 4 9 4 dimension

due to data are divided into four disjoint quartiles (classes).

In order to obtain individual classification results for each

quartile, the matrix was sequentially transformed, quartile
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by quartile, into an equivalent 2 9 2 confusion matrix

(Table 4), which was used to calculate the well-known and

above-mentioned classification measures (sensitivity,

specificity, accuracy, and precision, see Eqs. 3–6). The

lower d1 distance is chosen to indicate the best classifica-

tion model for each quartile. Quartiles are the statistical

values that divide the dataset into four equal parts or

quarters, each containing 25% of the data, resulting in

lower, lower-middle, middle-high, and upper divisions.

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð3Þ

Precision ¼ TP

TPþ FP
ð4Þ

Sensitivity ¼ TP

TPþ FN
ð5Þ

Specificity ¼ TN

TN þ FP
ð6Þ

True-positive (TP) and true-negative (TN) results are

correctly classified, while false-negative (FN) and false-

positive (FP) results are two types of errors calculated

according to the literature (Ting 2010).

All the calculations are performed separately. The air

pollutants (SO2, PM10, NO2, NOX, and NO) as outputs in

the three locations (Algeciras, Alcornocales, and La Lı́nea),

using all variables or only the ten most relevant variables,

in a total of 30 scenarios, repeated 20 times each, following

the resampling procedure explained above. The time series

of SO2 and PM10 concentrations are calculated as daily

averages and NO2, NOX, and NO on an hourly basis. Once

the experiments have been developed, the results are pre-

sented in the next section.

4 Results

Simulations and prediction experiments were computed for

five pollutants directly related to maritime traffic: SO2,

PM10, NO2, NOX, and NO. The models were tested at three

different locations, in the cities of Algeciras and La Lı́nea,

and at a third location at a certain distance in the remote

area of the Alcornocales Park. As explained above in

Table 2, the averages were calculated hourly or daily to

comply with the European Directive 2008/50/EC.

Figures 3, 4 show the time series graphs with their upper

assessment thresholds of the pollutants analysed on an

hourly or daily basis according to the Directive measured

in lg/m3. These graphs show average concentrations and it

is worth noting that in 2017 the average SO2 concentrations

in La Lı́nea, where a refinery is located, are very high

compared to the rest of the years, which seems to be due to

the installation of a desulphurisation unit in 2018 in this

refinery. Considering particulate matter, the lowest con-

centrations are found at the Alcornocales station, and the

highest at Algeciras, although overall concentrations are

very similar in both Algeciras and La Lı́nea. On the other

hand, the pollutant NO2 (and nitrogen oxides in general)

clearly shows very high average concentrations in Alge-

ciras compared to La Lı́nea and Alcornocales, which are

quite similar. This increase could be an indication of the

high presence of diesel engines in Algeciras, which is

consistent with the heavy truck traffic in and out of the

port, the ships berthed in the Port of Algeciras and the

higher traffic density, since it is the most densely populated

city in the Bay.

Since the pollutant thresholds are defined in the regu-

lations in terms of hourly and daily values, and in order to

better understand the behaviour of each pollutant, weekly

average graphs of each air pollutant at the different stations

have been calculated (Fig. 5). The pollutant SO2 shows a

higher concentration in La Lı́nea, probably because the

prevailing winds carry the pollution from ships and the

surrounding industries more towards La Lı́nea (westerly

situations), and in easterly situations SO2 seems to move

towards Los Alcornocales, the remote area 30 km from the

bay, which paradoxically has a higher concentration than

Algeciras. In the case of the PM10 averages, it can be seen

that concentrations decrease during the night, and from the

early hours of the morning, when anthropogenic activity

begins, the values increase until late in the day. At week-

ends there is not much difference compared to the rest of

the week. In the case of nitrogen oxides, there is a daily

decrease in the early hours of the morning, then an increase

to a maximum around midday, and then a downward trend

with a slowdown around mid-afternoon, which coincides

with the pace of human activity and therefore traffic,

especially vehicle traffic. The trend is higher in the cities of

La Lı́nea and Algeciras. At the remote Los Alcornocales

Table 4 Equivalent multi-class

confusion matrix
Real class

Predicted class Positive Negative

Positive TP = C(i,i); FP = sum(C(i,:))-C(i,i);

Negative FN = sum(C(:,i))-C(i,i); TN = sum(sum(C(:,i))-(TP ? FP ? FN);
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station, there is only a slight increase at midday. In terms of

daily averages, maximum values are observed on Tuesdays

and Fridays, with a significant decrease at weekends. It

should be noted that NO2 is higher in Algeciras than in La

Lı́nea, probably due to road traffic. Nitrogen oxides have

two peaks per day, which suggests that they are related to

human activity, and especially to diesel engines whereas

particulate matter and SO2 have only one peak per day.

As explained above, one-step-ahead prediction models

have been developed with the aim of predicting the next

value of a time series of quartile concentrations in order to

contrast with exceedances of the thresholds set in the

Directive. Several classification models, including ANNs,

were tested and compared for their performance using the

resampling procedure explained in Sect. 3. In each case,

two experiments were calculated, one using all variables as

inputs and another one with only the ten most relevant

variables. It should be noted that the results shown in

Tables 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 are always

calculated for test sets (unseen data). In general, the

obtained results are quite adequate, with higher values for

the classification quality indexes. Results of around 90%

indicate that the prediction for the next timestamp-ahead or

the next daily/hourly mean is quite accurate and represents

a very reliable prediction. The results are collected for the

different separated quartiles to achieve a more detailed

picture of the prediction.

In Tables 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14, the best

prediction model for each air pollutant, location, and

quartile is shaded underline (the combination with the

smallest distance d1). The best counterpart model (same

model, location, quality index, and quartile) is shown in

bold between Tables 5, 7, 9, 11, and 13 which present the

results of the models using all variables, and Tables 6, 8,

Fig. 3 Daily mean time series of SO2 and PM10 from 2017 to 2019 with the Directive 2008/50/EC limit thresholds

Fig. 4 Hourly mean time series of NO2, NOX and NO from 2017 to 2019 with the Directive 2008/50/EC limit thresholds
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Fig. 5 Hourly and daily mean week diagrams for pollutants from 2017 to 2019
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10, 12, and 14, which use only the ten most relevant

variables. The distance d1 was used to compare models of

the same location and to select the best model in each case.

Comparing Table 5 with Table 6 for the pollutant SO2,

prediction models using all variables with the models using

only the relevant variables, it can be seen that in all cases

the ANN models significantly improve their prediction

performance when using only relevant variables, although

the tree classifiers predict better than the ANNs as their

distance d1 is the smallest. For this pollutant, tree classifiers

are the best predictors in all cases. For SO2 in Algeciras,

quartiles, Q1 and Q2 are best predicted by the tree classi-

fiers using only the ten most relevant variables. However,

quartile Q3 is also best predicted by tree classifiers using all

130 variables and Q4 is best predicted by ANNs models

using the ten most relevant variables. The best performing

quartile (with the lowest d1) in Algeciras is the Q1 with

sensitivity, specificity, accuracy, and precision above 0.90.

For SO2 in Alcornocales, better predictions are obtained in

quartiles Q1 and Q2 with tree-type classifiers and using

only the ten most relevant variables. In the case of quartiles

Q3 and Q4, better predictions are obtained with ensemble

classifiers using all variables. The best results for Alcor-

nocales are obtained for Q1, Q3, and Q4, all with values up

to 0.97. For SO2 in La Lı́nea, better predictions were

obtained for quartiles Q1 and Q4 using relevant variable

Fig. 5 continued
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models with tree classifiers, and Q2 and Q3 were better

predicted with ensemble classifiers using all variables. In

La Lı́nea the Q4 is the one with the best results, with

quality indexes above 0.98.

For the PM10 pollutants, Tables 7 and 8 show that the

use of relevant variables improves the results of the clas-

sification models in almost all cases. The results of the best

models for each quartile are those shaded in underline,

regardless of whether they include all variables or only the

relevant ones, and turn out to be the trees with slightly

better results than the ANNs models. The obtained results

for the best models for PM10 pollutants have the highest

quality indexes. For instance, in Algeciras, the Q1 is the

best predicted with tree classifiers using relevant variables,

obtaining quality indexes above 0.95. In Alcornocales,

quartile Q4 is also the best predicted with tree classifiers

using relevant top ten variables with quality indexes above

0.97. In La Lı́nea, the best predicted quartile is Q4 with

quality indexes up to 0.96.

The results for NO2 are shown in Tables 9 and 10. In

this case, the relevant variables give better results only for

Alcornocales and the quartile Q1 of La Lı́nea. Tree-type

models are also the best predictors for Alcornocales and La

Lı́nea, especially when all the variables are used, and only

for quartiles Q3 and Q4 of Alcornocales do neural network

models perform better when the relevant variables are used.

In the case of Algeciras, all quartiles are predicted equally

well by SVM classifiers using all variables. For NO2, the

best results are obtained in the case of quartile Q1 in

Algeciras with all quality indexes above 0.82, Q1 in

Alcornocales with ensemble models using all variables and

quality indexes above 0.82, and Q1 in La Lı́nea with quality

indexes above 0.82 with ensemble tree classifiers using the

top ten variables.

Table 5 Best prediction model results for daily SO2 (t ? 1) concentrations using all variables at t

Pollutant Location Best Model/hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1

SO2 Algeciras Best

Classifier

Tree (Max. 4 splits) Q1 0.8954 0.9664 0.9465 0.9153 0.1418

Q2 0.7579 0.9255 0.8884 0.7430 0.3777

Q3 0.7049 0.9087 0.8555 0.7316 0.4340

Q4 0.8207 0.9336 0.9065 0.8040 0.2893

Best ANN Neural Network

(10 9 10x10 neurons)

Q1 0.8954 0.9664 0.9465 0.9121 0.1505

Q2 0.7328 0.9215 0.8790 0.7307 0.4058

Q3 0.6969 0.9005 0.8487 0.7051 0.4600

Q4 0.8207 0.9336 0.9065 0.7960 0.2948

Alcornocales Best

Classifier

Ensemble (Bagged Tree) Q1 0.8383 0.9389 0.9145 0.8149 0.2673

Q2 0.6761 0.8975 0.8405 0.6959 0.4830

Q3 0.9817 0.9927 0.9900 0.9781 0.0311

Q4 0.9783 0.9951 0.9909 0.9854 0.0282

Best ANN Neural Network(10 9 10

neurons)

Q1 0.8873 0.9634 0.9443 0.8905 0.1707

Q2 0.7500 0.9215 0.8776 0.7664 0.3718

Q3 0.8039 0.9190 0.8922 0.7509 0.3445

Q4 0.9018 0.9790 0.9589 0.9380 0.1250

La Lı́nea Best

Classifier

Ensemble (Bagged Tree) Q1 0.9673 0.9902 0.9845 0.9708 0.0475

Q2 0.9455 0.9829 0.9735 0.9489 0.0811

Q3 0.9631 0.9854 0.9799 0.9560 0.0625

Q4 0.9818 0.9939 0.9909 0.9818 0.0280

Best ANN Neural Network (25

neurons)

Q1 0.8607 0.9595 0.9342 0.8796 0.1997

Q2 0.7239 0.9033 0.8594 0.7080 0.4366

Q3 0.7138 0.9072 0.8584 0.7216 0.4337

Q4 0.8930 0.9612 0.9443 0.8832 0.1723

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4
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In the case of NOX, reasonably equivalent behaviour is

observed between models using all variables and models

using only the relevant variables. By using fewer but more

relevant variables, a large number of models improve their

overall performance. In La Lı́nea, the best models are

ANNs using the relevant variables for quartiles Q2-Q4. In

Algeciras, the performance of the ANNs is similar for the

quartiles Q2 and Q4, and in Alcornocales for Q1. The rest of

the best models use all variables and correspond to SVM

and ensembles. The values are somewhat lower than for

other pollutants, reaching sensitivities above 80% and

higher specificities above 93%. In the case of NO in

Alcornocales (Tables 13, 14), no values have been obtained

for Q2 because most of the data available in the database

for this pollutant are at such low values that they corre-

spond for the most part to Q1, except for some peaks of

exceedances found in the Q3 and Q4 quartiles. For NO,

ANNs seem to be the models that best predict the quartiles

using the relevant variables. In fact, the best result is

obtained for the Q1 quartile with more than 94% precision

for Alcornocales.

Tables 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 show that

ensemble boosted trees and tree classifiers produce better

results than ANN models in most cases, but by reducing the

number of variables to the best 10, ANNs improve quite a

lot. Tables 15, 16, 17, 18, and 19 have also been included,

highlighting the most leveraged variables used for each

prediction model using the mRMR method. In these tables,

only the best ten most relevant variables are shown. Using

these variables, similar prediction results were obtained to

those shown in Tables 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 for

the models using all the variables. Therefore, using only

these top ten variables, a more efficient monitoring system

could be designed, saving economic and time resources in

Table 6 Best prediction model results for daily SO2 (t ? 1) concentrations using top ten relevant features at t

Pollutant Location Best Model/hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1

SO2 Algeciras Best

Classifier

Tree (Max. 4 splits) Q1 0.9026 0.9697 0.9508 0.9208 0.1382

Q2 0.7604 0.9253 0.8889 0.7420 0.3767

Q3 0.7059 0.9069 0.8549 0.7254 0.4377

Q4 0.8296 0.9368 0.9111 0.8060 0.2803

Best ANN Neural Network (10 9 10

neurons)

Q1 0.9004 0.9699 0.9503 0.9215 0.1395

Q2 0.7594 0.9242 0.8881 0.7382 0.3804

Q3 0.7070 0.9070 0.8554 0.7255 0.4367

Q4 0.8307 0.9375 0.9118 0.8081 0.2777

Alcornocales Best

Classifier

Tree (Max. 4 splits) Q1 0.9852 0.9927 0.9909 0.9779 0.0290

Q2 0.9636 0.9890 0.9826 0.9672 0.0531

Q3 0.9704 0.9866 0.9826 0.9597 0.0546

Q4 0.9748 0.9963 0.9909 0.9891 0.0292

Best ANN Neural Network (25

neurons)

Q1 0.9673 0.9903 0.9845 0.9708 0.0475

Q2 0.9517 0.9783 0.9717 0.9343 0.0890

Q3 0.9355 0.9853 0.9727 0.9560 0.0840

Q4 0.9708 0.9878 0.9836 0.9638 0.0508

La Lı́nea Best

Classifier

Tree (Max. 4 splits) Q1 0.9674 0.9915 0.9854 0.9745 0.0447

Q2 0.9446 0.9782 0.9699 0.9343 0.0936

Q3 0.9493 0.9866 0.9772 0.9597 0.0700

Q4 0.9890 0.9939 0.9927 0.9818 0.0233

Best ANN Neural Network (10 9 10

neurons)

Q1 0.9590 0.9794 0.9744 0.9380 0.0813

Q2 0.8811 0.9728 0.9489 0.9197 0.1547

Q3 0.8993 0.9613 0.9461 0.8828 0.1682

Q4 0.9451 0.9805 0.9717 0.9416 0.0872

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4
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the sensor network by measuring fewer variables to store

and transmit, thus designing a more energy sustainable

system with a lower carbon footprint. Tables 15, 16, 17, 18,

and 19 show the ten most relevant variables for each pol-

lutant (SO2, PM10, NO2, NOX, and NO) and monitoring

station (Algeciras, La Lı́nea, and Alcornocales). In these

tables, the meteorological variables for each pollutant are

marked in yellow, and the rest of the relevant pollutants,

different from those analysed and repeated in at least two

stations, are marked in other colours. In the Tables 15, 16,

17, 18, and 19, it is expected that each pollutant’s own time

series (SO2(t), PM10(t), NO2(t), NOX(t), and NO(t)) will

always appear, and this is indeed the case. For instance,

Table 15 shows the most relevant meteorological variables

for SO2, namely wind direction (WD) and rainfall (RF).

For SO2, O3 and nitrogen oxides are the most relevant air

pollutants, as expected. Table 16 shows the relevant

variables for the PM10 pollutant, indicating that the most

relevant meteorological variables are wind speed (WS),

rainfall (RF), and relative pressure (RP), and the most

relevant pollutants are nitrogen oxides. Similarly, Table 17

for the pollutant NO2 indicates that the most relevant

meteorological variables are related to wind (wind direc-

tion (WD) and wind speed (WS)) and rainfall (RF), and the

most relevant pollutants are particulate matter (PM10 and

PM2.5), O3 and SO2. Table 18 for each NOX case, shows

the same relevant meteorological variables as for NO2 and

includes relative humidity (RH) and the same relevant

pollutants except SO2. In the case of the NO pollutant,

Table 19 shows that the relevant meteorological variables

are related to the wind (wind direction (WD) and wind

speed (WS)), solar radiation (SR), and rainfall (RF).

The best models for each pollutant and location for the

fourth quartile are shown in italics. Results are given for all

Table 7 Best prediction model results for daily PM10 (t ? 1) concentrations using all variables at t

Pollutant Location Best Model Quartile/class Sensitivity Specificity Accuracy Precision d1

PM10 Algeciras Best

Classifier

Tree (Max. 4 splits) Q1 0.9705 0.9867 0.9826 0.9599 0.0544

Q2 0.9124 0.9708 0.9562 0.9124 0.1346

Q3 0.9118 0.9696 0.9553 0.9084 0.1382

Q4 0.9568 0.9902 0.9817 0.9708 0.0561

Best ANN Neural Network (100

neurons)

Q1 0.8603 0.9514 0.9288 0.8540 0.2197

Q2 0.7183 0.9137 0.8630 0.7445 0.4133

Q3 0.7333 0.8976 0.8594 0.6850 0.4479

Q4 0.8345 0.9544 0.9233 0.8650 0.2315

Alcornocales Best

Classifier

Tree (Max.100 splits) Q1 0.9560 0.9842 0.9772 0.9526 0.0704

Q2 0.9262 0.9721 0.9607 0.9161 0.1217

Q3 0.9283 0.9828 0.9689 0.9487 0.0950

Q4 0.9706 0.9878 0.9836 0.9635 0.0511

Best ANN Neural Network (10

neurons)

Q1 0.8078 0.9423 0.9078 0.8285 0.2796

Q2 0.6742 0.8845 0.8338 0.6496 0.5195

Q3 0.7201 0.9033 0.8584 0.7070 0.4400

Q4 0.8404 0.9545 0.9251 0.8650 0.2267

La Lı́nea Best

Classifier

Ensemble (Boosted Trees) Q1 0.9667 0.9842 0.9799 0.9526 0.0634

Q2 0.9206 0.9768 0.9626 0.9307 0.1143

Q3 0.9307 0.9781 0.9662 0.9341 0.1038

Q4 0.9672 0.9890 0.9836 0.9672 0.0505

Best ANN Neural Network

(10 9 10x10 neurons)

Q1 0.8421 0.9397 0.9160 0.8175 0.2625

Q2 0.6804 0.9055 0.8457 0.7226 0.4602

Q3 0.7722 0.9127 0.8795 0.7326 0.3815

Q4 0.8925 0.9694 0.9498 0.9088 0.1528

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4
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quartiles, but we assume that the fourth quartile is the most

important for prediction as it represents the most dangerous

concentration levels.

5 Conclusions

In this work, an experimental procedure using a resampling

strategy with five-fold cross-validation allowed the statis-

tical comparison of the different classification models tes-

ted. The proposed approach is based on classification

modelling, since the desired output is the next level

(quartile at t ? 1) of an air pollutant as a function of the

other variables at a given time t. Two approaches have

been used, one with hourly mean data for nitrogen oxides

(NO2, NOX, and NO) and another one with daily mean data

(for SO2 and PM10), due to the thresholds established in the

European Directive 2008/50/EC, in order to obtain more

reliable information in the study area. The approaches were

developed in three different and separate locations: the

main city of Algeciras, the city of La Lı́nea, and the

unspoilt remote area of Alcornocales, in order to contrast

them and obtain more details on the behaviour of the air

pollutants.

The main conclusions of this study are as follows:

• The classification models can be adequately used to

provide very good air quality prediction results with

quality indexes up to 90% in most cases.

• In general, the use of the ten relevant variables

improves the results in most cases.

• Ensemble boosted trees, SVM, trees, and ANNs

classifiers tend to be the best prediction models in

most cases.

Table 8 Best prediction model results for daily PM10 (t ? 1) concentrations using top ten relevant features at t

Pollutant Location Best Model /hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1

PM10 Algeciras Best

Classifier

Tree (Max. 4 splits) Q1 0.9539 0.9938 0.9836 0.9818 0.0526

Q2 0.9321 0.9675 0.9589 0.9015 0.1307

Q3 0.9185 0.9697 0.9571 0.9084 0.1334

Q4 0.9568 0.9902 0.9817 0.9708 0.0561

Best ANN Neural Network

(10 9 10x10 neurons)

Q1 0.9348 0.9805 0.9689 0.9416 0.0949

Q2 0.8759 0.9586 0.9379 0.8759 0.1907

Q3 0.8806 0.9553 0.9370 0.8645 0.1965

Q4 0.9314 0.9804 0.9680 0.9416 0.0976

Alcornocales Best

Classifier

Tree (Max. 4 splits) Q1 0.9536 0.9914 0.9817 0.9745 0.0567

Q2 0.9580 0.9724 0.9689 0.9161 0.1026

Q3 0.9395 0.9889 0.9763 0.9670 0.0737

Q4 0.9816 0.9915 0.9890 0.9745 0.0344

Best ANN Neural Network (100

neurons)

Q1 0.9585 0.9759 0.9717 0.9270 0.0918

Q2 0.8741 0.9703 0.9452 0.9124 0.1655

Q3 0.9222 0.9709 0.9589 0.9121 0.1277

Q4 0.9708 0.9903 0.9854 0.9708 0.0449

La Lı́nea Best

Classifier

Tree (Max. 4 splits) Q1 0.9496 0.9878 0.9781 0.9635 0.0671

Q2 0.9398 0.9710 0.9635 0.9124 0.1160

Q3 0.9317 0.9829 0.9699 0.9487 0.0922

Q4 0.9707 0.9891 0.9845 0.9672 0.0479

Best ANN Neural Network

(10 9 10x10 neurons)

Q1 0.9234 0.9744 0.9616 0.9234 0.1178

Q2 0.8638 0.9596 0.9352 0.8796 0.1972

Q3 0.9167 0.9627 0.9516 0.8864 0.1535

Q4 0.9460 0.9865 0.9763 0.9599 0.0726

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4
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• The results obtained with ANNs are always improved

by reducing the number of variables to the ten relevant

ones.

• Variable selection models can be used to rank the

importance of leverage variables.

• By selecting fewer variables, it is possible to design a

more energy sustainable system with a lower carbon

footprint.

• All forecasts can be useful to the citizens, institutions,

businesses in the port area, and the cities surrounding

the port.

• There is background radiation (averages that are

constantly repeated) that does not provide useful or

accurate information from the ships. The conclusion

that can be drawn from the data is that we need more

sensors close to the dock area where the ships are

Table 9 Best prediction model results for hourly NO2 (t ? 1) concentrations using all variables at t

Pollutant Location Best Model/hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1

NO2 Algeciras Best

Classifier

SVM (Medium Gaussian) Q1 0.8248 0.9405 0.9113 0.8243 0.2701

Q2 0.6513 0.8846 0.8270 0.6494 0.5365

Q3 0.6047 0.8700 0.8026 0.6132 0.6014

Q4 0.7349 0.9100 0.8669 0.7271 0.4130

Best ANN Neural Network (10

neurons)

Q1 0.8160 0.9383 0.9073 0.8180 0.2817

Q2 0.6368 0.8835 0.8213 0.6484 0.5487

Q3 0.5914 0.8596 0.7941 0.5769 0.6388

Q4 0.7270 0.9105 0.8647 0.7300 0.4168

Alcornocales Best

Classifier

Ensemble (Boosted Tree) Q1 0.7861 0.9373 0.8954 0.8276 0.3006

Q2 0.5950 0.8731 0.8031 0.6119 0.6079

Q3 0.6127 0.8654 0.8043 0.5922 0.6105

Q4 0.8123 0.9279 0.9014 0.7705 0.3206

Best ANN Neural Network (10 9 10

neurons)

Q1 0.7794 0.9291 0.8885 0.8037 0.3235

Q2 0.5757 0.8634 0.7925 0.5791 0.6473

Q3 0.5880 0.8605 0.7932 0.5804 0.6388

Q4 0.7943 0.9282 0.8967 0.7732 0.3310

La Lı́nea Best

Classifier

Ensemble (Boosted Tree) Q1 0.8265 0.9381 0.9099 0.8190 0.2736

Q2 0.6482 0.8871 0.8257 0.6651 0.5283

Q3 0.6160 0.8780 0.8125 0.6277 0.5797

Q4 0.8030 0.9262 0.8967 0.7744 0.3253

Best ANN Neural Network (10 9 10

neurons)

Q1 0.8105 0.9332 0.9021 0.8048 0.2968

Q2 0.6312 0.8774 0.8155 0.6335 0.5652

Q 3 0.6016 0.8691 0.8039 0.5968 0.6139

Q4 0.7765 0.9287 0.8904 0.7853 0.3364

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4
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located in order to be able to deduce the direct effect of

pollutants coming directly from the ships.

The logistical activity of a port has an impact on air

quality. Therefore, it is necessary to implement predictive

models to provide reliable forecasts that help citizens,

companies and institutions, to make decisions and drive

policy changes to ensure a healthier and cleaner environ-

ment for present and future generations.

Table 10 Best prediction model results for hourly NO2 (t ? 1) concentrations using top ten relevant features at t

Pollutant Location Best Model/hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1

NO2 Algeciras Best

Classifier

SVM (Medium Gaussian) Q1 0.8226 0.9388 0.9096 0.8190 0.2759

Q2 0.6437 0.8850 0.8244 0.6523 0.5403

Q3 0.5885 0.8698 0.7959 0.6170 0.6121

Q4 0.7450 0.9032 0.8662 0.7020 0.4255

Best ANN Neural Network (10

neurons)

Q1 0.8218 0.9411 0.9107 0.8263 0.2709

Q2 0.6511 0.8822 0.8259 0.6405 0.5434

Q3 0.5903 0.8677 0.7960 0.6085 0.6167

Q4 0.7377 0.9088 0.8672 0.7227 0.4143

Alcornocales Best

Classifier

Ensemble (Boosted Tree) Q1 0.7928 0.9305 0.8936 0.8066 0.3106

Q2 0.5853 0.8760 0.7999 0.6259 0.6061

Q3 0.6110 0.8650 0.8035 0.5913 0.6125

Q4 0.8118 0.9268 0.9005 0.7664 0.3244

Best ANN Neural Network (10

neurons)

Q 1 0.7912 0.9327 0.8944 0.8134 0.3067

Q2 0.5990 0.8726 0.8045 0.6088 0.6069

Q3 0.6136 0.8687 0.8058 0.6048 0.6003

Q4 0.8084 0.9312 0.9025 0.7823 0.3136

La Lı́nea Best

Classifier

Ensemble (Boosted Tree) Q1 0.8242 0.9389 0.9097 0.8216 0.2731

Q2 0.6487 0.8864 0.8256 0.6625 0.5297

Q3 0.6148 0.8780 0.8120 0.6277 0.5807

Q4 0.8033 0.9255 0.8963 0.7721 0.3269

Best ANN Neural Network (10

neurons)

Q1 0.8225 0.9393 0.9095 0.8231 0.2732

Q2 0.6500 0.8846 0.8254 0.6557 0.5337

Q3 0.6152 0.8755 0.8113 0.6182 0.5873

Q4 0.7925 0.9279 0.8947 0.7811 0.3274

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4
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Table 11 Best prediction model results for hourly NOX (t ? 1) concentrations using all variables at t

Pollutant Location Best Model/hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1

NOX Algeciras Best

Classifier

SVM (Medium Gaussian) Q1 0.8178 0.9410 0.9100 0.8234 0.2756

Q2 0.6492 0.8841 0.8248 0.6543 0.5354

Q3 0.6103 0.8690 0.8045 0.6074 0.6011

Q4 0.7190 0.9048 0.8590 0.7118 0.4370

Best ANN Neural Network (10

neurons)

Q1 0.8153 0.9384 0.9076 0.8152 0.2838

Q2 0.6377 0.8831 0.8201 0.6531 0.5455

Q3 0.5954 0.8621 0.7965 0.5849 0.6296

Q4 0.7073 0.9017 0.8536 0.7028 0.4529

Alcornocales Best

Classifier

Ensemble (Boosted Tree) Q1 0.7885 0.9275 0.8907 0.7967 0.3213

Q2 0.5960 0.8768 0.8040 0.6287 0.5955

Q3 0.6115 0.8717 0.8091 0.6017 0.6021

Q4 0.7982 0.9218 0.8927 0.7586 0.3415

Best ANN Neural Network (10 9 10

neurons)

Q1 0.7657 0.9304 0.8848 0.8078 0.3316

Q2 0.5851 0.8644 0.7960 0.5835 0.6369

Q3 0.5921 0.8643 0.7994 0.5776 0.6352

Q4 0.7871 0.9227 0.8901 0.7626 0.3460

La Lı́nea Best

Classifier

Ensemble (Boosted Tree) Q1 0.7985 0.9321 0.8979 0.8021 0.3079

Q2 0.5740 0.8606 0.7897 0.5753 0.6523

Q3 0.5856 0.8584 0.7928 0.5673 0.6496

Q4 0.7628 0.9267 0.8849 0.7815 0.3502

Best ANN Neural Network (10

neurons)

Q1 0.7930 0.9307 0.8953 0.7981 0.3153

Q2 0.5828 0.8549 0.7916 0.5492 0.6646

Q3 0.5688 0.8625 0.7869 0.5891 0.6474

Q4 0.7617 0.9242 0.8830 0.7731 0.3574

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4

Table 12 Best prediction model for hourly NOX (t ? 1) concentrations using top ten relevant features at t

Pollutant Location Best Model/hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1

NOX Algeciras Best

Classifier

SVM (Medium Gaussian) Q1 0.8171 0.9390 0.9085 0.8169 0.2812

Q2 0.6304 0.8818 0.8169 0.6502 0.5536

Q3 0.5929 0.8645 0.7962 0.5950 0.6242

Q4 0.7196 0.8999 0.8565 0.6945 0.4500

Best ANN Neural Network (10

neurons)

Q1 0.8238 0.9369 0.9091 0.8096 0.2821

Q2 0.6325 0.8853 0.8190 0.6622 0.5432

Q3 0.6058 0.8586 0.7992 0.5679 0.6343

Q4 0.7012 0.9076 0.8545 0.7243 0.4416

Alcornocales Best

Classifier

Ensemble (Boosted Tree) Q1 0.7842 0.9292 0.8903 0.8024 0.3204

Q2 0.5938 0.8785 0.8036 0.6355 0.5926

Q3 0.6150 0.8672 0.8088 0.5829 0.6135

Q4 0.7937 0.9221 0.8917 0.7600 0.3435

Best ANN Neural Network (10

neurons)

Q1 0.7855 0.9310 0.8918 0.8076 0.3154

Q2 0.6066 0.8735 0.8072 0.6132 0.5979

Q3 0.6075 0.8740 0.8084 0.6116 0.5979

Q4 0.7982 0.9224 0.8931 0.7604 0.3400
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Table 13 Best prediction model results for hourly NO (t ? 1) concentrations using all variables at t

Pollutant Location Best Model/hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1

NO Algeciras Best

Classifier

SVM (Medium Gaussian) Q1 0.8197 0.9425 0.9115 0.8286 0.2702

Q2 0.7101 0.8859 0.8402 0.6864 0.4700

Q3 0.5649 0.8693 0.7977 0.5708 0.6569

Q4 0.7298 0.9143 0.8679 0.7411 0.4060

Best ANN Neural Network (10 9 10

neurons)

Q1 0.8103 0.9410 0.9077 0.8245 0.2807

Q2 0.6894 0.8836 0.8318 0.6829 0.4887

Q3 0.5745 0.8611 0.7993 0.5320 0.6780

Q4 0.7140 0.9188 0.8649 0.7583 0.4062

Alcornocales Best

Classifier

Ensemble (Bagged Tree) Q1 0.8302 0.8656 0.8410 0.9336 0.2768

Q2 – – – – –

Q3 0.3925 0.8733 0.8418 0.1788 1.0414

Q4 0.7572 0.9255 0.8852 0.7619 0.3666

Best ANN Neural Network (10 9 10

neurons)

Q1 0.8291 0.8525 0.8364 0.9260 0.2884

Q2 – – – – –

Q3 0.3333 0.8696 0.8334 0.1563 1.0959

Q4 0.7451 0.9242 0.8808 0.7586 0.3785

La Lı́nea Best

Classifier

Ensemble (Boosted Tree) Q1 0.8272 0.9502 0.9161 0.8644 0.2404

Q2 0.6791 0.8913 0.8430 0.6481 0.5131

Q3 0.6890 0.8834 0.8385 0.6392 0.5163

Q4 0.7422 0.9305 0.8807 0.7931 0.3582

Best ANN Neural Network (10

neurons)

Q1 0.8152 0.9479 0.9108 0.8587 0.2545

Q2 0.6724 0.8839 0.8373 0.6208 0.5395

Q3 0.6708 0.8793 0.8308 0.6274 0.5389

Q4 0.7304 0.9292 0.8760 0.7902 0.3702

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4

Table 12 (continued)

Pollutant Location Best Model/hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1
La Lı́nea Best

Classifier

Ensemble (Boosted Tree) Q1 0.7948 0.9334 0.8975 0.8066 0.3073

Q2 0.5681 0.8598 0.7870 0.5737 0.6583

Q3 0.5854 0.8562 0.7920 0.5583 0.6565

Q4 0.7659 0.9270 0.8860 0.7821 0.3473

Best ANN Neural Network (10

neurons)

Q1 0.7961 0.9345 0.8986 0.8100 0.3037

Q2 0.5807 0.8577 0.7916 0.5614 0.6572

Q3 0.5822 0.8640 0.7930 0.5904 0.6353

Q4 0.7753 0.9255 0.8880 0.7760 0.3447

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4
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Table 14 Best prediction model results for hourly NO (t ? 1) concentrations using top ten relevant features at t

Pollutant Location Best Model/hidden neurons Quartile/class Sensitivity Specificity Accuracy Precision d1

NO Algeciras Best

Classifier

Ensemble (RUSBoosted

Tree)

Q1 0.8238 0.9413 0.9119 0.8243 0.2704

Q2 0.6853 0.8917 0.8342 0.7099 0.4716

Q3 0.5740 0.8625 0.7995 0.5384 0.6731

Q4 0.7246 0.9132 0.8656 0.7381 0.4124

Best ANN Neural Network (25

neurons)

Q1 0.8205 0.9393 0.9096 0.8181 0.2778

Q2 0.7103 0.8864 0.8405 0.6880 0.4687

Q3 0.5703 0.8653 0.7989 0.5518 0.6664

Q4 0.7149 0.9202 0.8659 0.7631 0.4022

Alcornocales Best

Classifier

Tree (Max. 4 splits) Q1 0.8081 0.8866 0.8296 0.9498 0.2850

Q2 – – – – –

Q3 0.8081 0.8866 0.8296 0.9498 1.1416

Q4 0.7282 0.9312 0.8791 0.7849 0.3734

Best ANN Neural Network

(10 9 10x10 neurons)

Q1 0.8202 0.8807 0.8376 0.9443 0.2758

Q2 – – – – –

Q3 0.3553 0.8635 0.8459 0.0853 1.1378

Q4 0.7338 0.9308 0.8808 0.7832 0.3700

La Lı́nea Best

Classifier

Ensemble (Boosted Tree) Q1 0.8264 0.9499 0.9156 0.8636 0.2417

Q2 0.6782 0.8910 0.8425 0.6473 0.5144

Q3 0.6848 0.8836 0.8373 0.6409 0.5180

Q4 0.7436 0.9291 0.8805 0.7884 0.3603

Best ANN Neural Network (10

neurons)

Q 1 0.8171 0.9520 0.9139 0.8703 0.2440

Q2 0.6942 0.8885 0.8461 0.6348 0.5128

Q3 0.6902 0.8864 0.8404 0.6500 0.5068

Q4 0.7457 0.9323 0.8829 0.7987 0.3515

In bold: the best model; in underline: with all/relevant variables; in italics: the best model for Q4

Table 15 The ten most relevant variables for each SO2 (t ? 1) level prediction

SO2 Algeciras daily concentrations SO2 Alcornocales daily concentrations SO2 La Línea dail y concentrations
Variable Monitoring Station Variable Monitoring Station Variable Monitoring Station

SO2(t) Algeciras SO2(t) Alcornocales SO2(t) La Línea
WD W1 (La Línea) RF W4 (CEPSA 15 m high) WD W3 (CEPSA 60 m high)

NO Alcornocales NO2 Alcornocales NO Carteya

O3 Cortijillos CO Escuela Hostelería NOX Alcornocales

NO2 Algeciras WD W1 (La Línea) PM2.5 Rinconcillo

PM2.5 Economato NO Los Barrios O3 Alcornocales

SO2 Los Barrios SO2 Algeciras NOX Carteya
SO2 Alcornocales O3 Cortijillos NOX Rinconcillo
SO2 Palmones NO Alcornocales SO2 Algeciras

PM10 Palmones SO2 Madrevieja RF W1 (La Línea)
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Table 16 The ten most relevant variables for each PM10 (t ? 1) level prediction

PM 10 Algeciras daily concentrations PM 10 Alcornocales daily concentrations PM 10 La Línea dail y concentrations
Variable Monitoring Station Variable Monitoring Station Variable Monitoring Station

PM10(t) Algeciras PM10(t) Alcornocales PM10(t) La Línea
Tolueno Puente Mayorga WS W4 (CEPSA 15 m high) RF W4 (CEPSA 15 m high)

WS W4 (CEPSA 15 m high) SO2 Puente Mayorga NOx Rinconcillo

PM10 Alcornocales PM10 Palmones PM10 Alcornocales

NO2 Algeciras PM2.5 Alcornocales PM10 El Zabal

PM10 La Línea PM10 Carteya PM2.5 Economato

PM10 Carteya RF W4 (CEPSA 15 m high) PM10 Algeciras
PM10 Palmones RP W1 (La Línea) PM10 Carteya
PM2.5 Alcornocales PM10 Los Barrios PM2.5 El Zabal

PM10 El Zabal PM2.5 Economato PM10 Palmones

Table 17 The ten most relevant variables for each NO2 (t ? 1) level prediction

NO2 Algeciras hourly concentrations NO2 Alcornocales hourly concentrations NO2 La Línea hourly concentrations
Variable Monitoring Station Variable Monitoring Station Variable Monitoring Station

NO2(t) Algeciras NO2(t) Alcornocales NO2(t) La Línea

WD W1 (La Línea) WD W3 (CEPSA 60 m high) RF W2 (CEPSA 10 m high)

NOX Los Barrios NO Alcornocales NO2 Hostelería

RF W2 (CEPSA 10 m high) NOX Los Barrios Benceno Campamento

O3 Algeciras PM2.5 Alcornocales NOx Campamento

PM10 Rinconcillo O3 Cortijillos PM2.5 San Roque

NO2 Cortijillos NOX Alcornocales NOX El Zabal

NOX Algeciras NOX Carteya NO2 San Roque

WS W4 (CEPSA 15 m high) SO2 Algeciras NOX Economato

WD W3 (CEPSA 60 m high) RF W1 (La Línea) SO2 Puente Mayorga

Table 18 The ten most relevant variables for each NOX (t ? 1) level prediction

NOX Algeciras hourly concentrations NOX Alcornocales hourly concentrations NOX La Línea hourly concentrations
Variable Monitoring Station Variable Monitoring Station Variable Monitoring Station

NOX (t) Algeciras NOX (t) Alcornocales NOX (t) La Línea

WD W3 (CEPSA 60 m high) RF W2 (CEPSA 10 m high) WD W3 (CEPSA 60 m high)

WS W4 (CEPSA 15 m high) O3 Cortijillos NO2 Hostelería

NOX Los Barrios NO2 Los Barrios NOX Economato

PM10 Palmones NO Alcornocales HR W2 (CEPSA 10 m high)

O3 Algeciras PM10 Los Barrios NO La Línea

NO2 Algeciras NO2 Alcornocales WD W1 (La Línea)

NOX Cortijillos SO2 Algeciras NO2 La Línea

WD W1 (La Línea) NOX Carteya NOX Guadarranque

NO Algeciras SO2 Alcornocales WD W4 (CEPSA 15 m high)

Stochastic Environmental Research and Risk Assessment (2023) 37:4359–4383 4379

123



Author contributions Conceptualization, M.I.R.-G, C.R., and I.J.T.;

data curation, M.I.R.-G, J.G.-E., and J.J.R.-A.; formal analysis,

M.I.R.-G, J.G.-E. and I.J.T.; funding acquisition, I.J.T.; investigation,

M.I.R.-G and J.G.-E..; methodology, M.I.R.-G, C.R., and I.J.T.;

project administration, C.R., and I.J.T.; software, M. I.R.-G, J.G.-E.,

and I.J.T.; supervision, C.R., J.J.R.-A., and I.J.T.; validation, M.I.R.-

G, C.R., and I.J.T.; visualization, M.I.R.-G. and C.R.; writing—

original draft, M.I.R.-G, C.R., and I.J.T.; writing—review and editing,

M.I.R.-G., C.R. and I.J.T. All authors have read and agreed to the

published version of the manuscript.

Funding Funding for open access publishing: Universidad de Cádiz/

CBUA. This work is part of the research project RTI2018-098160-B-

I00 supported by ’MICINN. ‘Programa Estatal de I+D+i Orientada a

los Retos de la Sociedad’ and besides, it is partially financed by

national funds through FCT – Fundação para a Ciência e a Tecnologia

under the project UIDB/00006/2020. This research is supported by

‘Plan Propio de la Universidad de Cádiz’. Data used in this work have

been kindly provided by the Andalusian Regional Government.

Declarations

Conflict of interest The authors have not got relevant conflicts of

interest to declare to the content of this article.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Adeyemi A, Molnar P, Boman J, Wichmann J (2022) Particulate

matter (PM2.5) characterization, air quality level and origin of air

masses in an urban background in pretoria. Arch Environ

Contam Toxicol 83(1):77–94. https://doi.org/10.1007/s00244-

022-00937-4

Bai L, Wang J, Ma X, Lu H (2018) Air pollution forecasts: an

overview. Int J Environ Res Public Health 15(4):780. https://doi.

org/10.3390/ijerph15040780

Baklanov A, Zhang Y (2020) Advances in air quality modeling and

forecasting. Global Transitions 2:261–270. https://doi.org/10.

1016/j.glt.2020.11.001

Bishop CM (2006) Pattern Recognition and Machine Learning.

Springer, Berlin

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification

and regression trees. Routledge, p 368. ISBN 978-0-412-04841-

8. https://doi.org/10.1201/9781315139470

Breiman L (1996) Bagging predictors. Mach Learn 26:123–140

Breiman L (2001) Random forests. Mach Learn 45:5–32

Corani G, Scanagatta M (2016) Air pollution prediction via multi-

label classification. Environ Model Softw 80:259–264

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20:273–297. https://doi.org/10.1007/BF00994018

Durán-Grados V, Rodrı́guez-Moreno R, Calderay-Cayetano F,
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